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ABSTRACT


Computer models of crystalline and amorphous Lennard-Jones systems show a stability threshold at the density 0.8-0.85. Below that the system loses its stability and becomes inhomogeneous. The characteristic size of regions with higher density is about 10 atomic diameters. Regions of lower density represent branched channels with diameter exceeding that of atoms which percolate through the whole model space.

1. INTRODUCTION

In the works of the end of fifties – beginning of sixties, which have opened a new approach to the study of liquid state,  Bernal defined liquids as “homogeneous, coherent and essentially irregular assemblages of molecules containing no crystalline regions nor holes large enough to admit another molecule” [1]. Coherence here means that every particle has no less than three or four contacts with other ones. Bernal noted also that the nature of the coherence is much more dependent on the system density than on the temperature. The critical point where all liquids have a density ρc approximately three times less than at triple point, corresponds to the loss of coherence. What happens, however, when the density decreases but coherence is preserved? 

An external expanding force is needed to decrease the density. As result internal stress develops, which manifests itself as a negative pressure. Molecular attractive forces keep the system whole until extension is too high. Therefore increase of the external force results in the internal pressure decrease only up to some threshold pressure P1 and the corresponding density ρ1. An attempt to decrease the pressure even further will lead to a break: the system will decompose into parts. Thus, at densities less than ρ1 the system will lose stability.

This means that if we try to simulate a substance with a density lower than ρ1 in NPT ensemble it will disintegrate expanding into larger and larger volume. However, at these densities the system can be investigated in NVT ensemble with constant volume. In this case, when the density exceeds the critical one the system will remain coherent. The stability loss results then in structural inhomogeneity: the regions of empty space appear in the system exceeding atom dimensions. It is clear that the stability loss under expanding has a sharp, threshold character; it is a genuine phase transition which can be called the phase transition of the homogeneity loss. This process is studied in this work. We are interested first of all in the value of critical threshold of the homogeneity loss, ρ1 , and in character of the empty space distribution at densities below this threshold.

A similar study for liquid water was carried out in [2,3].It was established that at densities less 0.8 g/cm3 hydrogen bond network disintegrates and large holes appear. The structure of empty space was not, however, investigated; it was hardly appropriate to do  for a small model of 216 molecules considered in [2,3]. 

2. MODELS

In this work two kind of models were generated with considerably different sizes. For determining the threshold density value ρ1 , a small model was used consisting of 100 atoms. For study of the structural inhomogeneity a greater model of 8000 atoms was used. Both models were situated in a cubic volume with periodic boundary conditions. For the models of the first kind the results were averaged under 10 independent realizations, for the models of the second – under 3. Lennard-Jones potential was used for all the models. For the atom diameter we took the position of potential minimum: d = 21/6 σ.

Initial atom coordinates in each realization were determined by a random number generator. This simple procedure does not allow to obtain a system of impenetrable spheres with packing coefficient considerably greater than 0.3. Therefore the second step consisted in relaxation of previous realizations by Monte Carlo technique  in NPT ensemble at zero pressure and zero temperature up to the required value of density. All "small" models were brought up to the reduced density ρ* = ρ σ3 = 1.0 and "large" models up to three different values of ρ* = 1.0, 0.8, and 0.5. Further, each model was additionally relaxed by Monte Carlo method in NVT ensemble at constant volume and zero temperature. The maximal displacement parameter was chosen in such way that the fractions of allowed and rejected configurations were approximately equal. We did not focus on obtaining equilibrium configurations and stopped the relaxation when this parameter diminished up to 10-6 atomic diameter.

