

With compliments of the Author

A Simple Synthesis of Angular Anthrathiophenediones via Acetylenic Derivatives of Anthraquinone

Irena D. Ivanchikova, Nadezhda I. Lebedeva, Mark S. Shvartsberg*

Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia Fax +7(383)2342350; E-mail: shvarts@kinetics.nsc.ru

Received 24 February 2004; revised 24 May 2004

Abstract: Condensation of 2-alkynyl-1-chloro- and 1-alkynyl-2chloroanthraquinones with Na₂S under mild conditions afforded anthra[1,2-b]thiophene-6,11-diones and anthra[2,1-b]thiophene-6,11diones, respectively. A variety of angular anthrathiophenediones was synthesized by this method. The acetylenic precursors were prepared by a modified procedure of the Sonogashira reaction.

Key words: quinones, alkynes, cross-coupling, ring closure, sulfur

Heterocyclic derivatives of quinones are of importance as biologically active substances and technical materials. Many condensed quinoid compounds including nitrogenand oxygen-containing rings are known. There is less information about such compounds with a sulfur-containing heterocycle.

At the same time, introduction of an S-heterocyclic fragment can determine the character of biological activity of a quinoid compound,¹ reduce side-effects of a drug preserving its basic action,² impart new properties to technical materials or improve their quality.^{3,4} Also, the presence of a sulfur-containing substructure in compounds which do not belong to quinones often determine their pharmacological properties.^{5,6} The above reasons prompted us to develop a method for the annulation of anthraquinone by a thiophene ring. To our knowledge, general methods for the synthesis of anthrathiophenediones have not yet been described.

Earlier, we reported the synthesis of condensed quinoid structures including pyrrole, furan, pyridine, pyridazine, pyrazole, pyran and diazepin rings, which was based on acetylenic derivatives of anthraquinone and naphthoquinone as key intermediates.^{7–12} In this work we used the same approach for the synthesis of an anthrathiophenedione system. Recently, a method for the synthesis of substituted benzo[*b*]thiophenes by cyclization of *ortho*-(methylthio)alkynyl- and *ortho*-(benzylthio)alkynylbenzenes under the action of electrophilic agents was elaborated.^{6,13} However, its extension to derivatives of anthraquinone is complicated by the limited availability of corresponding sulfides. Other methods for formation of benzothiophenes from acetylenic precursors are not sufficiently general.^{14–17}

SYNTHESIS 2004, No. 13, pp 2131–2134 Advanced online publication: 30.07.2004 DOI: 10.1055/s-2004-829187; Art ID: T02304SS © Georg Thieme Verlag Stuttgart · New York We supposed that *vic*-alkynylchloroanthraquinones could be appropriate acetylenic precursors of anthrathiophenediones. In anthraquinone, a chlorine atom irrespective of its position possesses a high nucleofugal lability.¹⁸ In *vic*alkynylchloroanthraquinones it is additionally activated by an acetylenic substituent and readily substituted by nucleophiles.¹⁹ On the other hand, the triple bond in these compounds has an enhanced electrophilicity and is capable of interacting with a nucleophile as well.^{7,19} One would expect that these particular properties of alkynylchloroanthraquinones would allow us to annulate the anthraquinone nucleus by a thiophene ring using Na₂S as the simplest heterocyclizing agent.

Indeed, we have found that acetylenes 1a-f bearing a chlorine atom in position 1 react easily with an excess of Na₂S in 95% ethanol at 80 within 10–20 min to give an-thra[1,2-*b*]thiophene-6,11-diones 2a-f in 57–90% yields (Scheme 1).

Scheme 1

1-Alkynyl-2-chloroanthraquinones $3\mathbf{a}-\mathbf{c},\mathbf{g}$ having the halogen atom in position 2, have also been shown to condense similarly to 1 with Na₂S and under the same condi-

Scheme 2

Scheme 3

tions. The yields of anthra[2,1-*b*]thiophene-6,11-diones **4a–c,g** are 64–97% (Scheme 2).

