ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ

УДК 541.182

УСТОЙЧИВОСТЬ КОЛЛОИДНЫХ РАСТВОРОВ КРЕМНЕЗЕМА В ОБЛАСТИ БОЛЬШИХ ПЕРЕСЫЩЕНИЙ

© 2001 г. С. В. Восель*, П. А. Пуртов**

Российская академия наук, Сибирское отделение *Институт минералогии и петрографии, Новосибирск **Институт химической кинетики и горения, Новосибирск E-mail: purtov@ns.kinetics.nsc.ru Поступила в редакцию 21.12.2000 г.

В рамках модели, основанной на формализме термодинамики малых систем, проведен анализ процессов, происходящих при распаде пересыщенного раствора кремнезема, в котором исходное пересыщение превышает критическое. Показано, что при таких исходных пересыщениях коллоидные растворы аморфного кремнезема должны иметь локальный минимум термодинамического потенциала, причем его наличие может приводить к образованию устойчивого коллоидно-дисперсного состояния данной системы (золя). Установлено, что вероятность ее перехода в устойчивое состояние зависит от величины исходного пересыщения; в этом состоянии функция распределения частиц по размерам имеет максимум при размерах частиц приблизительно равных их критическому размеру. При расчете в рамках модели среднего диаметра частиц получено значение $d \approx 2$ нм, соответствующее размерам частиц кремнезема в его гелях. Показано, что на основании рассмотренной модели можно объяснять устойчивость и других микрогетерогенных систем, имеющих относительно небольшие величины коэффициента поверхностного натяжения, например, систем типа "масло в воде".

Термодинамическое описание распада пересыщенного раствора с образованием гетерогенных коллоидных систем представляет собой достаточно сложную задачу. До сих пор остаются не ясными причины образования из сильно пересыщенных растворов устойчивых коллоидно-дисперсных систем, таких как золи и гели аморфного кремнезема или микроэмульсии типа "масло в воде". Можно было ожидать, что устойчивость таких систем связана с особенностями их термодинамического потенциала в области больших пересыщений (т.е. с тем, что он имеет те или иные особые точки). На основе формализма термодинамики малых систем в данной работе показано, что при пересыщениях, превышающих критические, коллоидные растворы аморфного кремнезема имеют локальный минимум термодинамического потенциала. Этот минимум тесно связан с условием максимальности числа коллоидных частиц, которое могло бы быть достигнуто в ходе гипотетического процесса, когда в системе все время имеет место фазовое равновесие между дисперсной фазой и раствором. Соответствующий этому локальному минимуму средний размер частиц близок, но смещен относительно точки максимума их числа в указанном процессе в область, где задаваемое уравнением Томсона (Кельвина) условие фазового равновесия дисперсная фаза – раствор соответствует условию устойчивого равновесия.

ПОСТАНОВКА ЗАДАЧИ

Рассмотрим замкнутую пересыщенную двухкомпонентную систему при температуре Т и давлении p, состоящую из N_s молекул растворителя и N_t молекул введенного в него вещества. Учитывая малую растворимость кремнезема будем предполагать раствор разбавленным ($N_s \ge N_t$) и считать объем системы V равным объему растворителя. Согласно [1], любой раствор представляет собой микрогетерогенную коллоидную систему. Рассмотрим случай, когда его исходное пересыщение больше критического, так что скорости образования первичных частиц критического радиуса велики и образование их большого количества не является лимитирующей стадией процессов, протекающих в такой дисперсной системе (ДС). В рамках термодинамики малых систем [2, 3] потенциал Гиббса ДС и его изменение в процессе при постоянных значениях p, T и N_s имеют вид [3]

$$G = N_s \mu_{ss} + N\mu' + N_p \mu_p, \qquad (1)$$

$$dG = \mu' dN + \mu_p dN_p + \mu N_p d\bar{n}, \qquad (2)$$

где $N \le N_t$ – число молекул введенного вещества в растворе, N_p – суммарное число коллоидных частиц, \bar{n} – среднее число молекул в них. В рассматриваемом случае в ДС присутствует большое число частиц критического размера, поэтому число \bar{n} должно по порядку величины соответствовать

этому размеру. Химический потенциал частиц µ_p в случае невзаимодействующих частиц имеет вид [3]

$$\mu_p(p, T, X_p, \bar{n}) = kT \ln X_p + \Psi_p(p, T, \bar{n}),$$

где $X_p = N_p/N_s \ll 1$. Химические потенциалы растворенных молекул

$$\mu'(p, T, X) = kT\ln x + \mu_0(p, T),$$

а молекул растворителя

$$\mu_{ss}(p, T, X, X_p) = \mu_{s0}(p, T) - kT(X + X_p),$$

где $X = N/N_s \ll 1$, $x = X/X_0$ – пересыщение раствора, $X_0 = N_0/N_s$ – концентрация растворенных молекул в насыщенном растворе, μ_0 – их химический потенциал, равный таковому в массивной фазе, μ_{s0} – химический потенциал чистого растворителя. В (2) также введен химический потенциал μ молекул, входящих в дисперсную фазу [3]:

$$\mu(p, T, \bar{n}) = \left(\frac{\partial \mu_p}{\partial \bar{n}}\right)_{N_p, p, T} = \left(\frac{\partial \Psi_p}{\partial \bar{n}}\right)_{p, T}.$$
 (3)