3. PAIR CORRELATION FUNCTIONS OF MODELS WITH DIFFERENT DENSITIES

Fig.1 presents the differential pair correlation functions for each of the "large" models. We can conclude that all the models correspond to amorphous state because each of functions have double splitting of the second maximum which is characteristic of this state [4]. These functions demonstrate interesting differences. First, the maxima at medium density are considerably shifted to larger distances whereas at the lowest and the highest densities their positions practically coincide. This demonstrates that the model with density 0.8 undergoes considerable internal stress which is reduced in the model with ρ* =  0.5. Second, the mean line of oscillations at the lowest density is lower at the distances of about 4-6 atomic diameters. This means that for this model there are less packed regions in average at these distances from each of the atoms. In other words, there are  dense assemblages of atoms with  characteristic size of about 10 atomic diameters. This indicates that the density ρ* =  0.5 seems to be below the stability limit ρ1.
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Figure 1. Differential pair correlation functions (g(R)-1)(R2 for models of 8000 particles at different values of reduced density. Dotted lines show maxima positions in the densest model (* = 1.0).

4. PHASE TRANSITION OF HOMOGENEITY LOSS

The stability threshold ρ1 was determined for "small" models which were primarily generated at the density ρ* =  1.0. To decrease the density we used a multistep procedure. At each step the reduced density was lowered by 0.01 by proportional increase of the model size and all the coordinates of the atoms. Subsequently the structure was relaxed in NVT ensemble. Relaxation was performed at zero temperature in order to exclude the influence of thermal excitations on the mechanical stability threshold. The reduced atom energy and pressure (by the virial theorem) were calculated at each density. Results for two of such computer experiments that differed in the extent of relaxation are shown in Fig.2. For Fig. 2a the fraction of allowed configurations in the Monte Carlo procedure was 50% whereas for Fig. 2b it was 40%. This decrease led to slower decrease of the maximal displacement parameter and therefore to more thorough relaxation of the packing. As a result, as it is seen on the inserts, the model preserves its amorphous state at the final density 0.5 in the first case whereas crystallization takes place in the second. 
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Figure 2. Dependence of the pressure (full squares) and averaged energy of atoms (full circles) on the density in models of 100 particles under quick (a) and slow (b) relaxation. Open squares correspond to pressure in the model of 8000 atoms. The inserts display the pair correlation functions at the final density = 0.5.

Comparing these two figures we see that they don’t practically differ in the density interval from 1.0 to 0.8. Here negative pressure increases with decreasing density that evidently corresponds to the stability region when molecular attraction is capable to counteract the external expanding forces. The minimal value of pressure is achieved in both cases approximately at the same threshold density: ρ* = 0.82 in Fig.2a and 0.86 in Fig.2b. Further decrease in density gives in Fig.2b sharper decrease of internal pressure reflecting the transformation of the amorphous substance into crystal. Considerably smaller increase of the mean  atom energy  in this figure is also indicative of crystallization. It is interesting that the results for "large" models calculated at constant volume at density 0.8 are between the results for two experiments described,  and at the density 0.5 they practically coincide with those for crystal. The amorphous packing in the large model appears to be more capable to reduce the internal stress.


Hence, Fig.2 shows that the stability boundary for both amorphous and crystalline system of Lennard-Jones atoms is practically the same and corresponds to the density * = 0.8 – 0.85.

5. EMPTY SPACE DISTRIBUTION IN THE COHERENT PACKINGS BELOW THE STABILITY LIMIT

Structural inhomogeneity of the models below the stability limit can be investigated by different methods. In Fig.3 the distributions of the sphericity coefficient of the Voronoi polyhedra are presented for models of 8000 atoms:

К = 36πV 2/ S 3.





(V is the polyhedron volume, S is its surface area. This coefficient is equal to 1 for a sphere. The greater is the deviation of the polyhedron form sphere the smaller is the coefficient [5].) Fig.3 shows that the distribution for high density model has a narrow nearly symmetrical 

maximum. For the models with medium density this maximum is slightly broadened at the 
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Figure 3. Distribution of sphericity coefficient in models of 8000 particles at different packing densities.

expense of polyhedra with low sphericity. The distribution undergoes considerably more radical change when density decreases down to 0.5: it splits into two maxima. Hence we have here two kinds of polyhedra. The typical shapes are shown on Fig.4. The left maximum of the distribution corresponds to the polyhedra with large volume and complicated topology (Fig.4, left) whereas the right one is formed by small polyhedra whose shape is close to that of regular dodecahedron (Fig.4, right). Large, asymmetrical polyhedra, evidently, mark “cracks” on the boundaries of dense atomic regions whose central atoms form more spherical polyhedra of small volume


[image: image4.wmf]
Figure 4. Typical shapes of  Voronoi polyhedra corresponding to the left (in the left) and right (in the right) maxima on Fig.3 for the density 0.5.

