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ABSTRACT

Different types of the intermediate range order are modelled with help of extra voids added in the dense non-crystalline packing of 27000 Lennard-Jones atoms. The voids are created by removing 15% atoms from the original packing according to a stencil with a given structural motif: crystalline, random and non-crystalline (like to dense non-crystalline packing). Radial distribution function and the structure factor are calculated both for the atomic centres and for the centres of the interstitial spheres – Delaunay simplex circumcentres. These centres lie “in the depth” in empty space between atoms and therefore reflect a spatial distribution of voids. It is shown that the system of Delaunay simplex circumcentres is sensitive to the structure peculiarities of the models, while the atom-atom correlation are not very indicative in this case. A length scale contained in the distribution of voids causes a peak in the void-void structure factor and also a sharp prepeak (FSDP) in the atom-atom structure factor at the same position. The features in the structure factor governed by the intermediate range order can be recognised by the analysis of voids at the computer simulation of liquids and glasses.

INTRODUCTION

The idea to use voids (cavities) between atoms for describing the structure of atomic systems is known since a long time in crystallography. The structure of some crystals have been understand much easily if one looks on the cavities rather then on the atoms itself. For example, the densest crystalline structures f.c.c. (face centred cubic) and h.c.p. (hexagonal closest packing) have practically the same surrounding (12 nearest neighbours) but very different arrangement of cavities. In particular, the tetrahedral cavities in the f.c.c. crystal are organised in edge-bonded chains , and in h.c.p. they are collected in the face-bonded pairs [1]. Cavities reflect a new aspect of the structure, which is latent in the set of atomic co-ordinates. It is because a cavity is not connected with a single atom, but defined by a group of atoms (by four in the simplest case). 

For liquids and glasses the problem is relatively new. The complication is how to define voids quantitatively, which are very diverse in these cases. Finney and Wallace studied an arrangement of tetrahedral and octahedral cavities in non-crystalline packing of balls [2]. They defined these cavities with help of inscribed spheres. From the analysis of the radial distribution function of the centres of the cavities, it was obtained that the tetrahedral configurations in their packing are organised in branched linear clusters of face-bonded tetrahedra. The approach of Finney and Wallace is very closed to the general idea of the Voronoi-Delaunay method. In this method a simplest void between atoms is defined by the Delaunay simplex, and a position of the void is calculated as its circumecentre, (see the next section in this paper). Recently Wilson and et al [3-4] applied this approach to study intermediate range order in molecular dynamics models of network-forming ionic liquids. They studied the radial distribution function (RDF) and the structure factor (SF) of the Delaunay simplex circumecentres and shown that such analysis is a useful adjunct to normally used methods in interpreting the structure of these liquids. In ZnCl2 and BeCl2 the structure factor calculated for voids shows a main peak in common position with the first-sharp-diffraction peak (FSDP) of the cation-cation structure factor. In SiO2 the relationship of the void and ionic structure factor is less direct and suggests more complicated origin for FSDP in this case. However, obtained results are rather qualitative because of small size of the models (a few hundreds of cations) In this case the finite size effect can be significant for the SF calculation. In the recent work [5] the RDF and SF for voids were calculated for water at 290K and deeply supercooling water (250K). Large molecular dynamics models (5832 molecules) was used to get more representative information on the intermediate range order. At temperature decreasing the tetrahedral ordering of the hydrogen bonds is improved [6]. In a result the structure of water changes drastically. A clear FSDP appears in the oxygen-oxygen SF in deeply supercooled water. This prepeak also coincides with the main peak of the void-void SF, see [5] and the last section of this paper. 

In this paper we prepared models with different intermediate range motifs and demonstrate the void-structure approach for the analysis.

METHOD

A progress to study voids in atomic systems is caused by using the Voronoi-Delaunay constructions as a mathematical base of the approach [7-9]. The Voronoi polyhedral and Delaunay simplices are known for structure characterisation of liquids for many years, see e.g. [10-11]. In the last years the Voronoi-Delaunay tessellation is used in different aspects for analysis of empty interatomic space. Characteristics of pores in mixtures of disks was studied in [12], “void regions” had been obtained on the structure of Lennard-Jones liquid in [13], hierarchy of pores in dense and low dense packing of spheres was investigated in [14], flow of a fluid through disordered packed beds was calculated in [15] and trajectories of a rolling bead was simulated as a random-walking process on the Voronoi network in [16], general ideas of the “computational porosimetry” for polydisperse systems was discussed in [17].

