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Abstract7

The structure of complex inhomogeneous systems is a current problem in the physics of
liquids, glasses, polymers, molecular biology, and material science. To understand the physical9
properties of such materials, one should study the structure in “micro” and “macro” levels,
which demands a uni*ed rigorous approach for structure investigations. We demonstrate that the11
Voronoi–Delaunay technique, which is well known in mathematics and in computer simulations,
can be used for this purpose. The Voronoi–Delaunay tessellation contains complete information13
about the structure of a computer model. The method is applied for studying the intermediate
range order to show that the behavior of the so-called prepeak in the structure factor is de*ned by15
a motif of spatial distribution of voids in the model. A large model of dense packing of spherical
atoms in the process of crystallization from non-crystalline phase is analyzed. The extended linear17
defects of the diverse types are revealed. Investigation of the free volume distribution in the lipid
bilayer in water is carried out. The results obtained can help for understanding a mechanism of19
di2usion of small molecules across lipid membranes.
c© 2002 Published by Elsevier Science B.V.21
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1. Introduction25

Complex molecular and heterogeneous materials are objects for present day com-
puter simulations. A typical molecular dynamic model of such systems contains tens of27
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thousands of atoms. The models should be large enough because of large-scale struc-1
ture peculiarities in such materials. Di2erent scale levels characterize the structure in
this case. To study the macroscopic properties, we should take into account both the3
local order (nearest surrounding of atoms) and the “extended” structure. A known
example of di2erent length scale manifestation is the so-called prepeak in the struc-5
ture factor of some glasses and liquids obtained in di2raction experiments. This phe-
nomenon was a challenge for theorists for years to explain the nature of this rather7
sharp peak for the completely non-crystalline materials; see for example [1] and ref-
erences therein. The problem of the structure of heterogeneous materials treats a wide9
variety of physical and chemical properties [2]. The analysis of the structure of such
systems needs a uni*ed rigorous means of characterizing the structure in “micro” and11
“macro” levels. In this paper we show that the Voronoi–Delaunay technique, which
is well known in mathematics and some *elds of physics, can be a base for the13
approach [3,4].

2. The method15

The Voronoi–Delaunay method is based on the general mathematical theorems about
division of space between centers in an ensemble of discrete centers. The centers17
(atoms) can be distributed arbitrarily in space: orderly or disorderly, homogeneously
or non-homogeneously [3,4]. Therefore, the method is claimed for studying the struc-19
ture of liquids and glasses, where the approaches of crystallography do not
work, and for any heterogeneous material with di2erent structure21
scales.
The main geometrical constructions of the method are the Voronoi polyhedra and23

Delaunay simplices. They have been used in computer simulation for structure char-
acterization of the local order of atoms for many years, see e.g. Refs. [4,5]. Usu-25
ally they are calculated separately to get a histogram of a statistical distribution of
topological or metrical characteristics of local order. However, to study the whole27
structure of a system, one should use the whole Voronoi–Delaunay tessellation,
Fig. 1. In this case, one can analyze the spatial distribution of speci*c atomic con*g-29
urations to study extended structure correlations. A helpful construction for this work
is the Voronoi network: the network of edges and vertices of the Voronoi polyhedra.31
This network permeates through the systems, and can be a background for studying
structural motifs in the model. Every vertex of the Voronoi network is simultaneously33
the circumcenter of a Delaunay simplex. The Voronoi network lies “in the depth” of
empty space between atoms, and thereby can also be used to study the free volume35
distribution.
There are di2erent algorithms for calculation of the Voronoi polyhedra, Delaunay37

simplices and the Voronoi network [3,4]. Input data for this calculation is a set of
coordinates of atoms for a given atomic con*guration. The Voronoi network is de*ned39
by a set of coordinates of the Voronoi vertices (array {D}), and a table of connectivity
of the vertices (array {DD}).41
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Fig. 1. Voronoi–Delaunay tessellation of a 2D atomic system: (a) The Voronoi polyhedron for a given
atom is a volume of space, all points of which are closer to a given atom than to any other atom of the
ensemble (polygons around disks). (b) The Delaunay simplex is a triangle (tetrahedron in 3D) de*ned by
atoms, the circumsphere of which is empty, i.e., there are no other atomic centers inside the circumsphere
(dashed lines). (c) The Voronoi network of a given atomic system is a network of edges and vertices of
the Voronoi polyhedra (solid lines and points between atoms).