Поскольку в замкнутой системе выполняется условие сохранения числа молекул:

$$\bar{n}N_p + N = N_t, \tag{4}$$

то

$$dG = (\mu_{p} - \bar{n}\mu')dN_{p} + (\mu - \mu')N_{p}d\bar{n}.$$
 (5)

Таким образом, термодинамический потенциал системы можно рассматривать как функцию двух переменных, в качестве которых в (5) выбраны N_p и \bar{n} . Как видно из (5), условия термодинамического равновесия (dG = 0) сводятся к условию фазового равновесия, отвечающего равенству $\mu' = \mu$, и равенству $\mu_p = n\mu'$, которое есть аналог условий ассоциативного равновесия [1, 4] ансамблей невзаимодействующих друг с другом *n*-мерных молекулярных ассоциатов, задающих для них функцию распределения P_n по их размерам в случае не(или слабо) пересыщенных систем.

Поскольку функция $\mu_p(X_p, \bar{n})$ в общем случае неизвестна, рассмотрим процесс изменения потенциала Гиббса ДС $G(N_p, \bar{n})$, вводя некоторые предположения. Будем считать, что неизвестная нам и изменяющаяся по ходу процесса функция распределения частиц по их размерам $P_n = N_{pn}/N_p$, где N_{pn} – число частиц (молекулярных ассоциатов) в системе, состоящих из n молекул (n > 1), все время имеет форму достаточно узкого пика с максимумом при $n = \bar{n}$. В таком приближения, пренебрегая энтропийным вкладом, связанным с разбросом частиц по размерам, и считая, что все частицы имеют размер $n = \bar{n}$, используем для μ_p выражение, полученное для несжимаемого вещества в [2] для монодисперсной системы (N-p-Tмодель). Считая частицы сферами радиуса R и

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 75 № 11 2

рассматривая их поверхностную энергию U в справедливом при $n \ge 1$ приближении

$$U = 4\pi R^2 \alpha = \alpha s n^{2/3},$$

где α – коэффициент поверхностного натяжения, не зависящий от R, $s = 4\pi r^2$, r – радиус молекулы, удовлетворяющий соотношению $R^3 = r^3 n$, имеем [2]

$$\mu_p(\bar{n}) \cong -kT \ln \frac{aV(kT)^3 \bar{n}^4}{N_p} + \alpha s \bar{n}^{2/3} + \bar{n}\mu_0, \qquad (6)$$

$$\mu(\bar{n}) \cong \mu_0 + \frac{bkT}{\bar{n}^{1/3}} - \frac{4kT}{\bar{n}}, \quad b = \frac{2\alpha s}{3kT},$$
(7)

где $a = (0.4)^{3/2} \times 64\pi^5 (mr)^3/h^6$, h – постоянная Планка, m – масса молекулы.

Отметим, что используемое приближение не может быть хорошим для описания перехода в метастабильное состояние слабо пересыщенных систем, поскольку предполагает, что функция распределения P_n , по крайней мере, имеет максимум. Однако в данном случае в конечном состоянии она максимума не имеет, а, напротив, имеет минимум при радиусе частиц, равном критическому [1, 5]. Рассмотрим этот вопрос на примере водного раствора кремнезема. Принимая, что плотность частиц кремнезема 2400 кг/м³, а его растворимость – 0.2 кг/м³ [6], при T = 300 К имеем: $r = 2.14 \times 10^{-10}$ м, $N_0/V = 2 \times 10^{24}$ м⁻³ и $a(kT)^3 V/N_0 = 2 \times 10^{13}$. При $\alpha \approx$ ≈ 46 мДж/м² [6] получаем $b \approx 4$. Отметим, что такой величине b соответствует критическое пересыщение $x_c \approx 3$ [1, 7]. Как показывает компьютерный анализ, рассчитанная по формулам (1), (4) и (6) при *b* = 4 функция $G(N_p, \bar{n})$ в случае малых исходных пересыщений $x_t = N_t/N_0$ в области $N_p > 0$ особых точек не имеет. В то же время весьма интересно, что в данной модели начиная с пересыщений $x_t > 2.05$, т.е. порядка критического, соответствующая условию dG = 0 особая точка появляется [8].

Хотя анализ показывает наличие у функции $G(N_p, \bar{n})$ особой точки, она не является экстремумом, это – седловая точка. Она не может быть точкой устойчивого равновесия, но поскольку в ней $\mu_p = n\mu'$, то вблизи нее должна находиться область, где $\mu_p - n\mu' < 0$, т.е. где энергетически выгодно образование частиц, и поэтому можно предполагать наличие точки устойчивости системы. Рассмотрим этот вопрос для случая систем с исходным пересыщением, заметно превышающим критическое.

