Target problem on lattice clusters above the percolation threshold
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Target problem A + B ( A has been studied by computer simulation of random walks of particles A on a simple cubic lattice with either randomly closed sites or randomly removed bonds above the percolation threshold. It is shown that at low concentration of walkers the nonexponential decay of particles B derives mainly from rate constant distribution. Anomalous diffusion of walkers contributes to the nonexponential kinetic behavior at short times or at high concentration of walkers only. The distribution of specific reaction rates arises from the fact that a density of the pathways taken by particles A to reach the target B fluctuates with space strongly enough.

1. Introduction

In this paper, we discuss the kinetics of diffusion-controlled reaction
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when only the A particles are mobile and their concentration is much greater than the initial concentration of particles B, i.e., 
[image: image2.wmf])

0

(

B

A

N

N

>>

. In the literature this case is known as the target problem, because the B particles play the role of targets and their survival probability is measured experimentally. Although reaction (1), under condition listed, is actually the first-order process, its kinetics in disordered solids, as a rule, is not described by the exponential law (see, e.g., Refs. [1-3]). A feature of the process is a dramatic decrease in rate constant with increasing reaction time. Let us briefly discuss how the kinetic behavior is interpreted in the literature.

There are two approaches to treat the nonexponential behavior of the kinetics of reaction (1) [4]. The key feature of the first approach is a decrease in encounter frequency between the A particles and a target with time. This can be a consequence of several reasons, such as anomalous diffusion of particles A [5-8] or a structural relaxation of medium proceeding simultaneously with the reaction [1]. The kinetics of reaction in this case is described in the framework of the so-called time-dependent reaction rate, 
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 [5] (see Ref. [9] for a general review of this field). The 
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 model assumes that all targets are kinetically equivalent. In contrast to this, in the second approach the different targets have the different probability of decay and as a consequence the kinetics of reaction is described in the framework of the rate constant distribution [10]. It should be emphasized that these approaches give the different dependence of kinetics on the concentration of walkers and thus, may be discriminated experimentally (see, e.g., Refs. [1-4]).

At present, the rate constant distribution is usually associated with a spatial varying diffusion coefficient of particles [2,3]. The needed length of fluctuations is estimated to be several tens of Å. The macroscopic inhomogeneity of materials can be the reason for 
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. In systems with random disorder (inhomogeneity on the atomic scale), the kinetics of reaction (1) is usually analyzed in the framework of the 
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 model [11].

In this paper, we present the results for the kinetics of reaction (1) obtained by computer simulation of random walks of particles A on a simple cubic lattice with (I) randomly closed sites or (II) randomly removed bonds above the percolation threshold. Case (I) may be regarded as a simple model of an amorphous structure, where an immobile component produces geometrical restrictions for the diffusion of foreign particles, whereas (II) represents a limiting case of the model with a wide distribution of the rates of jump among the sites [12]. The aim of this paper is to demonstrate that the rate constant distribution may be observed in these systems. Although our models manifest a spatially uncorrelated disorder, the kinetics of reaction (1) is typical of the systems with macroscopic inhomogeneity.

It should be note that the kinetics of reaction (1) on lattice clusters has already been studied both by analytic methods in the framework of the percolation theory [13] and by computer simulation [11]. But the kinetic nonequivalence of targets was ignored.

2. MODELS AND COMPUTATIONAL PROCEDURES

In model I, we use a simple cubic lattice where each site can be blocked with probability 1-p = 0.65 and thus is inaccessible for the A particles. The percolation threshold 
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= 0.312. In model II, all sites of the simple cubic lattice are accessible for particles, but each bond can be removed with probability 1-p = 0.72. The percolation threshold in this case, 
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= 0.25. The reaction was simulated on a lattice of size 
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 sites with periodic boundary condition. L was chosen with respect to walker concentration 
[image: image10.wmf]A

N

 (a fraction of occupied sites) which was varied within the range from 2(10-3 (L=28) to 2.2(10-4 (L=40). The number of walkers 
[image: image11.wmf]3