3. Investigation of the intermediate range order1

Recently, a simple procedure to prepare models with a given intermediate order was
proposed [6]. The idea is to remove some atoms from an original packing to get a new3
model with extra voids. Using di2erent rules for removing atoms, one can get models
with di2erent spatial distribution of extra voids, and study their physical manifestation.5
The densest non-crystalline packing of 27,000 Lennard-Jones atoms generated by the

Monte Carlo method in a model box with periodic boundary conditions is used as an7
original con*guration. The atoms which are the closest to the sites of a given “stencil”
are removed. Any system of sites with a desired spatial distribution can be used as a9
stencil. Fig. 2 demonstrates a model obtained after removing 15% of atoms from the
original packing. A stencil used here is a system of centers of the densest disordered11
packing of spheres with radius three times larger than radius of atoms in the original
packing. So the new length scale has been added in the model. The structure factor of13
the model is like the one for the original model (Lennard-Jones glass): clear main peak
and damping oscillations with increasing q. The only di2erence is a clear prepeak at15
the small value of q, Fig. 3 (on the top). The position of the prepeak (one-third of the
position of the main peak) corresponds to the new length scale inserted in the model.17
It is an interesting and non-trivial result. Indeed the extra voids in the model are very
diverse every one is a result of removing a di2erent number of atoms (one or a few),19
and the remaining atoms are not moved from their original positions. So there are no
obvious reasons to get a sharp peak in the structure factor. However, the calculation21
demonstrates earnestly that the generated long-distance correlations manifest a sharp
peak, Fig. 3 (on the top).23
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Fig. 2. Model with an intermediate order. Dense packing of spherical atoms with extra voids distributed
according to a given motif, see text.
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Fig. 3. Structure factors of the model shown in Fig. 2. Usual atom–atom structure factor (on the top),
void–void structure factor (at the bottom), see text.

The structure factor calculated for the system {D} of the model is shown in1
Fig. 3 (at the bottom). (It is a Fourier transformation of the radial distribution function
of the Voronoi vertices, see Fig. 1.) This function characterizes distribution on empty3
space in the model, because points of {D} lie in the depth between the atoms. A
clear sharp peak in this void–void structure factor coinciding with the prepeak in the5
atom–atom structure factor indicates that the intermediate range order is conditioned
by voids. Thus the Voronoi–Delaunay method helps us to ascertain a role of voids in7
the development of the intermediate range order.
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4. Investigation of lineal defects in model of a dense crystal1

The other example of application of the Voronoi–Delaunay method is analysis of
the model of crystal with defects. The model understudied contains 16,382 atoms in3
the box with periodic boundary conditions. It was prepared by molecular dynamic
relaxation with Lennard-Jones potential starting from the model of hard spheres pack-5
ing generated in Ref. [7], where crystallization of a large disordered system of hard
spheres was studied. The model obtained is a dense crystal with regions of f.c.c.7
and h.c.p. structure, Fig. 4. Now we demonstrate the Voronoi–Delaunay approach for
analysis of the structure at the border of these regions, where a crystalline order is9
broken.
For investigation of extended structure peculiarities, one can study spatial distribution11

of Delaunay simplices of a speci*c shape. Studying defects in a crystal, it is natural to
work with simplices, whose shape is atypical for a given crystalline structure. Location13
of such “imperfect” simplices reveals defects in the model. This approach was used
in Ref. [8], where defects in a crystal after plastic deformation were studied in the15
computer simulation. A quantitative measure of shape can be easily de*ned to select
the simplices, see e.g. Refs. [9,4].17
Only a few percent of the Delaunay simplices in the model in Fig. 4 have shape,

which can be marked as atypical for the given crystalline structures. We used 1.2%19
of the more imperfect simplices, and display their positions inside the model box,
see Fig. 5. As explained in Fig. 1, the position of the Delaunay simplex is de*ned21
by the Voronoi vertex (unfortunately, these points are invisible in the scale of Fig.
5). Neighboring Voronoi vertices corresponding to the imperfect simplices are con-23
nected by line (i.e., the Voronoi edge between such vertices is drawn). So, aggregates
of the Delaunay simplices of a given type are displayed as clusters on the Voronoi25
network. We see these clusters of Fig. 5. The approach to show structure motifs on
the Voronoi network was used for analysis of the structure of liquids and glasses in27
Ref. [10].
The clusters of imperfect simplices are very expressive, Fig. 5. Except for some29