In this paper we touch a part of the Voronoi-Delaunay technique. We will use only the vertexes of the Voronoi polyhedra. Remember, the Voronoi polyhedron is a volume of space, which is the closest to a given atom in a atomic system. Fig.1 demonstrates the mosaic of the Voronoi polyhedra in two dimension. Fig.2 illustrates that every Voronoi vertex is a circumcentre of the Delaunay simplex. The Delaunay simplex is a simplest configuration of atoms in a space of a given dimension (three atoms in 2D and four in 3D). The volume inside the Delaunay simplex is always empty: by the definition, there are no any atomic centres inside. It is a main reason why the Delaunay simplices are used for analysis of voids. The circumcentre of a Delaunay simplex lies in the depth between the atoms and defines a location of the simplitial cavity. Therefore the complete set of the circumcentres of a given atomic system can be used to study structure of empty space between atoms, because it keeps a principal information about distribution of all voids in the system. 

[image: image1.wmf][image: image2.wmf]We call a set of Delaunay simplex circumcentres as a system {D}. To calculate {D} for a given atomic system {A} is not a problem. One can use any algorithm for calculation the Voronoi polyhedra or the Delaunay simplexes, which are developed and used for different applications, see e.g. [8,9].

MODELS

The original model used in our research is a dense non-crystalline packing of 27000 Lennard-Jones atoms in a cube with a periodic boundary conditions. The size of the cube is L=30(. (The Lennard-Jones parameter ( is used here as a unit of length). The packing was generated by the Monte Carlo method and relaxed at the zero temperature to the reduced density ρ*=1.0. The structure of the packing is a typical for all dense systems of spherical atoms [10]. The RDF demonstrates split second peaks and clear damping oscillations on a long interval of distances, Fig.3a. The SF has sharp unimodal main peak, Fig.3b. 
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The RDF was calculated as a histogram of pair distances on the interval from r = 0 to r = 15 (a half of the cube edge).The number of histogram channels was 2000. In this paper we demonstrate the function (g(r) – 1)r, which emphasises a long distance correlation more then normally used pair correlation function g(r). The SF was calculated as a Fourier-transformation of the RDF. We did not use any smoothing procedure to avoid finite size effect. Our models are large enough. For the original packing the influence of the finite size is quite negligible. The artificial oscillation becomes visible in the SF only at q low then a few percent of the position of the main peak of the SF, Fig.3 b. Mathematically it is because the RDF is nearly zero at the cut-off distance, at r = 15 in our case. For the other models this effect is more pronounced and will be discussed below.

The other models have been created on the base of the original packing by removing some atoms. The idea for selection of removing atoms is explained on Fig.4. At the first we make a stencil as a configuration of spheres with a given structure. Then we “put” the stencil on the original packing and remove atoms, which centres are closer to the centres of stencil’s spheres than a given critical value (. If we increase the value (, the number of removed atoms is also increased and we get more and more large voids, Fig.4. The models discussed below are made by removing of 15% of atoms (keep 85% atoms of the original packing). On this way we get extra voids in the packing, a spatial distribution of which follows to the structure of a given stencil. We did not make any relaxation of configurations after removing atoms, so our models are not in the thermodynamic equilibrium , but keep a given intermediate order. 
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Three different types of stencils were used (see two-dimensional illustration in Fig.5). The first one has a crystalline structure. It is a f.c.c. packing of 1372 spheres in a cube, which size is equal to the original one. The nearest crystalline distance is around 2.7 in this case. This value plays a role of the diameter of the spheres and defines “a length scale” for this stencil. The second stencil has a random structure: 1000 centres were put randomly inside the cube. This configuration has no definite length scale. The structure of the third stencil is like to the structure of the original packing. A dense non-crystalline packing of 1000 Lennard-Jones atoms was created in a cube with the edge L = 10, and then it was scaled on a factor 3. So this stencil also has a characteristic length scale which is in three times larger then the nearest distance in the original packing. We call this stencil as “non-crystalline”.

Thus we have got three models each of them contain around 22950 atoms in the original model cube with a periodic boundary conditions. Every models has its own intermediate range order specified by a stencil structure: crystalline, random or non-crystalline.