It is noteworthy, that in the ¹H NMR spectra of anthrathiophenediones **4** the signal of H in the β -position of the thiophene ring, which is brought together spatially with the carbonyl group, is shifted to lower field with respect to that of the similar H in spectra of compounds **2** ($\Delta \delta = 1.3-1.4$).

The key acetylenes **1b–f** and **3b,c** were synthesized by cross-coupling of 1-chloro-2-iodo- (**5**) and 2-chloro-1-io-doanthraquinone (**6**) with corresponding terminal acetylenes **7b–f** in aqueous dioxane in the presence of Na₂CO₃, Pd(PPh₃)₂Cl₂ and CuI^{9,20} (Scheme 3).

In our opinion, this modified procedure of the Sonogashira reaction is the best method for the introduction of acetylenic substituents into quinones. Acetylene **3g** was prepared by condensing the iodide **6** with cuprous butylacetylide in pyridine. Chloroethynylanthraquinones **1a** and **3a** were obtained from tertiary alcohols **1c** and **3c** by the Favorsky retro-reaction.²⁰

Thus, the cyclocondensation of available *vic*-alkynylchloroanthraquinones with Na_2S is a convenient method for the synthesis of angular anthrathiophenediones.

¹H NMR spectra were recorded on a Bruker DPX-200 (200 MHz) spectrometer in CDCl₃ at 25 °C using TMS as an internal standard. IR spectra were determined with an UR-20 spectrometer in CHCl₃. Mps were measured on a Boetius micro mp hot stage apparatus and were uncorrected. The course of the reactions was monitored by TLC on Silufol UV 254 plates.

1-Chloro-2-iodoanthraquinone (5)

To a solution of 1-amino-2-iodoanthraquinone²¹ (8.00 g, 22.9 mmol) in H_2SO_4 (96%; 56 mL) at 20 °C was slowly added a suspension of NaNO₂ (7.90 g, 114.5 mmol) in H_2SO_4 (34.5 mL) cooled to 10 °C. The mixture was stirred for 20 min at r.t., poured onto ice (250 g), and then urea (5.70 g, 95.0 mmol) in H_2O (32 mL) was

carefully added. The obtained suspension of the diazonium salt was added stepwise into a solution of CuCl (2.32 g, 23.3 mmol) in concd HCl (80 mL) and stirred at 20 °C for 40 min and at 70 °C for 40 min. The resulting mixture was stored overnight at r.t. The product was filtered off, washed with H₂O, dried and chromatographed on SiO₂ in toluene.

Yield of chloroiodoanthraquinone **5**: 6.80 g (80.5%); mp 188–189 $^{\circ}\mathrm{C}$ (benzene).^{22}

2-Chloro-1-iodoanthraquinone (6)

1-Amino-2-chloroanthraquinone (7.75 g, 30.0 mmol) was diazotized by NaNO₂ (8.20 g, 120.0 mmol) in H₂SO₄ (96%; 50 mL) at 20 °C. The resulting solution was slowly added with agitation to a solution of KI (16.60 g, 100.0 mmol) in H₂O (400 mL) at 0–5 °C and then heated to 90–100 °C. After cooling, the formed precipitate was filtered off, washed with H₂O and dried. The product was purified by flash chromatography on Al₂O₃ in benzene.

Yield of chloroiodoanthraquinone **6**: 8.85 g (79.7%); mp 167–168 °C (benzene).²²

vic-Alkynylchloroanthraquinones 1b-f, 3b,c; General Procedure

To a stirring solution of *vic*-chloroiodoanthraquinone **5** or **6** (5 mmol) in dioxane (60 mL) at 60 °C under Ar were added successively terminal acetylene **7** (7.5 mmol), Pd(PPh₃)₂Cl₂ (40 mg, 0.06 mmol), CuI (20 mg, 0.10 mmol) and aq Na₂CO₃ (7.5 mmol; 30 mL) preheated to 70–80 °C. The mixture was refluxed with stirring for 5–20 min, cooled, diluted with CHCl₃ (200 mL), washed with H₂O (3×200 mL) and dried (MgSO₄). The solvent was evaporated under reduced pressure. The residue was purified by flash chromatography (silica gel; toluene or CHCl₃) and recrystallized (toluene–hexane mixture) to give **1** or **3**.