Presence of “cracks” or channels in the models of low density can be followed by analyzing the distributions of the bottleneck diameters, i.e. sizes of  narrow passages which connect interstitial holes. (Interstitial hole is a sphere inscribed between four atoms constituting the Delaunay simplices and the bottleneck diameter of each of four simplex faces is defined by the diameter of the sphere of largest size which still can be squeezed through three atoms constituting the given face.) These distributions which are shown in Fig.5 have at all densities the first sharp maximum at about 0.2d and the second one at 0.4. They relate to narrow passages between atoms forming the Delaunay simplices whose shape differ slightly from perfect tetrahedron and a quarter of perfect octahedron, correspondingly. These types of simplices prevail in the models of amorphous state and are their main structural units [6,7]. A new element appears in the bottleneck distribution for the model with density 0.5: a broad 
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Figure 5. Distributions of the bottleneck diameters (in units of the atom diameter) for the models of 8000 particles at different densities. 

Presence of “cracks” or channels in the models of low density can be followed by analyzing the distributions of the bottleneck diameters, i.e. sizes of  narrow passages which connect interstitial holes. (Interstitial hole is a sphere inscribed between four atoms constituting the Delaunay simplices and the bottleneck diameter of each of four simplex faces is defined by the diameter of the sphere of largest size which still can be squeezed through three atoms constituting the given face.) These distributions which are shown in Fig.5 have at all densities the first sharp maximum at about 0.2d and the second one at 0.4. They relate to narrow passages between atoms forming the Delaunay simplices whose shape differ slightly from perfect tetrahedron and a quarter of perfect octahedron, correspondingly. These types of simplices prevail in the models of amorphous state and are their main structural units [6,7]. A new element appears in the bottleneck distribution for the model with density 0.5: a broad quasi​continuous wing corresponding to the bottleneck of large size often exceeding atomic 
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Figure 6. Empty space in the model of 8000 particles at the density = 0.5. The dark lines display the channels along which a test particle with the diameter 2.12 times the atom size can move. Grey circles show the interstitial holes which are connected by these channels.

diameter. Maximal bottleneck diameter which was observed in this model was 4.1 d. It is clear hat such bottleneck indicate existence of wide channels of empty space which appear at the stability loss. Continuous character of the distribution demonstrates that the model does not contain large isolated holes connected by channels of sufficiently smaller size. Empty space in the model could be more correctly imagined as a continuous network of channels of variable cross-sections.

The properties of these channels can be understood from Fig.6. It displays paths along which a test particle with the diameter of 2.12 atom size can move. This diameter corresponds to the percolation threshold, i.e. to the situation when a test particle can percolate through the system for the first time. It should be noted that at densities 1.0 and 0.8, which are above the stability limit, the percolation thresholds are equal to 0.24d and 0.37d, correspondingly.

6. CONCLUSIONS


Density lowering of Lennard-Jones atom packings in crystalline or amorphous solid is accompanied by an increase of internal stress only at the first stage, approximately down to reduced densities in the range  values 0.8-0.85. At further density decrease, internal stress is decreased by the homogeneity breaking  and appearance of regions with different local densities. In our models of 8000 atoms the regions with higher density have  characteristic size of about 10 atomic diameters at ρ* = 0.5. Regions of lower density do not combine into single or several large holes inside one dense phase and do not form cracks between several dense formations. Rather, they form a branched cluster spreading through the entire sample and having a fractal character.

The data presented were obtained for Lennard-Jones systems. However, some​thing similar must take place for any substance (cf., e.g., [2]).
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