RESULTS

1. Atom-atom correlations

The atom-atom radial distribution function (calculated for atomic centres) do not demonstrate structural difference between the models, Fig.6. At first sight it seems strange, because the modification of the original packing is substantial. However the introduced changes in the structure become apparent as a “long-wave modulation” on the original RDF. It is not visible in the scale of the figure, but can be clear observed at the detailed analysis of the calculated functions. The insensitivity of RDF to an long distance correlation is a known fact: in particular, trial configurations in the Reverse Monte Carlo method are tested by [image: image5.wmf][image: image6.wmf]comparing with the structure factor rather than the radial distribution function. 

The atom-atom structure factor for our models is shown on Fig.7. The mentioned long-wave modulation on the RDF turns here into an extra intensity at low q. Now a difference between the models becomes visible. Sharp peak, which is a typical FSDP discussed above, is present in the SF for the models where a new length scale had been introduced, Fig.7a,c. A position of these peaks is about one-third of the position of the main peak, what corresponds to the length scales of the used stencils. The model created with help of the random stencil has no any FSDR, but demonstrates a “small angle scattering” instead of it, Fig.7b. Note, a regular high-frequency oscillations in the SFs at low q is a result of the finite size effect. The RDFs of the models with extra voids do not damp to zero so well as it was for original model because of the mentioned modulations.

2. Void-void correlation

[image: image7.wmf]At first we characterise voids in the original packing (own voids). Fig.8 demonstrates the RDF and SF calculated on the system {D} of the packing. These functions remind the correspondent atom-atom functions on Fig.3. The void-void RDF oscillates with the same period as the atom-atom function, Fig.8a. There is only a small lagging. Main peculiarity of the void-void RDF is a maximum at zero values of r . However it is not a principal point. The centres of the system {D} can be very close to each other, because the inscribed spheres are not impermeable atoms, see Fig.1. This maximum gives a raising the void-void SF over the horizontal axis, Fig.8b. The structure factor has a mono-modal main peak, which reflects long distance oscillations of void-void RDF. A position of this peak is close to position of the main peak of the atom-atom structure factor. This fact demonstrate an important feature of the dense packing of spherical atoms: the length scale both atom-atom and void-void correlations is practically the same. It is rather a chance, because other structures (e.g. water, network-forming liquids, complex glasses) represent diverse situations.

[image: image8.wmf]The RDF calculated for system {D} for our models are shown on Fig.9. Contrary to atom-atom RDF now we see essential differences between models. The model obtained with the crystalline stencil demonstrates a non-damping oscillation. (To avoid a possible misunderstanding we remind that the stencil itself is not used for RDF calculation . It is applied only for selection of removing atoms. Non-damping oscillations on Fig.9c are not trivial result. Our voids are not a “spherical holes” proposed Bletry [18] for interpretation of the prepeak in amorphous materials. The system {D} are defined by the remaining atoms. Non-damping oscillations in RDF are also obtained if more atoms are removed. We done it for 50% and even 85% of removed atoms). 

The other models demonstrate damping void-void RDFs. Detailed analysis shows that the RDF of the model with the non-crystalline stencil demonstrate large scale behaviour similar to a dense non-crystalline packing, Fig.9a.  The model with the random stencil tends to zero at r >8, Fig.9b.

The SF calculated for system {D} is also very sensitive to the structure of the models, Fig.10. Instead of the sharp main peak at q ~ 7 in the SF for the original packing, we get a broad peak at q ~ 5-6 for all models with extra voids. It reflects a distortion of the spatial distribution of the own voids in the packing. The model with the random stencil has only this feature in the SF. The other ones demonstrate additional peaks. The model with non-crystalline stencil has a strong peak at q = 2.3, Fig.10a. It is a principal peak in the SF of the system {D} caused by extra voids. Its position coincides with the prepeak on the atom-atom SF. Both structure factors are shown in Fig.11. The model with crystalline stencils demonstrate a peak (or doublet of peaks) at q between 2 and 3, Fig.10a. It also coincides with the prepeak on Fig.7a. Note the peak at q = 4, there is no any correspondence peak on the [image: image9.wmf]atom-atom SF. It seems the second peak of the void-void SF.