1-Chloro-2-phenylethynylanthraquinone (1b)

Yield: 85%, mp 193.5–194 °C.¹⁹

1-Chloro-2-(3-hydroxy-3-methylbutynyl)anthraquinone (1c) Yield: 84%, mp 168–168.5 °C.

IR: 1690 (C=O), 2240 (C=C), 3605 (OH) cm⁻¹.

¹H NMR: δ = 1.70 (s, 6 H, Me), 7.83 (d, 1 H, *J* = 8.1 Hz, H-3), 7.75–7.90 (m, 2 H, H-6,7), 8.26 (d, 1 H, *J* = 8.1 Hz, H-4), 8.20–8.35 (m, 2 H, H-5,8).

Anal.Calcd for C₁₉H₁₃O₃Cl: C, 70.27; H, 4.03; Cl, 10.91. Found: C, 70.40; H, 3.95; Cl, 10.78.

1-Chloro-2-(3-hydroxy-4-methylpentynyl)anthraquinone (1d) Yield: 47%, mp 160-161.5 °C.

IR: 1690 (C=O), 2235 (C≡C), 3400 br, 3615 (OH) cm⁻¹.

¹H NMR: δ = 1.10 (d, 3 H, J = 6.7 Hz, Me), 1.13 (d, 3 H, J = 6.7 Hz, Me), 1.95-2.10 (m, 2 H, CHMe2, OH), 4.45-4.55 (m, 1 H, CHO), 7.75–7.85 (m, 2 H, H-6,7), 7.83 (d, 1 H, J = 8.0 Hz, H-3), 8.25 (d, 1 H, J = 8.0 Hz, H-4), 8.25–8.35 (m, 2 H, H-5,8).

Anal. Calcd for C₂₀H₁₅O₃Cl: C, 70.90; H, 4.46; Cl, 10.46. Found: C, 70.78; H, 4.46; Cl, 10.40.

1-Chloro-2-(3-hydroxypropynyl)anthraquinone (1e) Yield: 47%; mp 197.5-199 °C.

IR: 1690 (C=O), 2240 (C≡C), 3400 br, 3620 (OH) cm⁻¹.

¹H NMR: $\delta = 4.67$ (s, 2 H, CH₂), 7.75–7.90 (m, 3 H, H-3,6,7), 8.20– 8.30 (m, 3 H, H-4,5,8).

Anal. Calcd for C₁₇H₉O₃Cl: C, 68.82; H, 3.06; Cl, 11.95. Found: C, 68.66; H, 3.02; Cl, 11.79.

1-Chloro-2-(1-cyclohexenylethynyl)anthraquinone (1f)

Yield: 73%, mp 194–195 °C.

IR: 1690 (C=O), 2210 (C=C) cm^{-1} .

¹H NMR: $\delta = 1.55 - 1.80$ (m, 4 H, 4', 5'-CH₂), 2.10–2.40 (m, 4 H, 3', 6'-CH₂), 6.35-6.45 (m, 1 H, 2'-CH), 7.75-7.85 (m, 2 H, H-6,7), 7.99 (d, 1 H, J = 8.3 Hz, H-3), 8.20–8.30 (m, 2 H, H-5,8), 8.35 (d, 1 H, J = 8.3 Hz. H-4).

Anal. Calcd for C₂₂H₁₅O₂Cl: C, 76.19; H, 4.36; Cl, 10.22. Found: C, 75.94; H, 4.30; Cl, 9.86.

