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Importance of this Paper: Methane emission from wetlands occurs through molecular diffusion, bubbles and plants. It is controlled by the rate of methane generation in a sedimentary (active) layer and its dependence on depth. The value of emission is estimated from simple expressions that relate emission to generation rate, Henry's constant and the value of diffusion coefficient. Theoretical results are in agreement with experimental data and allow further experimental verification.
________________________________________________________________________________

Abstract

A stationary theory of gas emission from sedimentary (active) layers of wetlands is developed. The theory takes into account methane generation in a sedimentary layer (W1) and its depth dependence, (W1(z)), the solubility, determined by Henry's constant (K1), and the mobility of methane molecules set by the methane diffusion coefficient, (D1). The exponential dependence of methane generation rate decay with depth is considered in more detail. The penetration of atmospheric nitrogen into the active layer is also taken into consideration. It is shown that the value of diffusion methane flux from sedimentary layers is proportional to 
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 characterizes the atmospheric pressure and W10 characterizes the maximum generation rate. Coefficients relating the diffusion methane flux to the 
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 value are calculated for the different depth dependencies of methane generation rate. The values of these coefficients are not much different from unity for most real cases.
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1. Introduction

At present, there is a sufficient number of papers devoted to observations of gas formation and emission from sedimentary layers of swamps, lakes and rice fields. Although there is a great body of experimental data, the theoretical description of gas behaviour in a sedimentary (active) layer and its emission into the atmosphere is not adequately developed. 

The previous paper (Bazhin, 2001) gives the differential equations describing gas behaviour in an active layer. For the general case, the analytical expression was derived for calculating position of the upper boundary of bubble formation, (h) (Fig. 1). For the active layer, described by the set of constant parameters, concentrations of nitrogen and methane and their depth dependence were calculated. The asymptotic behaviour of the concentrations of these gases at great depth was analyzed. The aim of this paper is to analyze and explain the experimentally observed real cases. The main difficulty is associated with the absence of precise information on the depth dependence of methane generation rate. Experimental data on this subject are rather scarce, e.g., (Popp et al., 2000). Therefore, to analyze experimental cases, it is necessary to assume some depth dependence of methane generation rate. The present paper mainly considers the exponential decay of methane generation rate with depth. The second problem is concerned with the mobility of gas bubbles in a porous medium. Whereas the bubble mobility in pure water has been studied quite well (Levich , 1959; Nakoryakov, Gorin, 1994), the data on porous media are insufficient. A rigorous description of bubble emission requires information about the mechanism of the separation and motion of separate bubbles. Despite these difficulties, we have tried to derive simple analytical expressions for qualitative description of the concentrations of both diffusion and bubble methane fluxes. 

2. Model


The model of an active layer is shown in Fig. 1. A water layer of thickness b can be situated above the active layer. Gas concentrations in the water layer are assumed to be constant and depth-independent. We also assume equilibrium between the gases diluted in the water layer and the atmospheric gases. Anaerobic decomposition of organic sediments results in both methane (gas No.1) and carbon dioxide. In  the first Section of the paper, we neglect the presence of carbon dioxide in the active layer because its concentration in bubbles is usually not high and amounts, on the average, to about 3.4% (Chanton et al., 1989), and 4.2-6.75% (Martens et al, 1992). We take into account only nitrogen (gas No.2) which diffuses from the atmosphere to the active layer. The formation of nitrogen in the denitrification process is insignificant (Kipphut G.W., Martens C.S., 1982). We assume that no methane oxidation occurs in the active layer and there is no vegetation. 

The solubilities of methane and nitrogen are described using Henry's constants, K1 and K2, respectively. These can be expressed in 10-6 mole/(cm3(bar). Similarly, for both of the gases, we introduce the diffusion coefficients, D1 and D2, expressed in 10-6 cm2/s. As model values, we take Henry's constants and diffusion coefficients with respect to medium porosity and temperature as described in (Bazhin, 2001). For Henry's constants, we assume
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where 
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 is Henry's constant for pure water, ( is the porosity. There are no such simple expressions for diffusion coefficients depending on porosity. They can be calculated using, e.g., the results of the paper of Iverson and Jorgensen (1993). Further, the ratios between these constants will be used. At 25 oC, these ratios are of the form
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Note that the u2 and q2 values weakly depend on medium parameters such as porosity and temperature.