ОБСУЖДЕНИЕ И РЕЗУЛЬТАТОВ

Рассмотрим изменение потенциала Гиббса ДС в обратимом процессе, происходящем при условии $\mu' = \mu$ (т.е. в ходе которого все время соблю-

2001

Изменение потенциала Гиббса ($\Delta G = G - G_0$) малой замкнутой подсистемы вода-кремнезем ($N_t = 10000$) и числа частиц в ней (N_p) как функций от среднего числа молекул в частице \bar{n} при b = 4 и $x_t = 3.3$ и $x_t = 3.7$.

дается фазовое равновесие между дисперсной фазой и раствором). При таком процессе система обязательно должна пройти через седловую точку (так как в ней $\mu' = \mu$), при этом, как видно из (7), все время должно выполняться соответствующее равенству $\mu' = \mu$ уравнение Томсона (Кельвина):

$$\ln x = \ln \frac{X}{X_0} \cong \frac{b}{\bar{n}^{1/3}} - \frac{4}{\bar{n}},$$
(8)

т.е. радиус частиц поддерживается равным критическому. При выполнении условия (8) кроме равенства (4) появляется еще одна связь между независимыми переменными N, N_p и \bar{n} , что уменьшает их число до единицы. Если выбрать в качестве независимой переменной \bar{n} , то уравнение (5) при $\mu' = \mu$ приобретает вид:

$$dG(\bar{n}) = (\mu_p - \bar{n}\mu')\frac{dN_p}{d\bar{n}}d\bar{n}.$$
 (9)

Как видно из (9) функция $G(\bar{n})$ имеет экстремумы в тех точках, где обращается в нуль хотя бы один из стоящих в правой части (9) сомножителей (или точку перегиба, если они обращаются в нуль одновременно). Таким образом, ее минимум может быть связан либо с условием "ассоциативного" равновесия, либо с наличием экстремума у зависимости общего числа частиц в ДС от их среднего размера. Чтобы выяснить, чему соответствует минимум при больших пересыщениях построим график функции $G(\bar{n})$.

Подставляя (4), (6) и формулы для μ' и μ_{ss} в (1), для функции $G(\bar{n})$ относительно потенциала Гиббса системы в ее конечном макроскопичес-

ком состоянии при полностью снятом пересыщении ($G_0 = N_s(\mu_{s0} - kTX_0) + N_t\mu_0$) получаем

$$\frac{\Delta G(\bar{n})}{kT} = \frac{G(\bar{n}) - G_0}{kT} = \frac{N_t}{x_t} \left[\frac{x_t - x(\bar{n})}{\bar{n}} \left(\frac{3b\bar{n}^{2/3}}{2} - \frac{1}{N_0(x_t - x(\bar{n}))} \right) + x(\bar{n})(\ln x(\bar{n}) - 1) + 1 \right],$$
(10)

где $x(\bar{n})$ дается формулой (8).

На рисунке приведены графики функции $\Delta G(\bar{n})$ для случая больших начальных пересыщений $x_t > x_c$. Взяты два близких значения x_t . Приведены также графики изменения числа частиц $N_p(\bar{n})$, рассчитанные по формулам (4) и (8). Расчеты проводились для достаточно малой подсистемы, содержащей $N_t = 10000$ введенных в растворитель молекул. Функции $\Delta G(\bar{n})$ в области $N_p(\bar{n}) > 0$ имеют каждая по одному минимуму (при $\bar{n} = \bar{n}_{min}$) и одному максимуму (при $\bar{n} = \bar{n}_{max}$) и далее монотонно уменьшаются с ростом \bar{n} . Как видно из рисунка1, минимумы функций $\Delta G(\bar{n})$ здесь соответствуют экстремумам функций $N_p(\bar{n})$ (и, следовательно, их максимумы – условию "ассоциативного" равновесия, т.е. седловой точке).

Отметим, что в области $\bar{n} < \bar{n}_{\max}$ уменьшение функции $\Delta G(\bar{n})$ соответствует увеличению $N_p(\bar{n})$, а ее увеличение – уменьшению $N_p(\bar{n})$. Как видно из (9), это соответствует неравенству $\mu_p - n\mu < 0$, т.е. процесс идет в области, где образование частиц критического радиуса энергетически выгодно. Это связано с учетом их броуновского вращательного и поступательного движения и их коллективной энтропии, в результате чего в (6) появляется первое (отрицательное) слагаемое. Как видно из (6), (7), без такого учета разность $\mu_p - n\mu$ (в согласии с формулой Гиббса) равна одной трети поверхностной энергии частицы, т.е. величина положительная.