A

L

N

 was not less then 14 in model(I or 20 in model II. The data do not depend on L. The unit time in our models is one Monte Carlo step, which is defined as the time it takes for a walker to move to its nearest-neighbor site. In each step of the simulation, each walker attempts to jump in a random direction towards the neighboring site. In model I, if the neighboring site is vacant, the walker jumps to it with probability 1. If the neighboring site is closed or is occupied by another walker, the jump is rejected. In model II, the probability of walker jump along the uncut bond is 1. If the bond in this direction is removed, the jump is rejected. The reaction kinetics simulation involves: (i) averaging over all initial positions of walkers and over all realizations of random walks at a fixed configuration of lattice clusters; (ii) averaging over all configurations. To demonstrate the kinetic nonequivalence of targets, determined by configuration fluctuations, we have used the lattice containing only one target placed at the centre. First, the lattice with a random configuration of clusters was generated. Then, all open sites of the lattice were randomly occupied by walkers with probability 
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. Only one particle was allowed to occupy simultaneously the same site. The walkers performed random walks until one of them reached the target site. The time of this event is stored. Thereafter, the walkers were again randomly located with the same configuration of clusters. The averaging over different initial positions of walkers (typically 103 variants) produces the survival probability of a target at a fixed configuration of clusters. Then, the lattice with a new configuration of clusters was generated. Averages were typically performed over 300 configurations.

There is a trivial reason for the kinetic nonequivalence of targets. This is fluctuation of the number of (model I) open sites that are nearest to the target or (model II) removed bonds between the target and the rest of the lattice. When, say, only one site plays the role of target, it is bound only via 6 bonds to the lattice and thus (1-p)6 of targets are inaccessible for the A particles. We intentionally use a large target in size to minimize the reason. In model I, the target includes 19 closest sites located inside of sphere, 1.5 lattice constant in radius. The centre of sphere is a lattice site. The target has 38 nearest-neighbor sites. In model II, the target include 8 closest sites, arranged in a cube. It is bound via 24 bonds to the lattice, over which particles A walk.

3. RESULTS AND DISCUSSION

First, the diffusion properties of walkers were studied by computer calculations of the mean-square displacement of particles A as a function of time. At short times the anomalous transport of walkers is observed. Then, after several thousands of Monte Carlo steps per a walker, diffusion transits to the normal regime, where 
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. Therefore, at low concentration of walkers when the reaction time is much longer than that after which the diffusion transits to a normal regime, the survival probability of any target must be exponential. This is demonstrated in Fig. 1 for model II. Figure. 1 shows the survival probability of a target for three chosen randomly configurations of clusters. It is seen that at t > 103 of Monte Carlo steps the decay of targets is described by the exponential law. This is quite natural in light of the diffusion properties of particles A given above. Referring to Fig. 1, we can conclude that the reaction rate constants for various configurations differ strongly from each other. The same conclusion follows from model I. The dependence of the rate constant on the configuration of clusters around the target is the main result of our work. Now we are going to demonstrate that the rate constant distribution is wide enough and, thus, the averaging over all configurations is sure to lead to the nonexponential decay of targets.

Fig. 2 shows the decay of targets as a function of time for two concentrations of walkers in model II. As seen from Fig. 2 the reaction kinetics is nonexponential. Let us discuss the decay of targets as a function of walker concentration. When the nonexponential decay of targets is determined by the rate constant distribution, the kinetic curves for different concentrations of particles A have the same asymptotic behavior in
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Fig. 1. The survival probability of a target. Averaging was performed over 104 initial positions of walkers.
Fig. 2. The kinetics of target decay for 
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=10-3 (1) and 2(10-3 (2). The dashed curve shows the asymptotic law.