According to (Bazhin, 2001), the active layer is divided into two regions: region 1 - the upper part of the active layer in which there is no bubble formation, and region II - in  which bubbles do form. The existence of two regions can be explained as follows. Let us suggest that no gases form in the active layer. Then, the active layer is saturated only with nitrogen which is in equilibrium with the atmospheric nitrogen. Since a molar fraction of nitrogen in the atmosphere (r2) is 0.78, the nitrogen concentration in the active layer will be insufficient for bubbles to form. There is no oxygen in the active layer because of anaerobic conditions. 

Let us then assume that methane has started to form in the active layer. Thus, the concentration of dissolved methane in the region II will reach the values high enough, together with nitrogen, for bubbles to form. The further generation of methane leads either to the formation of new bubbles or to the growth of the old ones. In the region I of the active layer, methane diffuses to the above water layer where its concentration is assumed to be low and in equilibrium with the atmosphere. Therefore, in the upper part of the active layer, the concentrations of methane and nitrogen are insufficient for bubbles to form.

Let us qualitatively estimate the position of the upper boundary of bubble formation and the diffusion flow. The methane molecule situated at the upper boundary of bubble formation (z = h) has two equal chances: either to escape the active layer through molecular diffusion or to form bubbles together with other methane and nitrogen molecules. It is clear that if the molecule is above the upper boundary of bubble formation, it has greater possibilities to penetrate into the atmosphere through diffusion and when it is below the boundary, her chances to be in a bubble are greater. If the chances are equal, thus, the times of diffusion beyond the active layer and bubble formation must be equal. The time of diffusion into the atmosphere ((D) can be calculated from the Einstein equation taking into account that the distance of diffusion  is h (3)
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The time of bubble formation, ((В), is the time necessary for accumulation of methane concentration through generation which, together with nitrogen, could lead to bubble formation
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where parameter s takes into account the hydrostatic pressure of the water layer
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 determines methane concentration necessary for bubble formation together with nitrogen. Setting (D equal to (В, we get
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which, for the case methane constant generation rate, coincides with the results of precise theoretical calculations.

To estimate the diffusion flux, we assume that the whole of the methane forming above the upper boundary of bubble formation, penetrates into the atmosphere through diffusion. Hence,
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Expressions for h and 
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 show the dependencies on the parameters of the active layer. 

The rate of methane formation, 
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, usually decreases with depth (Clymo, 1998; Eilrich et al., 2000; Popp et al., 2000). For the general case, this is due to the decreasing of organic material accessible for methanogenic bacteria. The decrease in decay rate with depth can be related to temperature drop in deeper layers. It is important that in the upper layers the rate is higher and there is the parameter which describes its decay with depth. Although this decrease in rate can differ for different cases, we assume that the depth dependence of W1 is described by the simplest model exponential law (exponential model)





W1 = W10exp(-(z),




(8)

where W10 is the methane formation rate at the upper boundary of the active layer, ( is the parameter characterizing a decrease in rate with depth, z is the depth. When the generation rate remains constant, ( = 0. Equation (8) readily follows from the assumption that organic matter in sediments decompose by the first-order law. 

Gas behaviour in the active layer is convenient to consider in dimensionless coordinates. To distinguish dimensionless values from the corresponding dimensional ones, we introduce index "~" above the corresponding symbol. For example, the concentration in dimensionless coordinates is written as 
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The methane formation rate depending on depth z, 
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where 
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 is some characteristic rate of methane generation in a given system. For example, if the rate decreases with depth, the generation rate on the layer surface can be taken as 
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From Eq. (6), for h, it follows that as a unit distance, it is convenient to take the value below


[image: image28.wmf]10

0

1

1

/

W

P

D

K

l

=

. 




(11)

It is convenient to calculate the 
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 - in 10-12 mole/(cm3(s). The l value is obtained in cm. The distance in the active layer is measured in dimensionless units, 
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Hence,
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Similarly, to describe fluxes, we take
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Hence, e.g.,







[image: image36.wmf]j

J

J

D

D

×

=

1

1

~

.





(16)

The dimensionless values 
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 should be calculated theoretically. This calculation technique is given in the Appendix A. Note that to fully characterize the system in the framework of exponential approximation, it will suffice to determine parameters 
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value - from (11) and the j value - from (15). Further, using the Appendix A or Table 1, we can calculate the diffusion and bubble methane fluxes. 