complex aggregates one can see distinct clusters like straight lines, stairs, and chains.
Knowing atoms in the simplices, one can obtain an arrangement of atoms correspond-31
ing to given clusters, Fig. 6. Line-type defect is a pile of triangles of atoms. Stairs-type
defect is a pile of rhombs. Atoms in these piles are located one after another, which33
is unusual for the densest crystals, where atoms of one plane are located in the cav-
ity between atoms of another plane. These defects are very stable and remain during35
a long period of relaxation of the model. The chain-like cluster is a tube of *ves
of atoms. It is an amusing result: we see “a *ve folder order ” construction in the37
crystal.
Note that we have obtained only linear extended defects. They are nuclei and inter-39

sections of dislocations presented in the model. The dislocations change alternation of
the crystallographic planes of atoms, and de*ne Nat borders between regions of f.c.c.41
and h.c.p. structures, see Fig. 4. However, we do not see the Nat defects in Fig. 5. It
is because the Delaunay simplices in these dislocations have the typical shape for the43
f.c.c. and h.c.p. crystals and therefore have not been detected here.
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Fig. 4. Model of crystalline phase of 16,386 Lennard-Jones atoms. Breaking of interchanging crystalline
planes is visible. The model contains regions of f.c.c. and h.c.p. structures.

Fig. 5. Distribution of defects inside the model shown in Fig. 4. Clusters indicate the location of the Delaunay
simplices, whose shape is atypical for given crystalline structures, see text.

Thus, linear defects in the molecular dynamic model of dense crystalline phase are1
revealed. For this purpose the spatial distribution of the Delaunay simplices, whose
shape is atypical for the crystalline structure, was investigated.3
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Fig. 6. Clusters on the Voronoi network for imperfect Delaunay simplices from Fig. 5 (on the top), and
corresponding atomic con*gurations (at the bottom). Line-type (left), stairs-type (center), and chain-like
defects (right).

5. Investigation of free volume distribution in a lipid bilayer1

The molecular dynamic model of a lipid bilayer in water was generated by Schmelter
and Geiger [11]. The model box with periodic boundary conditions contains 32,1253
atomic units: 200 molecules of phospholipid DPPC (dipalmitoyl-sn-glycero-
phosphatidylcholin) with 130 atomic units, and 6125 water molecules. The van der5
Waals radii of the atomic units were used in the analysis. From a mathematical point
of view, this complex molecular system is also an ensemble of spheres. But it has some7
di2erences in comparison with the ensembles of uniform spheres discussed above. At
*rst, the radii of the spheres are di2erent: the solvent and lipid molecules consist of9
di2erent atoms. It is an important point for our problem to study free volume between
atoms. Second, some spheres of our ensemble are overlapping: the distance between11
centers of chemically bonded atoms is less than the sum of their van der Waals radii.
The methods of taking all of these complexities into consideration are known and13
discussed in detail in Ref. [4].
Distribution of the largest empty spheres inscribed between atoms gives the simplest15

and obvious picture of the free volume inside the model. All empty spheres can be
found at the calculation of the Voronoi network of the model. (Remember, every17
Voronoi vertex is a center of one of these inscribed spheres.) We carried out analysis
of empty spheres with radius greater than 1:4 A. (It is a radius of water molecule, so19
we look at voids where a probe-like water molecule can be placed.) It was found that
a number of such spheres are located in the mid of the bilayer: between hydrophobic21
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ends of the lipids. It is natural that the tails of the lipids do not pack densely. A1
number of large empty spheres are also in bulk water. It is known that water has a
low dense structure with cavities of the size of the water molecule. A more unexpected3
result is the absence of large voids in the region of the hydrophilic ends of lipids
(region of contact of bilayer with bulk water). This fact can be connected with strong5
interaction of atoms in this region, but it cannot exclude large voids a prior. However,
the recent molecular dynamic calculation of Schmelter and Geiger demonstrates that7
water molecules penetrate into this region. Seemingly, these molecules *ll in all large
voids in this area [12]. All this information is helpful for understanding the mechanism9
of di2usion of small molecules across lipid membranes.

6. Conclusion11

The Voronoi–Delaunay method is an extremely helpful tool for analysis of the struc-
ture of computer models of complex molecular systems. It enables one to study both13
local order of atoms and extended structure correlations of atoms, as well as voids
between atoms.15
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