Рассмотрим на кривой $\Delta G(\bar{n})$ точку A, лежащую при $\bar{n} = n_A < \bar{n}_{\min}$. Ей соответствует число частиц в ДС, равную $N_p = N_p(n_A)$. Поскольку, как мы видели, функция $N_p(\bar{n})$ имеет при $\bar{n} = \bar{n}_{\min}$ максимум, $N_{p\max} = N_p(\bar{n}_{\min})$, то на кривой $\Delta G(\bar{n})$ в области $\bar{n} > \bar{n}_{\min}$ всегда можно найти некоторую точку B (при $\bar{n} = n_B$), соответствующую тому же числу частиц $N_p = N_p(n_B)$, т.е. точка $\bar{n} = \bar{n}_{\min}$ разбивает функцию $G(\bar{n})$ на две ветви (A и B), так что каждой точке на ее ветви A (при $\bar{n} < \bar{n}_{\min}$) отвечает соответствующая тому же числу частиц $N_p < N_{p\max}$ точка на ее ветви B (при $\bar{n} > \bar{n}_{\min}$). При $N_p = N_pmax$

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 75 № 11 2001

точки А и *В* совпадают: $n_A = n_B = \bar{n}_{\min}$. Положения точек *А* и *В* полностью определяются значением $N_p (n_A = n_A(N_p)$ и $n_B = n_B(N_p))$ и могут быть получены из уравнения $\mu'(\bar{n}) - \mu_0 = \mu(\bar{n}) - \mu_0$ (уравнение Томсона (8)), которое, учитывая (4), можно записать в виде

$$\ln\left[\frac{N_p}{N_0}\left(\frac{N_t}{N_p} - \bar{n}\right)\right] = \frac{b}{\bar{n}^{1/3}} - \frac{4}{\bar{n}},$$
(11)

где N_t/N_p – суммарное количество молекул исходно растворенного вещества, находящихся в объеме V/N_p малой системы (MC), состоящей из частицы и окружающего ее раствора. Последний член в (11) – это поправка, связанная с учетом броуновского движения частиц. При b = 4 и $\bar{n} > 10$ она (в этом уравнении) относительно мала, и мы не будем ее учитывать ниже при качественных рассуждениях. Фактически графики рассчитанных по уравнению (11) функций $n_A(N_p)$ и $n_B(N_p)$ уже приведены на рисунке в виде графика обратной им функции $N_p(\bar{n})$. Как видно из этого графика, уравнение (11) при $N_p < N_{pmax}$ имеет два корня, при $N_p = N_{pmax}$ – один, а при $N_p > N_{pmax}$ корней не имеет.

Рассмотрим переход системы из точки *A* в точку *B*, происходящий при условии $N_p(\bar{n}) = N_p =$ = const. Отметим, что такой переход осуществляется неравновесным образом, т.е. с нарушением равенства $\mu' = \mu$ везде, кроме самих точек *A* и *B*. Как видно из (5), независимо от сделанных нами приближений изменение потенциала Гиббса ДС при таком переходе, имеет вид

$$\Delta g_{AB} = \frac{\Delta G_{AB}}{N_p} = \int_{n_A}^{n_B} (\mu(\bar{n}) - \mu'(\bar{n})) d\bar{n}, \qquad (12)$$

где Δg_{AB} – изменение потенциала Гиббса в расчете на одну МС. Как видно из (12), величина ΔG_{AB} определяется в данном случае только процессами переноса молекул, идущими внутри малых систем, т.е. при таком переходе МС можно рассматривать как замкнутые, а уравнения (11) и (12) как описывающие переход в содержащей одну частицу замкнутой МС массой N_t/N_p .

Ясно, что при N_p = const уравнения (11) и (12) должны быть также практически тождественны и аналогичны уравнениям для отдельной (не входящей в их ансамбль) замкнутой МС той же массы N_t/N_p (следует лишь заменить в них \bar{n} на n и, поскольку в случае единичной системы нет коллективной энтропии, внести поправку в малый член в правой части уравнения (11)). Их анализ, проведенный в [9] на примере частного случая образования единичной капли в замкнутой системе показывает, что больший из корней уравнения (11) должен соответствовать устойчивому состоя-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 75 № 11 2001

нию фазового равновесия с паром частицы большого (по сравнению с неустойчивыми зародышами Гиббса–Фольмера) критического размера, т.е. при своем росте капля новой фазы проходит сначала через состояние неустойчивого равновесия, а затем, достигнув достаточного размера, переходит в состояние устойчивого равновесия, соответствующее минимуму термодинамического потенциала этой системы.