3. Prepeaks

Our calculations have shown that the correlated voids give rise to prepeak in the structure factor of an atomic system Fig.11. Now we will illustrate that not every prepeak in liquids or glasses has this simple interpretation. It was discussed in literature [19], not only structure peculiarities cause a prepeak, the effect of negative scattering length of ions (like Li) has also an influence. In this situation the analysis of the system {D} gives an additional information for interpretation of the nature of this phenomenon.

Fig.12a demonstrates SF of the alkali metaphosphate glasses LiPO3 at 300K obtained in diffraction experiment [20], where a nature of the prepeak at around 1.1A-1 was investigated. It was shown the prepeak depends on temperature and substitution Li for Na. In particular, the prepeak is absent in SF of Li0.5Na0.5PO3 at 300K, but growing at temperature increasing to 800K. Both ordering of voids and contrasts effect due to a negative neutron scattering of Li are discussed to explain the experimental results. Computer simulation can shed a light on this problem. Fig.12b shows the void-void SF calculated on the model of the LiPO3 created by the Reverse Monte Carlo method. [21]. The model contains 2021 atoms in the model cube of side L=29.08 A to keep the experimental density of the glass. The starting configurations was created taking in to account  a separation and connectivity of atoms in PO4 chains extracted from the NMR measurement [22].The atoms were moved  to fit the [image: image10.wmf]experimental structure factor obtained from the neutron diffraction data.
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Very similar curves we get for the models of Li0.5Na0.5PO3 at the temperatures from 300K to 800K. A noticeable difference take a place at q lower then 1A-1 , but that is a result of finite size effect because these models are rather small. Nevertheless there is no a clear prepeak at 1.1A-1 in the void-void SF. It means our models of the glass have not the corresponding length scale on voids. For precision structural analysis more large models are needed. In any case the mentioned above contrast effect remains on hand for explanation of the experimentally observed prepeak.  On the other hand the peak at around 2. A-1 on the void-void SF indicates that the visible peak at this position in the experimental SF corresponds to correlation of voids, Fig.12a-b.

Note, in the work [5], where a model of deeply supercooled water was investigated, a position of the FSDR in atom-atom SF and the peak in void-void SF is common without doubt , see Fig.13. It convinces ones the new length scale in this model is just connected with a correlation of voids
CONCLUTION

The approach to study spatial correlation in void space is demonstrated on the large models created on the base of the dense non-crystalline packing of Lennard –Jones atoms. Extra voids have been brought in the packing for modelling different types of the intermediate range order. The voids are created by removing some atoms from the original packing according to a stencil with a given structural motif. The stencils with crystalline, random and like to the dense non-crystalline packing structures were used. 

The Voronoi-Delaunay tessellation has been calculated for the models to obtain the system of the Delaunay simplex circumcentres (a system {D}). These centres lie “in the depth” between atoms and therefore reflect a spatial distribution of voids. Radial distribution function and the structure factor are calculated both for the atomic centres and for the system {D}. A length scale inherent in a stencil transfers to the same length scale in the corresponding atomic model and give rise to features on the long r in the radial distribution function and at small q in the structure factor. It is shown that the system {D} is more sensitive to the structure peculiarities of the models, than the atomic centres itself.

ACKNOWLEDGEMENTS

This work is supported by grant from RFFI No.98-03-32371a and grant of SB RAS No.46 The author (N.M.) thanks Regensburg University and Alexander von Humbold Foundation for support of his participation in EMLG-2000 conference.

REFEREBCES

1. R.W.G. Wyckoff . Crystal structures. Second Edition. Volume 1. John Wiley, New York (1963).     G.B.Bokii Crystallochemistry. MSU, Moskow, 1960 (in Russian).

2. J.L.Finney,  J.Wallace,  J.Non-Cryst.Solids,.43 (1981) 165.

3. M.Wilson, P.A.Madden,  Phys.Rev.Lett., 80 (1998) 532.

4. M.Wilson,  P.A.Madden, N.N.Medvedev, A.Geiger, A.Appelhagen,  J. of the Chem. Soc.-Faraday Transactions,  94, No.3 (1998) 1221.