coordinates 
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 vs. 
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 [14]. Fig. 2 gives the data just in these coordinates. The dashed curve in Fig. 2 was obtained by shift of curve (1) downwards along the y-axis. It is seen that kinetic curves 1 and 2, except an initial region, have the same slopes at a fixed value of 
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. This shows that at low concentration of walkers or at long times the nonexponential decay of targets derives from rate constant distribution. At high concentration of walkers, the nonexponential behavior of kinetics is determined by both an anomalous diffusion of particles A and the rate constant distribution. The same conclusion follows from the data shown in Fig. 3 for model I. Fig.(3 shows the kinetics of reaction (1) in coordinates 
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 for several concentrations of walkers. It is seen that at high walker concentrations the kinetic curve has an accelerated initial region and then displays the same behavior with time as the kinetic curve at low concentration of walkers. The more is 
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, the longer is the accelerated portion of the kinetic curve.

Let us discuss the range of rate constants that can occur in our model. A width of any distribution function is characterized by its dispersion 
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. To make an estimate of 
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 for our model, we have used one of the feasible function, namely, a Gaussian distribution of 
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 [3]. Solid curve in Fig. 4 represents the kinetics of reaction (1) for 
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=2.2(10-4. Note that at such low concentration of walkers the kinetics is nonexponential only due to rate constant distribution. Solid circles in Fig. 4 represent approximation of the kinetics by a sum of exponential decay function with Gaussian distribution of 
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 at 
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=0.81. It is seen that the fit is fair. It should be noted that a width of rate constant distribution depends both on a fraction of closed sites (removed bonds) and on the size of a target. These aspects will be discussed in other publication. It is qualitatively clear that: (i) the distribution function is sure to become narrower with in-
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Fig. 3. The kinetics of target decay for 
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=2.2(10-4 (1), 4.2(10-4 (2) and 10-3 (3). Curves (2) and (3) are shifted upwards along the y-axis.
Fig. 4. The decay of targets in the case where all sites of the lattice (solid curve) and only nearest-neighbour sites of target (dashed curve) are closed with a probability of 0.65. Solid circles represent approximation of the kinetics by a sum of exponential terms.

increasing target size; (ii) the more is the fraction of closed sites (removed bonds), the wider is the rate constant distribution.

Consider now the influence of nonequivalence of the nearest environment of targets on their decay. In model I, the target has 38 nearest-neighbor sites. The A particles can penetrate into a target only through these sites. The dashed curve in Fig. 4 gives the decay of targets for the case where only these sites can be closed with probability 1-p = 0.65. All other sites in the lattice remain accessible for the A particles. It is seen that the kinetic curve is nearly exponential. Consequently, fluctuations in the number of closed sites between the target and the rest of the lattice make a negligible contribution to the nonexponential behavior of the reaction kinetics. The same conclusion can be made for model II.

Finally, we discuss the data on the oxidation of radicals and azobenzene nitrene by molecular oxygen in polymers [2,15]. In these systems the nonexponential decay of radicals is interpreted in the framework of rate constant distribution. A study of radical decay at various temperatures shows that the distribution width is temperature-independent. Thus, the spatial dispersion of rate constant is determined by fluctuations in the preexponential factor rather than in the activation energy, which corresponds to our models. Indeed, rate constants in all configurations are proportional to the rate of particle jump. Since the activation energy of the jump rate is configuration-independent, the activation energy of rate constants will also be configuration-independent.

4. CONCLUSIONs

In this paper, we present results of computer simulation for the diffusion-controlled reaction A + B ( A on lattice clusters above the percolation threshold. We show that at low concentration of walkers the nonexponential decay of particles B derives mainly from rate constant distribution. Anomalous diffusion of walkers contributes to the nonexponential kinetic behavior at short times or at high concentration of walkers only. The distribution of specific reaction rates arises from the fact that a density of the pathways taken by particles A to reach the target B fluctuates with space strongly enough. As a result, the flux of walkers at a target also fluctuates, which causes rate constant distribution. Hence, although our model manifests a spatially random disorder, the kinetics of reaction is typical of the system with macroscopic inhomogeneity.
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