Проведем аналогичный анализ для нашего случая. Стоящая в левой части (11) функция $\Delta \mu'(\bar{n})/kT$ при N_p = const выпуклая. Она равна $\ln x_t$ при $\bar{n} = 0$ и пересекает ось абсцисс в точке $\bar{n} = (N_t - N_0)/N_p$, положение которой параметрически зависит от N_p. Поскольку стоящая в правой части (11) не зависящая от N_p функция $\Delta \mu'(\bar{n})/kT$ представляет собой гиперболу (без учета малого второго члена), то при относительно малых N_p функции $\Delta \mu'(\bar{n})$ и $\Delta \mu(\bar{n})$ (и соответственно $\mu'(\bar{n})$ и $\mu(\bar{n})$) должны иметь две точки пересечения, а уравнение (11) (как мы уже отмечали) два корня ($n_A(N_p)$ и $n_B(N_p)$), соответствующих двум критическим радиусам. Меньший из них (n_A) аналогичен классическому случаю неустойчивого равновесия в системе, состоящей из единственной частицы в растворе (критический зародыш Фольмера).

Действительно, если предположить, что средний размер частиц ДС, находившейся первоначально в состоянии А, случайно (без изменения их числа N_p) уменьшился, то после этого химический потенциал молекул, входящих в дисперсную фазу $\mu(\bar{n})$ будет больше их химического потенциала в растворе, $\mu'(\bar{n})$, и им будет термодинамически выгодно переходить из нее в раствор. Это при неизменности N_p должно вызвать дальнейшее уменьшение величины *n*. С другой стороны, при случайном увеличении среднего размера частиц л значение $\mu(\bar{n})$ станет меньше $\mu'(\bar{n})$, что приведет к перетоку молекул в дисперсную фазу и вызовет дальнейшее увеличение величины *n* – равновесие в точке А неустойчиво. В то же время нетрудно видеть, что корень *n_B* соответствует устойчивому равновесию. Действительно, изменение среднего размера частиц при случайном отклонении ДС от точки В в ту или иную сторону всегда приводит в данном случае к такому соотношению между химическими потенциалами $\mu'(\bar{n})$ и $\mu(\bar{n})$, которое при условии N_p = const возвращает величину \bar{n} к ее исходному значению n_B . Итак, неравновесному процессу с постоянным числом частиц $N_p < N_{pmax}$ отвечают два состояния равновесия ДС. Первое из них является неустойчивым, а второе (условно) устойчиво.

С ростом параметра N_p точка пересечения функции $\Delta \mu'(\bar{n})/kT$ с осью абсцисс смещается влево, что ведет к сближению точек n_A и n_B , пока при $N_p = N_{p \max}$ эти точки не совпадут и графики функций $\Delta \mu'(\bar{n})$ и $\Delta \mu(\bar{n})$ будут иметь лишь точку касания, отвечающую единственному корню уравнения (11). При $N_p = N_{pmax}$ всех \bar{n} имеем $\mu'(\bar{n}) \le \mu(\bar{n})$ (paвенство достигается в точке касания). При $N_p > N_{pmax}$ графики функций $\Delta \mu'(\bar{n})$ и $\Delta \mu(\bar{n})$ вообще не пересекаются, т.е. здесь соблюдается строгое неравенство $\mu'(\bar{n}) < \mu(\bar{n})$. Отсюда следует, что при $N_p \ge N_{pmax}$ ДС должна быть не устойчива относительно происходящего при условии $N_p = \text{const}$ процесса уменьшения *n* (растворения частиц). Однако отсюда, в частности, также видно, что и каждая отдельная замкнутая MC объема $v \leq V/N_{pmax}$ и массой меньше N_t/N_{pmax} (ансамбль которых как раз и образует ДС) тоже должна быть абсолютно неустойчивой относительно полного растворения ее частицы (и наоборот - образование частицы любого размера в таком малом объеме пересыщенного раствора термодинамически невыгодно). Поэтому в такой ДС должен активно идти процесс исчезновения МС до тех пор, пока их число не уменьшится до значения $N_p < N_{pmax}$. Иными словами, можно сделать вывод, что образование ДС с числом частиц $N_p \ge N_{pmax}$, по-видимому, вообще не возможно.

При $N_p < N_{pmax}$ в области $n_A < \bar{n} < n_B$ имеем $\mu'(\bar{n}) > \mu(\bar{n})$, поэтому, как видно из (12), переход из точки А в точку В дает выигрыш энергии Гиббса ΔG_{AB} ($\Delta g_{AB} < 0$), а обратный переход не выгоден ($\Delta g_{BA} = -\Delta g_{AB} > 0$). После достижения точки $n_B(N_p)$ не выгодно также и дальнейшее (при N_p = = const) увеличение \bar{n} , так как при $n_B < \bar{n} \le N_t/N_p$ имеем $\mu'(\bar{n}) < \mu(\bar{n})$. Причем, как видно из (5) и (11), при $\bar{n} \longrightarrow N_t/N_p$ величина $dG/d\bar{n} \longrightarrow \infty$ (а значит, и $G(\bar{n}) \longrightarrow \infty$), так как $\mu'(\bar{n}) \longrightarrow -\infty$ (как видно из (4), точка $\bar{n} = N_t/N_p$ соответствует ДС, состоящей из частиц, окруженных уже абсолютно чистым растворителем). Отсюда следует, что точки на ветви *B* функции $G(\bar{n})$ представляют собой минимальное (при данном N_p) значение потенциала Гиббса ДС (а точки на ее ветви А – максимальное, поскольку в них, так же как и в точках на ветви *B*, значение $\mu' = \mu$, и поэтому, как видно из (5), в них в процессе при N_p = const величина dG = 0). Все это верно и для отдельной закрытой МС массы N_t/N_p , с тем лишь отличием, что для нее точка $n = n_B -$ это точка ее настоящего (полного) термодинамического равновесия [9].