2-Chloro-1-phenylethynylanthraquinone (3b)

Yield: 78%, mp 196.5–197 °C.¹⁹

2-Chloro-1-(3-hydroxy-3-methylbutynyl)anthraquinone (3c) Yield: 79%, mp 183.5–184.5 °C.

IR: 1690 (C=O), 2240 (C≡C), 3400 br, 3615 (OH) cm⁻¹.

¹H NMR: δ = 1.76 (s, 6 H, Me), 2.97 (br s, 1 H, OH), 7.70–7.80 (m, 2 H, H-6,7), 7.80 (d, 1 H, J = 8.5 Hz, H-3), 8.20-8.30 (m, 2 H, H-5,8), 8.20 (d, 1 H, J = 8.5 Hz, H-4).

Anal. Calcd for C₁₉H₁₃O₃Cl: C, 70.27; H, 4.03; Cl, 10.92. Found: C, 70.20; H, 4.04; Cl, 11.03.

2-Chloro-1-(hex-1-ynyl)anthraquinone (3g)

A mixture of 2-chloro-1-iodoanthraquinone (6) (0.74 g, 2 mmol) and cuprous butylacetylide (0.45 g, 3 mmol) in pyridine (50 mL) was stirred at 60 °C under Ar for 1 h, diluted with CHCl₃ (150 mL), washed with aq HCl (18%; 100 mL) and H₂O up to pH 7 and dried (MgSO₄). After evaporation of the solvent in vacuo the residue was chromatographed (silica gel; toluene). The product was crystallized (toluene-hexane mixture).

Yield of 3g: 0.51 g (78%); mp 123-124 °C.

IR: 1680 (C=O), 2230 (C≡C) cm⁻¹.

¹H NMR: $\delta = 0.99$ (t, 3 H, J = 7.0 Hz, Me), 1.50–1.85 (m, 4 H, β -, γ -CH₂), 2.68 (t, 2 H, J = 7.0 Hz, α -CH₂), 7.70–7.85 (m, 2 H, H-6,7), 7.81 (d, 1 H, J = 8.5 Hz, H-3), 8.17 (d, 1 H, J = 8.5 Hz, H-4), 8.20-8.35 (m, 2 H, H-5,8).

Anal. Calcd for C₂₀H₁₅O₂Cl: C, 74.42; H, 4.68; Cl, 10.98. Found: C, 74.43; H, 4.79; Cl, 10.91.

1-Chloro-2-ethynylanthraquinone (1a)

1-Chloro-2-(3-hydroxy-3-methylbutynyl)anthraquinone (1c) (1.45 g, 4.5 mmol) and powdered KOH (1.00 g, 17.9 mmol) in absolute benzene (100 mL) were refluxed with stirring for 45 min. The mixture was filtered, benzene was removed under reduced pressure. 1-Chloro-2-ethynylanthraquinone (1a) was purified by flash chromatography (alumina; toluene) and by crystallization (toluene-hexane mixture).

Yield: 0.90 g (73%); mp 211–212 °C.

IR: 1690 (C=O), 2130 (C≡C), 3310 (C≡CH) cm⁻¹.

¹H NMR: δ = 3.67 (s, 1 H, HC=C), 7.75–7.90 (m, 2 H, H-6,7), 7.91 (d, 1 H, J = 8.1 Hz, H-3), 8.20–8.35 (m, 2 H, H-5,8), 8.28 (d, 1 H, J = 8.1 Hz, H-4).

Anal. Calcd for C₁₆H₇O₂Cl: C, 72.06; H, 2.65; Cl, 13.29. Found: C, 71.98; H, 2.84; Cl, 13.09.

2-Chloro-1-ethynylanthraquinone (3a)

Compound 3a was prepared under the same conditions as 1-chloro-2-ethynylanthraquinone (1a), but from 2-chloro-1-(3-hydroxy-3methylbutynyl)anthraquinone (3c).

Yield: 31%; mp 244-245 °C.

IR: 1690 (C=O), 2120 (C≡C), 3320 (C≡CH) cm⁻¹.