3. Results of the analysis of the exponential model

Let us consider the calculated results obtained in the framework of the exponential model for the different parameters of the model under study, in particular, for the depth dependences of gas concentrations and the values of diffusion and bubble fluxes. Table 1 summarizes the 
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At
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which is in agreement with the results of (Bazhin, 2001). Note that bubbles form only at 
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When s = 0, we get 
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. For the large 
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 value, the methane formation rate quickly decreases with depth so that the resulting methane escapes from the layer through diffusion without

forming any bubbles. When knowing the position of the upper boundary of bubble formation, equation (17) can be used to estimate l:
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Fig. 2 shows the behaviour of methane and nitrogen concentrations with depth. With 
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 (Fig. 2a), the nitrogen concentration tends to zero with increasing 
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, it seems that the nitrogen and methane concentrations reach stationary values with depth. In this case, the stationary nitrogen concentration noticeably exceeds zero and the stationary methane concentration is noticeably smaller than unity (Fig. 2b). This is attributed to the fact that for the high 
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 values, at large depths, the methane generation rate rapidly tends to zero and the methane concentration can not reach the unit value. The nitrogen concentration also does not reach zero. At large depths, gas concentrations do not actually change to the end of the active layer. Thus, the experimental record of the stationary concentration values for methane and nitrogen testifies to a fast decrease in methane generation rate with depth. Note that the curves of concentration dependencies reliably reach stationary values at 
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 value assuming the exponential model and using the stationary values of nitrogen or methane concentrations at a sufficient depth. Unfortunately, most published papers report the data only on the depth dependence of methane concentration. 

As follows from Fig. 2, with constant methane generation rate, the rate of methane penetration into bubbles increases with depth and at large 
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 values it decreases. Thus, in case 2a, the size and number of bubbles first increase with depth and then pass to the stationary value; in case 2b, the size of bubbles and their number must decrease with depth. 
To get information on the l value, we use the depth of the active layer, 
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We get
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Assuming that the 
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where 
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 is given in cm. Thus, Eq. (23) can be used to determine 
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Unfortunately, the use of parameter 
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 is complicated by the fact that in real systems the concentration of methane rapidly passes to the stationary value and there are certain difficulties in choosing the  origin of counting for the layer depth. Therefore, the accuracy of experimental determination of 
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Further, Table 1 summarizes the 
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As follows from Fig. 2, in all cases, the methane concentration in the active layer and thus, the methane content in bubbles increases with depth. Experimentally, we often observe the values exceeding 0.51 which testifies to the fact that bubbles penetrate into the atmosphere not only from the upper boundary h but also from great depths. 

The molar nitrogen fraction in bubbles, 
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This value is observed to increase with 
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 due to a general decrease in the amount of forming methane. Parameter 
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Parameter F2 determining the nitrogen concentration gradient in region I is found from the equation
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where 
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As follows from (A.6), the diffusion methane flux, 
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The data in Table 1 show that the diffusion methane flux in the 
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Thus, measuring the diffusion methane flux, we estimate both the j value determined by (15), and the 
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The diffusion nitrogen flux, 
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Table 1 shows that the diffusion nitrogen flux decreases with increasing 
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For qualitative purposes it is of interest to divide the active layer, in a rough approximation, into two parts: the upper layer of thickness 
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which gives
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The 
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Thus, in a rough approximation, it is assumed that the entire methane forming to the depth 
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The total methane flux, 
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For active layers with 
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, the total methane flux is an integral with respect to the active layer depth
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Let us now discuss the bubble emission of methane. The value of the bubble methane flux, 
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For other cases, we get
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A fraction of methane in the bubble flux, 
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because nitrogen escapes from the active layer only through bubble emission. Hence,
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The dependence of 
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 is shown in fig. 4. The value of the bubble flux is observed to sharply depend on the methane content in the bubble flux. The fraction of methane in the bubble flux, (X1B), almost linearly depends on 
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The fraction of the bubble methane flux, 
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Let us consider now the dependencies of system parameters on 
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For example, as the methane generation rate increases 100 times, the 
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 value decreases 10 times. 