В то же время необходимо отметить, что если в отношении роста ее частицы устойчивость МС

в точке n_B является абсолютной, при $n > n_B$ с ростом n ее потенциал Гиббса g(n) растет (вплоть до бесконечности при $n = N_t/N_p$), то в отношении обратного процесса растворения частицы она, вообще говоря, относительна [9]. Это связано с тем, что МС может иметь весьма ограниченную массу, и поэтому энергия активации этого обратного процесса Δg_{BA} , которая представляет собой разность ΔW между работами образования неустойчивых зародышей Фольмера и устойчивых частиц [9], может оказаться весьма малой величиной.

Работа образования частицы новой фазы W играет важную роль в теории фазовых переходов, поскольку ее знание позволяет в определенной степени судить о статистическом распределении зародышей, возникающих путем флуктуаций, по размерам:

$$P_n = A(W)\exp(-W/kT),$$

где A(W) – медленно меняющаяся функция W [5, 9]. Как видно из этой формулы, в нашем случае функция распределения P_n частиц по размерам для ансамбля MC (в случае, если их число N_p за счет некоторого источника внешних сил поддерживается постоянным или достаточно медленно меняется со временем) должна иметь максимум при $n = n_B(N_p)$. При $\Delta W = \Delta g_{BA} \gg kT$ эта функция распределения должна быть достаточно узкой, так как отношение заселенностей состояний $n = n_A$ и $n = n_B$, приблизительно равное $\exp(-\Delta g_{BA}/kT) \ll 1$, а заселенность состояний с $n > n_B$ с ростом n резко уменьшается, так как величина g(n) (а вместе с ней и работа W) при этом растет. То есть MC такого ансамбля основную часть времени должны проводить в состоянии $n = n_B$, испытывая лишь небольшие отклонения δn от этой точки, $\delta n \ll n_B - n_A$. Величина Δg_{BA} должна быть тем больше, чем больше величина отрезка интегрирования в (11): *n_B* – *n_A*. Поэтому приближение узкой функции распределения частиц по размерам должно работать тем лучше, чем дальше точка n_B отстоит от начальной точки ветви *B* функции $G(\bar{n}), \bar{n} = \bar{n}_{\min}$. В то же время очевидно, что это приближение, вообще говоря, не применимо на ветви А этой функции, где МС и ДС в целом неустойчивы.

Учитывая изложенное, образование устойчивой ДС из сильно пересыщенного раствора можно представить себе следующим образом. Поскольку исходное пересыщение x_t велико, в растворе должно быстро появиться огромное число зародышевых частиц малого критического размера n_A , отвечающего ветви A функции $G(\bar{n})$. С течением времени их число N_p и их средний размер \bar{n} могли бы далее расти в результате термодинамически выгодного процесса, идущего вдоль ветви A. Однако параллельно, в силу неустойчи-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 75 № 11 2001

вости равновесия ДС на этой ветви, величина \bar{n} должна также будет расти еще и в результате описанного выше термодинамически выгодного неравновесного процесса, происходящего в ДС без изменения N_p . В последнем процессе \bar{n} при каждом данном \dot{N}_p будет стремиться к некоторому значению $n_B(N_p)$, соответствующему устойчивому при N_p = const фазовому равновесию дисперсная фаза – раствор. Важно то, что функция $n_B(N_p)$, как корень уравнения (11), уменьшается с увеличением N_p. Поэтому в некоторый момент будет достигнуто равенство $\bar{n} = n_B(N_p)$. То есть ДС окажется в некотором состоянии на ветви В функции $G(\bar{n})$. В зависимости от того, насколько близкого к N_{pmax} значения успеет достигнуть к этому моменту величина N_p , точка $\bar{n} = n_B$ может при этом оказаться как правее, так и левее точки максимума функции $G(\bar{n})$: \bar{n}_{max} (седловой точки).