¹H NMR: $\delta = 3.97$ (s, 1 H, HC=C), 7.70–7.90 (m, 2 H, H-6,7), 7.87 (d, 1 H, J = 8.4 Hz, H-3), 8.25–8.45 (m, 2 H, H-5,8), 8.27 (d, 1 H, J = 8.4 Hz, H-4)

Anal. Calcd for C₁₆H₇O₂Cl: C, 72.06; H, 2.65; Cl, 13.29. Found: C, 72.18; H, 2.59; Cl, 13.26.

Angular Anthrathiophene-6,11-diones 2a-f and 4a-c,g; General Procedure

To a stirring suspension of anhyd Na₂S (3.5 mmol) in 95% EtOH (35 mL) at 60–70 $^{\circ}\mathrm{C}$ was added vic-alkynylchloroanthraquinone 1 or 3 (1.0 mmol). The reaction mixture was refluxed and stirred for 10-20 min and poured into H₂O (300 mL). The product was extracted with $CHCl_3$ (3 × 100 mL), the combined organic extracts were washed with H_2O (2 × 100 mL), dried (MgSO₄) and evaporated in vacuo. The resulting residue was purified by flash chromatography (silica gel or alumina; toluene or CHCl₃) and crystallized (toluenehexane mixture).

Anthra[1,2-b]thiophene-6,11-dione (2a)

Yield 67%; mp 216-217 °C.

¹H NMR: $\delta = 7.48$ (d, 1 H, J = 5.5 Hz, H-3), 7.90 (d, 1 H, J = 5.5Hz, H-2), 7.75–7.85 (m, 2 H, H-8,9), 8.18 [d, 1 H, J = 8.2 Hz, H-4(5)], 8.30-8.35 [m, 3 H, H-5(4),7,10].

Anal. Calcd for C₁₆H₈O₂S: C, 72.71; H, 3.05; S, 12.13. Found: C, 72.52; H, 2.94; S, 11.86.

2-Phenylanthra[1,2-b]thiophene-6,11-dione (2b) Yield: 90%; mp 287-288 °C.

¹H NMR: $\delta = 7.40-7.55$ (m, 3 H, 3 HPh), 7.65 (s, 1 H, H-3), 7.80-7.90 (m, 4 H, 2 HPh, H-8,9), 8.12 [d, 1 H, J = 8.2 Hz, H-4(5)], 8.30-8.40 [m, 3 H, H-5(4),7,10]

Anal. Calcd for C₂₂H₁₂O₂S: C, 77.63; H, 3.55; S, 9.42. Found: C, 77.60; H, 3.69; S, 9.40.

2-(1-Hydroxy-1-methylethyl)anthra[1,2-b]thiophene-6,11-dione (2c)

Yield 83%; mp 184–184.5 °C.

¹H NMR: $\delta = 1.78$ (s, 6 H, Me), 2.30 (br s, 1 H, OH), 7.28 (s, 1 H, H-3), 7.75–7.85 (m, 2 H, H-8,9), 8.01 [d, 1 H, J = 8.2 Hz, H-4(5)], 8.20-8.35 [m, 3 H, H-5(4),7,10].

2-(1-Hydroxy-2-methylpropyl)anthra[1,2-b]thiophene-6,11-dione (2d)

Yield: 72%; mp 162-163 °C.

¹H NMR: $\delta = 0.99$ (d, 3 H, J = 6.7 Hz, Me), 1.07 (d, 3 H, J = 6.7 Hz, Me), 2.10-2.25 (m, 1 H, CHMe₂), 2.30 (br s, 1 H, OH), 4.82 (d, 1 H, *J* = 4.7 Hz, CHO), 7.28 (s, 1 H, H-3), 7.75–7.85 (m, 2 H, H-8,9), 8.03 [d, 1 H, J = 8.2 Hz, H-4(5)], 8.25–8.35 [m, 3 H, H-5(4),7,10].