Table 1 shows that the position of the upper boundary of bubble formation, 
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The value of the diffusion flux must be proportional to 
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) when methane escapes into the atmosphere mainly through diffusion. This follows from Fig. 6 depicting the dependence of the diffusion methane flux on the generation rate: at low rates, the slope of the curve in logarithmic coordinates approaches unity and with high rates, this slope is close to 1/2.

4. Comparison with experiment.

Let us consider the results given in Fig. 7 in (Rothfuss, Conrad, 1998). From the figure it is found that  
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 and z0.5 = 1.5 cm. According to Eq. (22), parameter l is 2.3 cm. Thus, from Eq.(17) it follows that ( = 0.3 cm-1. Thus, the methane generation rate decreases 2.7 times at a depth of 3.3 cm. From Eq. (20), the h value is determined to be 1.7 cm which exceeds the experimental value of about 1.3 cm. For these conditions, 
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. For the bubble flux, with respect to a layer depth of 4 cm, its value in dimensionless coordinates is 0.29. According to theoretical calculations, the fraction of the bubble flux is 23% of the total flux whereas experimentally, its contribution is 22%. Thus, the theoretical calculations are in agreement with the experimental results. 

Fig. 7 compares the rates of methane penetration into bubbles with the observed distribution of bubble volume with depth (Rothfuss, Conrad, 1998). Only a qualitative agreement is observed between curves 3 and 4. Nevertheless, the model proposed accounts for the absence of bubbles in the upper part of the active layer. This is due to unsaturation because the concentration of dissolved gases is insufficient for bubble formation. The character of bubble volume distribution is explained as follows: the largest bubbles are located higher than the small ones because near the upper boundary, the bubble formation rate due to gas penetration into bubbles is highest. The model also explains the absence of bubbles in the lower part of the active layer: the rate of gas penetration into bubbles is too low. 

Note that the position of the upper boundary of the active layer cannot always be determined accurately enough. More often, the diffusion fluxes and the values of stationary methane concentrations in the active layer are available. This is sufficient to determine the other system parameters. We use this approach for analyzing the results obtained at different observation stations in White Oak River estuary (Kipphut, Martens, 1982; Chanton et al., 1989). 

Fig. 9 in (Kipphut, Martens, 1982) shows the data on the depth dependencies of methane and nitrogen concentrations which are close to the calculated ones given in fig. 2b. Thus, one can readily explain the appearance of the experimentally observed stationary values of methane and nitrogen concentrations in the framework of our model. As follows from Fig. 3, for the case given in Fig. 9 in (Kipphut, Martens, 1982), the value 
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.15. Note that a similar result follows from the data on the depth dependencies of methane concentrations shown in Fig. 3 for UF and GI stations for both summer and winter conditions (Chanton et al., 1989). The data on bubble content (Chanton et al., 1989) testify that for the UF station 
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 is about 25(10-12 mole/(cm(s). For the UF station, the value of the diffusion flux is 8.25(10-12 mole/(cm(s) in summer and 2.28(10-12 mole/(cm(s) in winter. As follows from these data, 
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 in winter. From (11) we determine the l parameter to be 2.5 cm in summer and 9.1 in winter. For the upper boundary of bubble formation we get: 2.2 cm in summer (experimentally, 1-2 cm) and 8 cm in winter (experimentally, 5-10 cm). Thus, the data on the position of the upper boundary of bubble formation are in agreement. In summer, the generation rate of methane decreases 2.7 times at depths of 2.5 cm and at 9.1 cm in winter. According to our model, the value of bubble emission must also decrease about 3.6 times upon transition to winter conditions. However, the bubble emission is not observable in winter conditions. Nevertheless, the penetration of methane into bubbles does not stop. This testifies to the fact that there is no unambiguous relation between bubble and diffusion emissions which is confirmed by the fact that according to the model developed for the system with 
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, the bubble emission must be only 20-16% of the total one. Nevertheless, according to experimental data, the bubble and diffusion fluxes of methane are, on the average, almost equal (Chanton et al., 1989): the bubble flux is 50 ( 10% of the total methane emission. This can be attributed to the fact that the exponential model is not quite suitable for describing bubble emissions. Assuming that at depths much exceeding 1/(, there occurs methane generation. Almost the whole of methane penetrates into bubbles that, under favourable conditions, can escape into the atmosphere. This is quite probable for the systems described in (Chanton et al., 1989): in winter the bubbles are accumulated and in summer they escape into the atmosphere. 