Поскольку обсуждаемый сейчас процесс в целом неравновесный, то можно рассматривать лишь вероятность того или иного его конечного результата. Ее сложно рассчитать, но можно предположить, что вероятность того, что точка $\bar{n} = n_B$ окажется левее точки $\bar{n}_{\rm max}$, должна расти с ростом x_t, поскольку при этом растет расстояние между экстремумами функции $G(\bar{n})$ (см. рисунок). Однако в любом случае дальнейшее уменьшение потенциала Гиббса ДС (с изменением N_p) должно уже происходить по соответствующей условию $\mu' = \mu$ ветви *B* кривой *G*(\bar{n}), поскольку она есть минимальное значение этого потенциала при каждом текущем значении N_p. Конкретный расчет функций $G(\bar{n})$ проведен выше приближенно в предположении узкой функции распределения частиц по размерам. Поэтому, насколько точно изображенные на рисунке функции $G(\bar{n})$ (на их ветви В) описывают потенциал Гиббса ДС зависит от того, насколько точно в каждом конкретном случае выполняется неравенство $\Delta g_{BA} \gg kT$. Легко проверить, что при больших x_t в точке $\bar{n} = n_B =$ = \bar{n}_{max} это неравенство выполняется. Пусть $x_t = 3.3$, что соответствует кривым 1 и на рисунке, из которого видно, что $\bar{n}_{\text{max}} = 127, N_p = N_p(\bar{n}_{\text{max}}) = 27$ и соответственно $n_A = n_A(27) = 36$. Тогда по формулам (11) и (12) (или из рисунка непосредственно) получаем $\Delta g_{BA} = 4.8kT$. Отметим, что с ростом пересыщения эта величина быстро увеличивается. Так, при $x_t = 3.7$ (кривые на рисунке) аналогично получаем $\Delta g_{BA} = 9.2kT$.

Рассмотрим далее лишь случай, когда в результате предыдущего неравновесного процесса ДС оказалась в такой точке ветви *В* функции $G(\bar{n})$ (вблизи точки \bar{n}_{max}), в которой $\bar{n} = n_B < \bar{n}_{max}$. В этом случае (см. рисунок) дальнейшее уменьшение потенциала Гиббса ДС будет происходить с увеличением числа частиц в ней и уменьшением их средних размеров. В ходе этого процесса ДС будет приближаться к точке $\bar{n} = \bar{n}_{\min}$, в которой, как мы видели выше, отдельные замкнутые МС становятся абсолютно не устойчивыми относительно растворения содержащихся в них частиц, поскольку в этой точке их масса достигает критического значения N_t/N_{pmax} и в результате энергия активации их растворения $\Delta g_{BA} = 0$. Расчет по формуле (12) показывает, что в ходе процесса величина Δg_{BA} при уменьшении \bar{n} уменьшается достаточно резко, и соответственно в его ходе быстро нарастает пропорциональная $\exp(-\Delta g_{BA}/kT)$ скорость растворения частиц в объеме каждой отдельной МС. Так, при $x_t = 3.7$ величина Δg_{BA} уменьшается до $\Delta g_{BA} = kT$ уже при $\bar{n} = 70$, что заметно превышает соответствующую $x_t = 3.7$ величину $\bar{n}_{\min} = 42$ (см. рисунок).

Следовательно, уже в области $\bar{n} = 42-70$ процесс исчезновения МС становится практически неактивированным, характерное время их жизни очень коротким, а пропорциональная произведению $N_p \exp(-\Delta g_{BA}/kT)$ скорость исчезновения частиц во всей ДС очень большой. Поэтому, какова бы в этой области ни была скорость образования МС, они (впрочем, как и МС, уже образовавшиеся ранее) нестабильны и должны за короткое время исчезать, т.е. уже при приближении ДС к некоторому состоянию вблизи точки $\bar{n} = 70$ рост числа МС, хотя он термодинамически выгоден, должен прекратиться, т.е. процесс изменения ДС остановится. Достаточно трудно рассчитать точное значение $\bar{n} = n_{st}$, при котором это произойдет. В качестве его оценки можно, например, принять ту область размеров, где величина Δg_{BA} как функция $\bar{n} = n_B$ увеличивается примерно на порядок, начиная с точки, где она равна kT. Тогда, например, в случае $x_t = 3.7$ получаем оценку: 70 < n_{st} < 126, что соответствует диаметру частиц кремнезема в суспензии $d = 2r\bar{n}^{1/3} = 1.8-2.2$ нм, характерному для гелей аморфного кремнезема.

В состоянии $\bar{n} = n_{st}$ ДС устойчива по отношению к росту и уменьшению среднего размера частиц. Ее устойчивость в отношении термодинамически выгодного процесса неограниченного дробления частиц и связанного с ним роста их числа, в результате которого растет коллективная энтропия и энтропия, отвечающая их броуновскому движению, определяется тем, что такой процесс приводит к уменьшению средней массы МС до значений (близких к критическому значению N_t/N_{pmax}), при которых они становятся неустойчивыми и быстро исчезают. В результате

это стабилизирует их число. Устойчивость ДС в отношении роста величины \bar{n} связана в свою очередь с тем, что, с одной стороны, при $n = n_{st}$ отдельные МС, если считать их замкнутыми, абсолютно устойчивы относительно роста их частиц, а с другой с тем, что, как видно из рисунка, увеличение \bar{n} в ансамбле открытых MC приводит к росту потенциала Гиббса всей ДС как целого, что требует совершения работы внешнего источника. В данном случае минимальная работа, которая требуется для преодоления системой седловой точки при $\bar{n} = \bar{n}_{max}$ (равная изменению потенциала Гиббса в обратимом процессе), достаточно велика. Например, как видно из рисунка, при $x_t = 3.7$ изменение потенциала Гиббса в таком процессе при переходе из точки $\bar{n} = 70$ в точку $\bar{n} = \bar{n}_{max}$ даже для очень малой подсистемы ДС, в которой в данном случае всего лишь ~50 коллоидных частиц, составляет ~100 kT.