Anal. Calcd for C₂₀H₁₆O₃S: C, 71.41; H, 4.79; S, 9.53. Found: C, 71.27; H, 4.71; S, 9.38.

2-Hydroxymethylanthra[1,2-b]thiophene-6,11-dione (2e) Yield: 87%; mp 212-213 °C.

¹H NMR: $\delta = 2.23$ (br s, 1 H, OH), 5.00 (s, 2 H, CH₂), 7.33 (s, 1 H, H-3), 7.75–7.85 (m, 2 H, H-8,9), 8.05 [d, 1 H, J = 8.2 Hz, H-4(5)], 8.25-8.35 [m, 3 H, H-5(4),7,10].

Anal. Calcd for C₁₇H₁₀O₃S: C, 69.37; H, 3.42; S, 10.89. Found: C, 69.26; H, 3.65; S, 10.81.

2-(1-Cyclohexenyl)anthra[1,2-b]thiophene-6,11-dione (2f) Yield: 76%; mp 207-208 °C.

¹H NMR: $\delta = 1.60-1.90$ (m, 4 H, 4', 5'-CH₂), 2.10–2.60 (m, 4 H, 3', 6'-CH₂), 6.55–6.65 (m, 1 H, 2'-CH), 7.19 (s, 1 H, H-3), 7.75–7.85 (m, 2 H, H-8,9), 7.98 [d, 1 H, J = 8.2 Hz, H-4(5)], 8.24 [d, 1 H, J = 8.2 Hz, H-5(4)], 8.20–8.35 (m, 3 H, H-7,10).

Anal. Calcd for C₂₂H₁₆O₂S: C, 76.72; H, 4.68; S, 9.31. Found: C, 76.47; H, 4.63; S, 9.35.

Anthra[2,1-b]thiophene-6,11-dione (4a) Yield: 66%; mp 182.5-183.5 °C.

¹H NMR: $\delta = 7.75 - 7.85$ (m, 2 H, H-8,9), 7.81 [d, 1 H, J = 5.5 Hz, H-2(1)], 8.20–8.35 (m, 4 H, H-4,5,7,10), 8.81 [d, 1 H, J = 5.5 Hz, H-1(2)].

Anal. Calcd for C₁₆H₈O₂S: C, 72.71; H, 3.05; S, 12.13. Found: C, 72.54; H, 3.01; S, 11.93.

2-Phenylanthra[2,1-b]thiophene-6,11-dione (4b) Yield: 84%; mp 246.5-247.5 °C.

¹H NMR: $\delta = 7.40-7.55$ (m, 3 H, 3 HPh), 7.75–7.90 (m, 4 H, 2 HPh, H-8,9), 8.19 [d, 1 H, J = 8.4 Hz, H-4(5)], 8.25-8.35 [m, 3 H, H-5(4),7,10], 9.08 (s, 1 H, H-1).

Anal. Calcd for C₂₂H₁₂O₂S: C, 77.63; H, 3.55; S, 9.42. Found: C, 77.67; H, 3.61; S, 9.50.

2-(1-Hydroxy-1-methylethyl)anthra[2,1-b]thiophene-6,11-dione (4c)

Yield: 97%; mp 171-172 °C.

¹H NMR: $\delta = 1.77$ (s, 6 H, Me), 2.32 (br s, 1 H, OH), 7.75–7.85 (m, 2 H, H-8,9), 8.14 [d, 1 H, J = 8.4 Hz, H-4(5)], 8.24 [d, 1 H, J = 8.4 Hz, H-5(4)], 8.25-8.30 (m, 2 H, H-7,10), 8.59 (s, 1 H, H-1).

Anal. Calcd for C₁₉H₁₄O₃S: C, 70.79; H, 4.38; S, 9.95. Found: C, 70.80; H, 4.20; S, 9.81.

2-Butylanthra[2,1-b]thiophene-6,11-dione (4g) Yield: 64%; mp 83.5–84.5 °C.

