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Abstract

The previous theory (Bazhin, 2001; Bazhin, 2003) of methane emission is applied to vegetated sediments. The presence of roots in a sediment is taken into account. It is assumed that methane and nitrogen enter a sediment through channels existing in plants and roots. The rate of methane and nitrogen  transport through plants and roots is proportional to the difference in concentrations in the layer and on the upper surface. It is established that as the vegetation density increases, the rate of methane transport increases so that with sufficient vegetation density, almost all methane passes to the atmosphere through plants. In this case, the value of bubble emission decreases to zero. The nitrogen transport rate through plants first increases and then decreases with increasing the vegetation density. The theory qualitatively and quantitatively describes the dependence of methane concentration on depth in the presence of plants. A comparison with the available experimental data on dissolved methane concentration and bubble composition indicates satisfactory agreement.

Keywords: Bubbles; Concentration, Diffusion; Emission, Methane; Nitrogen; Plants, Roots.

1. Introduction

Methane emission from sedimentary (active) layers (sediments) occurs by molecular diffusion, through bubbles, and plants. To estimate the total emission, one should know the fraction of emission in each channel because the methane flux into the atmosphere is subject to 
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the different effects of the processes of methane oxidation.


Plants and roots have air channels, which simplify methane transport. Therefore, for vegetated sites, a substantial fraction of methane passes to the atmosphere through plants (van Bodegom et al, 2001; Byrnes et al., 1995; Dacey and Klug, 1979; Chanton and Dacey, 1991; Holzapfel-Pschorn et al., 1986; Hosono and Nouchi, 1997; Seiler et al., 1984; Stephen et al., 1998; Wang et al., 1997; Warson et al., 1997; Wilson et al., 1989). This is due to a higher diffusion coefficient in air medium existing in roots and plants as compared with that for a sediment.

Methane emission in the presence of plants has been studied theoretically in a number of papers (van Bodegom P.M. et al. 2001; Stephen K.D. et al., 1998). In these papers, the acceleration of emission in the presence of plants is explained using the averaged coefficient of diffusion in sediments and plant roots. A mathematical formulation of a problem is, in this case, much more simple because the inhomogeneous medium with diffusion coefficients, which are different in space (sediment and roots), becomes homogeneous with a common diffusion coefficient. As a result, the methane transport through plants can be  explained in a simple way. The fraction of methane supplied to the atmosphere through plants can be calculated by means of a corresponding parametrization of a model. Nevertheless, despite a successful application of the model, it fails to account for some facts. For example, in (Wilson J.O. et al., 1989) it is shown that the dependence of methane concentration on depth in a sediment in the presence of plants is of complex character, i.e., first, the concentration increases with depth, reaches a maximum, and then decreases and increases again. In the framework of the one-dimensional model of methane diffusion with an averaged diffusion coefficient, even though depending on depth, the methane concentration will increase with depth.

In the present paper, we suggest an alternative model for explaining both the acceleration of methane transport through plants and the experimental data reported in (Wilson J.O. et al., 1989).

2. Model

The model used in this work is based on the model developed in (Bazhin, 2001; Bazhin, 2003). As compared with (Bazhin, 2001; Bazhin, 2003), in the present work, the model includes the transport of  methane molecules through plants and roots. No changes are introduced in the description of diffusion mobility and transport through bubbles.

In our methane transport model, we assume that the rate of methane sink into roots, 
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where coefficient 
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 takes into account the number of roots and their permeability. Note that there are no methane sources  inside the roots and plants, which is also in agreement with eq. (1). All values corresponding to methane are denoted by index “1” and those to nitrogen – by index “2”.

Expression for a nitrogen flux from the atmosphere to solution can be given in a similar way
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where 
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 is the same coefficient which is assumed equal for both methane and nitrogen. This assumption is based on the closeness of the diffusion coefficients for methane and nitrogen in both water and air. Further, the coefficients of methane and nitrogen diffusion in a sediment are assumed equal.

Let us estimate the 
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 values at which the roots will have a noticeable effect. It is clear that the term 
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For simplicity, we assume that in a sediment, methane is generated at a constant rate 
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 is also assumed to be constant throughout the sediment. The density of roots and their ability to transport methane to the atmosphere are characterized by the dimensionless and constant parameter ( (Appendix)
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The characteristic value of ( is 10-7.

For convenience and according to (Bazhin, 2003), we introduce dimensionless coordinates. To distinguish between the dimensionless and dimensional values, we use the sign “~”. The concentrations of any gases 
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where C is the concentration of any gas, 
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 is the gas concentration in dimensionless units, 
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 is Henry’s constant for methane. For dimensionless units of length (l) and flux (j), we use eqs. (5) and (6), respectively,
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where D is the coefficient of methane diffusion in the sediment, 
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is the rate of methane generation in the sediment. With respect to this notation, the depth is of the form
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The equation for the flux of any gas 
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Like in previous papers, we divide the sediment into two regions: the upper region where no bubbles are formed and the lower region where bubbles are formed (Fig. 1). The composition of 

bubbles at the depth z is determined by the gas fluxes entering the bubbles. All mathematical calculations are given in the Appendix.

We consider the following model situations (Fig. 2).

Model 1. The roots originate from the surface and extend to infinity. The coefficient f is constant.

Model II. The roots originate in the region of bubble existence and extend to infinity.

Model III. The roots occupy a limited space in the region of bubble existence. This model most closely corresponds to real conditions (Stephen et al., 1998).