Итак, мы видим, что достаточно пересыщенная двухкомпонентная ДС может находиться в устойчивом коллоидно-дисперсном состоянии. Однако, как уже отмечалось, его образование имеет вероятностный характер. Расчет вероятности образования этого состояния представляет собой весьма сложную задачу, можно лишь предположить, что она должна расти с ростом x_t (поскольку при этом растет расстояние между экстремумами функции $G(\bar{n})$). В то же время можно, тем не менее, утверждать, что эта вероятность должна быть равной нулю, когда при уменьшении x_t до некоторого значения x_c это расстояние станет равным нулю, т.е. у функции $G(\bar{n})$ образуется точка перегиба. Как показывает расчет, в данном случае это происходит при $x_t = 2.685$. При этом значении x_t ветвь B функции $G(\bar{n})$ – это монотонно спадающая функция, и переход на нее, происходящий в результате первоначального неравновесного процесса, должен далее с неизбежностью приводить к переходу в конечное состояние системы (макроскопическая твердая фаза плюс насыщенный раствор). Поэтому значение $x_t = 2.685$ это критическое пересыщение *x*_c. Таким образом, используемая модель дает достаточно разумную оценку этой величины.

С другой стороны, в случае пересыщений, заметно превышающих x_c , рассмотренная модель предсказывает образование устойчивого состояния золя аморфного кремнезема со средним размером частиц $d \approx 2$ нм, что тоже находится в согласии с экспериментом. Число коллоидных частиц в этом устойчивом состоянии достигает наибольшего (в ходе его образования) значения. По своей величине оно близко к максимальному значению N_{pmax} числа коллоидных частиц, которое может быть достигнуто в гипотетическом обратимом процессе, происходящем при соблюдении фазового равновесия между дисперсной фазой и раствором. В этом состоянии функция распределения частиц по размерам имеет при $n = n_{st}$ максимум, что позволяет считать ее достаточно узкой и использовать это приближение в расчете термодинамического потенциала ДС. Отметим также, что поскольку число частиц в этом устойчивом состоянии с течением времени не меняется (т.е. $N_p = \text{const}$), то при $\bar{n} = n_{st} \, \text{ДC}$ находится в состоянии, в котором фазовое равновесие дисперсная фаза – раствор является полностью (а не условно) устойчивым равновесием. В то же время понятно, что соблюдение фазового равновесия, хотя и необходимо, но отнюдь не достаточно для полного термодинамического равновесия системы. Поэтому устойчивость ДС в точке $\bar{n} = n_{st}$ можно, повидимому, рассматривать лишь как один из многочисленных примеров кинетической устойчивости термодинамической системы.

В заключение отметим, что на основании рассмотренной модели аналогичным образом можно объяснять устойчивость и других микрогетерогенных систем, имеющих относительно небольшие величины приведенного коэффициента поверхностного натяжения $b \approx 4$. Величины b такого порядка, в частности, характерны для систем типа "масло в воде", образующих множество прямых и обратных эмульсий.

Авторы выражают благодарность академику В.В. Болдыреву и Н.М. Бажину за обсуждения и ценные замечания. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта № 00-05-65315).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Френкель Я.И*. Собрание избранных трудов. М.; Л.: Изд-во АН СССР, 1959. Т.3. 460 с.
- 2. *Hill T.L.* Thermodynamics of small systems. N.Y.; Amsterdam: Benjamin, 1963. Pt 1. 171 p.
- 3. *Hill T.L.* Thermodynamics of small systems. N.Y.; Amsterdam: Benjamin, 1964. Pt 2. 210 p.
- 4. Хилл Т. Статистическая механика. М.: Изд-во иностр. лит., 1960. 485 с.
- Ландау Л.Д., Лифииц Е.М. Теоретическая физика. М.: Наука, 1979. Т.10. 527 с.
- 6. *Айлер Р.* Химия кремнезема. М.: Мир, 1982. Т. 1. 416 с.
- Фольмер М. Кинетика образования новой фазы. М.: Наука, 1986. 205 с.
- 8. Восель С.В., Пуртов П.А. // Докл. АН. 2001. В печати.
- 9. Русанов А.И. Фазовые равновесия и поверхностные явления. Л.: Химия, 1967. 388 с.

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 75 № 11 2001