¹H NMR: $\delta = 0.98$ (t, 3 H, J = 7.4 Hz, Me), 1.46 (sext, 2 H, J = 7.4Hz, γ -CH₂), 1.81 (quint, 2 H, J = 7.4 Hz, β -CH₂), 3.02 (t, 2 H, *J* = 7.4 Hz, α-CH₂), 7.75–7.80 (m, 2 H, H-8,9), 8.13 [d, 1 H, *J* = 8.4 Hz, H-4(5)], 8.23 [d, 1 H, J = 8.4 Hz, H-5(4)], 8.25–8.30 (m, 2 H, H-7,10), 8.50 (s, 1 H, H-1).

Anal. Calcd for C₂₀H₁₆O₂S: C, 74.97; H, 5.03; S, 10.01. Found: C, 74.78; H, 5.27; S, 10.00.

References

- (1) Kesteleyn, B.; De Kimpe, N. Tetrahedron Lett. 2000, 41, 755
- Kita, Y.; Kirihara, M.; Sekihachi, J.; Okunaka, R.; Sasho, (2)M.; Mohri, S.; Honda, T.; Akai, S.; Tamura, Y.; Shimooka, K. Chem. Pharm. Bull. 1990, 38, 1836.
- (3) Ohba, Y.; Murakami, Y.; Sone, T.; Awano, H. J. Heterocycl. Chem. 1997, 34, 781.
- (4) Deng, X.; Liebeskind, L. S. J. Am. Chem. Soc. 2001, 123, 7703.
- (5) McDonald, F. E.; Burova, S. A.; Huffman, L. G. Synthesis 2000, 970.
- (6) Yue, D.; Larock, R. C. J. Org. Chem. 2002, 67, 1905.
- (7) Piskunov, A. V.; Shvartsberg, M. S. Mendeleev Commun. 1995, 155.
- (8) Shvartsberg, M. S.; Ivanchikova, I. D.; Lebedeva, N. I. Tetrahedron Lett. 2000, 41, 5757.
- (9) Shvartsberg, M. S.; Barabanov, I. I.; Fedenok, L. G. Mendeleev Commun. 1997, 98.
- (10) Shvartsberg, M. S.; Ivanchikova, I. D. Tetrahedron Lett. 2000, 41, 771.
- (11) Barabanov, I. I.; Ivanchikova, I. D.; Shvartsberg, M. S. Mendeleev Commun. 2000, 188.
- (12) Fedenok, L. G.; Barabanov, I. I.; Ivanchikova, I. D. Tetrahedron 2001, 57, 1331.
- (13) Flynn, B. L.; Verdier-Pinard, P.; Hamel, E. Org. Lett. 2001, 3,651.
- (14) Malte, A. M.; Castro, C. E. J. Am. Chem. Soc. 1967, 89, 6770.
- (15) Lendel, V. G.; Pakh, V. J.; Petrus, V. V.; Kijak, M. Y.; Migalina, Y. V. Khim. Geterotsikl. Soedin. 1990, 1331.
- (16) Smirnov-Zamkov, I. V.; Zborovsky, Y. L. Zh. Organ. Khim. 1977, 667.
- (17) Sakamoto, T.; Kondo, Y.; Watanabe, R.; Yamanaka, H. Chem. Pharm. Bull. 1986, 34, 2719.
- (18) Gorelik, M. V. Chemistry of Antraquinones and Their Derivatives; Khimiya: Moscow, 1983, 296.
- (19) Piskunov, A. V.; Moroz, A. A.; Shvartsberg, M. S. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1986, 35, 785.
- (20) Piskunov, A. V.; Moroz, A. A.; Shvartsberg, M. S. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1987, 36, 755.
- (21) Shvartsberg, M. S.; Piskunov, A. V.; Moroz, A. A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1990, 39, 987.
- (22) Dokunikhin, N. S.; Kolokolov, B. N. Zh. Vses. Khim. Obshchstva im D.I. Mendeleeva 1963, 8, 710; Chem. Abstr. 1964, 60, 9216.