3. Results and Discussion.


Let us consider model I. In this case, the roots uniformly and at a constant efficiency 
(( = Const) fill the entire sediment. As the root density increases, the curves describing methane concentration with depth reach the stationary values, which are lower than those observed in the absence of roots. This is because of the fact that an increase in vegetation power increases methane sink through plants. The boundary of bubble layer formation will also shift deeper to the layer (Figs. 3 and 4). For fairly rich vegetation 
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, the bubble formation can even stop because the methane sink through plants will be great and the methane concentration in water will be low so that the sum of potential partial pressures can be insufficient for bubbles to form. When the bubbles stop to form, the value 
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Figure 4 shows the densities of gas fluxes in the layer.  As the vegetation density increases, the flux through plants increases very quickly and at (( = 1), about 65% of methane forming in the layer passes to the atmosphere. With higher values of vegetation density, almost all methane enters the atmosphere through plants. The bubble methane flux vanishes with increasing vegetation density. The nitrogen flux through plants first increases due to an increase in vegetation density and then, decreases due to a decrease in the bubble flux. The methane molar fraction in bubbles is equal to the methane concentration in dimensionless units. As expected, the molar fraction of methane decreases and that of nitrogen increases according to experimental data (Chanton J. P. et al., 1989).

`
Let us consider model II. In this model, the roots start to manifest themselves effectively in the layer part where the bubbles form. They begin from the positions denoted in Fig. 5 by the lines with asterisks and extend to infinity. As follows from Fig. 5, the methane concentration first increases, then passes through a maximum, and decreases to the level predicted by model I. 

From Fig. 5 it follows that if the roots begin in the deeper parts of the layer, the concentration maximum shifts to the depth and the concentration amplitude in a maximum increases.

Let us consider model III. It can be analyzed from the experimental data proposed in (Wilson J.O. et  al., 1989). Figure 6 shows  both the experimental data on the measurement of the depth dependence of dissolved methane concentration on Newport News Swamp (the State of Virginia) vegetated  by Peltandra virginica and the modeling result. Describing experimental data, we assumed that the roots are uniformly distributed over the depth range 7-52 cm. The vegetation density is high enough (( = 4.5). Fig. 6 shows fair agreement between theory and experiment. The main thing is that the theory satisfactorily shows a change in methane concentration with depth thus demonstrating the existence of maxima and minima. A similar conclusion can be drawn for the composition of bubbles. According to experimental data, the bubbles contain 22.5% methane. A theoretical calculation gives 28%, which is rather close to the experimental values. The theoretical curves were calculated by formulas given in the Appendix.

4. Conclusion.

The theory of methane emission from sediments developed in (Bazhin, 2001; Bazhin, 2003) can be applied to vegetated sites. The results are in qualitative and quantitative agreement with experiment. Unfortunately, a further description of emission is hindered by the absence of a great body of experimental data, which could include the detailed depth  dependencies of the change in:

1. concentrations of dissolved methane, nitrogen, CO2, argon, and oxygen;

2. composition of bubbles and their total volume;

3. porosity.

4. density of roots
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Appendix.

Region I.

The diffusion equation for methane in region I in the presence of roots is of the form
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(A-1)

where
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(A-2)

The boundary conditions for eq. (A-1) are
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where 
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 is a fraction of methane in the atmosphere, 
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 is the methane concentration on the upper boundary of bubble formation. Solution to eq. (A-1) is of the form
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where
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The diffusion methane flux through the upper surface is
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(A-6)

The diffusion equation for nitrogen is of the form
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where 
[image: image66.wmf]2

r

 is a fraction of nitrogen in the atmosphere, 
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The boundary conditions for eq. (A-7) are
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Solution to (A-7) is of the form
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(A-9)
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(A-10)

The diffusion nitrogen flux through the upper surface obeys the equation
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Repeating conclusions of the paper (Bazhin, 2001) for calculating the upper boundary of bubble location (
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where s is the ratio between the water layer thickness b and the characteristic water layer thickness 
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 equal to 10 m.

Region II.

Repeating calculations in (Bazhin, 2001), we derive the equation for methane behavior in region II
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where 
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(A-14)
For large depths, the methane concentration passes to a stationary value that can be found from the condition for transformation of the second derivative in (A-14) into zero
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where
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The methane and nitrogen fluxes through roots are written as
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(A-18)

The bubble fluxes can be found from
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For a constant methane generation rate, the solution to eq. (A-14) can be found by quadratures (Kamke, 1959) because it is 
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where



[image: image90.wmf]ò

=

y

z

C

dy

y

f

y

F

)

~

(

~

1

1

1

)

(

2

)

(

.




(A-22)
In the absence of roots (( = 0), eq. (A-14) is of the simple form
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Assuming that
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we find
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Since with the depth tending to infinity, the current concentration tends to unity and the derivative [image: image94.wmf])
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Equating derivatives at the point with 
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(A-27)
In the presence of roots, the analog of (A-23) is of the form
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(A-28)
where 
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. The remaining calculations are similar to those performed in the absence of roots.
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FIGURE CAPTIONS

Fig. 1. Active layer with plants.

Fig. 2. Dependence of root density on depth for three model situations.

Fig. 3. Dependence of methane concentration on depth for different root densities. Model I.

Fig. 4. Dependence of the depth of bubble layer formation (
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), the density of methane fluxes 
          through plants 
[image: image104.wmf]R

J

1

~

 and bubbles 
[image: image105.wmf]B

J

1

~

, and the density of nitrogen flux through plants 
[image: image106.wmf]R

J

2

~

 
         on vegetation density ((). Model I.

Fig. 5.  Dependence of methane concentration on depth. Asterisks denote the curves calculated 
           for the corresponding depths at which roots grow. Model II.

Fig. 6. Dependence of methane concentration on depth. Comparison between experimental 
          (Wilson J.O. et al., 1989; squares) and theoretical data calculated by model III.
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