5. N.N.Medvedev,  M.Klene, D.Paschek, A.Geiger, to be published. 

6. D.Paschek, A.Geiger, J.Phys.Chem. 103 B. (1999) 4139.

7. G.F.Voronoi,  J.Reine Angew. Math. 134 (1908) 198. 

8. A.Okabe,  B.Boots, K.Sugihara,  Spatial Tessellation Concepts and Applications of Voronoi Diagrams. John Wiey, Chichester (1992).

9. N.N.Medvedev,  Voronoi-Delaunay method for non-crystalline structures.  Russian Academy of Sciences,  Novosibirsk (2000), (in Russian). 

10. J.L.Finney, Roy.Soc.London, 319 (1970) 495. 

11. M.Kimura, F.Yonesawa,  J.Non-Cryst.Solids. 61-62 (1984) 535.

12. Z.P.Zhang,  A.B.Yu, J.A.Dodds,  J.Coll.Interface Sci. 198 (1997) 8.

13. S.Sastry, P.G.Debenedetti, F.H.Stillinger, Phys Rev E, 56, No.5 (1997) 5533.

14. V.P.Voloshin, N.N.Medvedev, V.B.Fenelonov and V.N.Parmon, Zh.Strukt.Khimii,  40, No.4 (1999) 681. (in Russian).

15. K.E.Thompson,  H.S.Fogler, AIChE Journal,  43, No.6 (1997) 1377.

16. P.Richard, L.Oger, J.Lemaitre, L.Samson, N.N.Medvedev, Granular Matter, 1 (1999) 203.

17. N. N.Medvedev, in: Voronoi's inpact on modern  science,  Book 2, ed. P.Engel, H.Syta,  Inst.Math., Kiev, (1998) p.164.

18. J.Blètry, Philos.Mag. 62 B (1990) 469.

19. S.R.Elliott,  J.Phys:Condens.Matter, 4 (1992) 7661. Printed in the UK.

20. S.Beaufils, M.Bionducci, C.Ecolivet, R.Marchand and A.Le Sauze, to be published.

21. R.L.McGrevy and M.A.Howe,  Ann.Rev, Matter.Sci. 22 (1992) 217.

22. B.Rufflè,  Thesisè Universitè de Rennes.  1996, unpublished. 

� EMBED Word.Picture.8  ���





Fig.1. Mosaic of the Voronoi polyhedra in 2D. Any point inside the Voronoi polyherdon is closer to the centre of a given atom then to others. 





Fig.2. Delaunay simplex. The circumecentre of a Delaunay simplex is the common vertex of the Voronoi polyhedra. This point is more distant from the centres of the nearest atoms (lies in the depth between atoms).
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Fig.3. The atom-atom radial distribution function (a) and structure factor (b) of the original packing of 27000 Lennard-Jones atoms.
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Fig.4. Illustration of the procedure for making voids. A stencil as a configuration of spheres (upper-right), an original packing of atoms (upper-left), the models with extra voids (at the bottom). The crosses mark centres of the stencil’s spheres. 
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Fig.5. Illustration of stencils with different structure.
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Fig.7. Atom-atom structure factor for the models represented on Fig.6. The points show the structure factor for the original packing shown in Fig.3b.
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Fig.6. Atom-atom radial distribution function of the model with extra voids (solid lines) obtained with help of crystalline ( c ), random (b) and non-crystalline (a) stencils, see text. The points show the radial distribution function for the original packing demonstrated on Fig.3a.
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Fig.8. Void-void radial distribution function (a) and structure factor (b) of the original packing of 27000 Lennard-Jones atoms. 
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Fig.9. Void-void radial distribution function of the model with extra voids (solid lines). Crystalline ( c ), random (b) and non-crystalline (a) stencils was used to make the voids. The points show the radial distribution function for the original packing demonstrated on Fig.8a.
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Fig.10. Void-void structure factor for the models with extra voids, see Fig.9. The points show the structure factor for the original packing shown in Fig.8b.
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Fig.11. Atom-atom (a) and void-void (b) structure factors for the model with extra voids created with help of non-crystalline stencil (from Fig.7a and 10a).
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Fig. 12. Experimental atom-atom structure factor of the alkali metaphosphate glass LiPO3 at 300K obtained in neutron diffraction in [20] (a) and void-void structure factor calculated for the computer model of this glass (b), see text.
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Fig.13. Atom-atom (a) and void-void (b) structure factor for deeply supercooled water. (The picture from the work [5]).
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