A similar value for 
[image: image161.wmf]10

W

 follows from the data on 
[image: image162.wmf]5

.

0

z

 given in Fig. 9 in (Kipphut G.W., Martens C.S., 1982) according to which 
[image: image163.wmf]4

.

0

1

.

2

5

.

0

±

=

z

 cm. Using this value, from (24) we calculate  
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In (Van der Nat, Middelburg, 1998), in Fig. 3 in the non-plant case, 
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. The l parameter is 0.27 cm. For the h value we also obtain 0.27 cm. The ( parameter is 4.8 cm-1. Thus, the methane generation rate decreases 2.7 times at a depth of about 0.2 cm.

5. Conclusion

The model proposed gives a full account of experimental results. However, for a more detailed comparison between theory and experiment it is necessary to measure not only the methane concentration, the diffusion and bubble fluxes, but in dependence on depth also:

1. The generation rates of methane and CO2.

2. The concentrations of methane, nitrogen, carbon dioxide, oxygen and argon.

3. The position of the upper boundary of bubble formation.

4. The composition and volume of bubbles.

5. Porosity, temperature and pH.

Appendix A

Mathematical equations describing methane emission

Taking into account the above notations, equations describing the dependence of the concentrations of methane, 
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where 
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 is a molar fraction of methane in the atmosphere equal to 1.8(10-6, 
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 is a molar fraction of nitrogen in the atmosphere equal to 0.78. The differential equation describing a change in methane concentration in region (II) according to (Bazhin, 2001) in dimensionless coordinates has the form
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Parameter q is equal
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The q value weakly depends on temperature in the range of 0-40 oC. Equation determining the position of the upper boundary of bubble formation, (
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), in dimensionless coordinates has the form
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In dimensionless coordinates Eqs. (A.1, A.3, and A.5) are, in the framework of the exponential model, of the forms, respectively
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Further, we neglect the term 
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The advantage of dimensionless coordinates readily follows from Eq. (A.7) because we use only one parameter 
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Mathematical equations describing emission of carbon dioxide. 

The formation of carbon dioxide (gas N = 3) is taken into account by solving the system of two nonlinear differential equations of second order 
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where

(
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The system of differential equations is unstable upon numerical analysis. Therefore, we should act in a different way. According to experimental data, the fraction of carbon dioxide in bubbles is negligible. Therefore, the carbon dioxide flux into bubbles is not large and can be neglected. In this case, the behaviour of diluted carbon dioxide is described by the usual diffusion equation 
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 where 
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 is the generation rate of carbon dioxide in the active layer. The boundary conditions are the CO2 concentration on the surface of the active layer being in equilibrium with atmospheric carbon dioxide and the absence of possible penetration of CO2 molecules through the bottom of the active layer. The sum of all three forms of CO2 in water solution are taken as the concentration of carbon dioxide. In the case of the exponential decay of the generation rate of carbon dioxide with depth the solution to the last equation is of the form 
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where 
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Figure captions

Fig. 1. The model of the active layer. 

Fig. 2. The depth dependencies of the concentrations of methane, nitrogen and the rate of bubble formation in dimensionless coordinates. The 
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 value is zero for a) and 1.15 for b). The points on Fig 2 b) are taken from Fig. 9 in (Kipphut, Martens, 1982). The thickness of the water layer above the active layer is zero. 

Fig. 3. Estimation of the 
[image: image208.wmf]n
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 value. Curve 1 - for methane, curve 2 - for nitrogen. Parameter s = 0. 

Fig. 4. The dependence of bubble emission on the molar fraction of methane in the bubble flux. 

Fig. 5. The 
[image: image209.wmf]n
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 dependence of the molar fraction of methane in the bubble flux. 

Fig. 6. The dependence of the diffusion flux of methane at constant value of parameter ( on the methane generation rate. 

Fig. 7. The depth dependence of the concentrations of methane - curve 1, nitrogen - curve 2, the rate of methane penetration into bubbles - curve 3 and bubble volume (Rothfuss, Conrad, 1998) - curve 4 in dimensionless coordinates.

Table caption 

Table 1

The values of parameters characterizing concentrations and fluxes for the different 
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