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Modeling of MFEs in Multispin Systems
1. Abstract

A model is proposed for calculating magnetic field effects formed in a radical triad comprised biradical and paramagnetic particle. To describe the “third” spin effect on spin evolution in a biradical, electron spin exchange interaction of the added spin with one of the paramagnetic centers of the biradical has been considered. Calculating the field dependence of the recombination probability of the biradical – oxygen complex revealed both an increase in recombination probability earlier attributed to spin catalysis and influence of the values and signs of exchange interection in the complex on the shape of magnetic field effect dependence. Calculation results are in an agreement with the experimental data on the photolysis of 7,7’‑dimethylsilanorbornadiene in aerated and deaerated solution.
2. Introduction
At present, study of magnetic field and spin effects in multispin systems is now the actual problem of spin chemistry. The catalysis of radical reactions in solutions by paramagnetic particles, called “spin catalysis” [
] has been demonstrated in 1994. Later, the influence of the additional, so-called “third” spin on magnetic field effects (MFE) in radical ion pairs (RIP) [
, 
], and the influence of stable radicals on CIDNP formation in a radical pair (RP) [
] have been described. Observed effects clearly indicate that added paramagnetic particles can affect the processes of spin evolution in RP and RIP. In particular, there are several examples demonstrating the influence of the “third spin” on the field dependences of MFE in biradicals [3, 
]. The mechanism of the action of “third spin” on spin dynamics of multispin systems (radical triad or tetrad) are partially related with the well-known relaxation effects (mainly due to dipole-dipole interaction) [2] or the manifestation of electron spin exchange of RP partners with added spin. Note that existing descriptions of experimental field dependencies of MFEs in multispin systems are of qualitative character.
On the other hand, the classical approach of the modern radical pair theory ignores interaction with other paramagnetic centers in a macrosystem. When this interaction has comparable magnitude or exceeds the effective hyperfine interaction, a radical triad cannot be considered as a system of weakly interacting radical pair (or biradical) and additional paramagnetic center.
Thus, to analyze spin and MFE in multispin systems, novel approaches should be developed to take account of interaction between all electrons during the lifetime of either radical triad and/or tetrad. The attempts to formulate such theoretical description are already underway. The main progress was achieved for MFE in the quenching of triplet excited states by additional radicals in solution, where basic rules for reactive states were formulated and direct interactions between electrons were ignored [
]. Another approach including exchange interaction between all spins in triad has been made by Berdinsky and Buchachenko to describe the phenomenon of spin catalysis [
], incapable to predict MFE. The model proposed by Molin, Usov and Lukzen [
] concerns the MFE in the rather rare system where paramagnetic particles are generated by radiolysis. Their model describes spin evolution in pair of non reactive biradical and radical initially generated at the distances much greater than reaction radius. This allows to ignore direct interaction of biradical and radical during spin evolution process. The latter precludes from the use of this model to analyze MFEs for the case of thermal or photochemical generation of paramagnetic particles, where radicals are generated at contact radius.
Thus, one might conclude that at present, the reference data lack the general model for a quantitative description of the external constant magnetic field effect on reactions in cooperative spin states with regard to the interaction between more than two electrons. The goal of the present paper is to fill this gap by creating a method for describing MFEs formed in a system of three interacting electron spins in arbitrary magnetic fields.
3. Model
Radical triad chosen as a model for the calculation consists of two linked radical centers R1 and R2, and R3 which is rigidly bound to center R1. The spatial motion of the system was described by a two-position model [
], in which the system can be in two states: nonreactive state I where the reaction centers are out of the contact zone, and reactive state II with the radical centers in direct contact. State II can lead to the formation of final product III if electron spins of R1 and R2 are in singlet state (Scheme. 1).
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 Scheme 1. A two-position model of radical triad.

In state I, the exchange interaction between centers R1 and R2 is taken to be of constant value J1. As usuall J1 in the state II is assumed infinitely large. The exchange interaction between centers R1 and R3 is set to a constant value J2 in both states. 
The exchange interaction between the R2 and R3 centers and the possibility of the formation of covalent bond in-between are considered negligibly small. The latter is justified for linear triads and biradical complexes with the additional paramagnetic particle located close to one of the radical centers.
The assumption of the constant exchange interactions between the radical centers of biradical J1 during spin evolution in a radical triad is used for the simplification of the calculations. There are several examples (see ref. [
]) demonstrated that a more detailed consideration of biradicals taking into account the distribution over J values for various biradical conformations introduces no changes to the qualitative conclusions (MFE extremum location) drawn in the framework of the model of constant exchange interaction if it corresponds to the most probable configuration. 
The radical center R1 contains one magnetic nucleus with spin I. For this model, the spin-hamiltonian of the system is of the form
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where 
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 are the g-factors of the electrons of radical centers R1 – R3, S1, S2, and S3 are the electron spins of radical centers, respectively, β is the Bohr magneton and H is the external magnetic field strength, а is a HFI constant between an electron and nuclear spins in the radical center R1.
The total lifetime of the triad is 
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. During this time, the system passes repeatedly from state I to state II, and back. In the state II the recombination is possible in case of singlet state of pair of spins S1 and S2. The total residence time of the system in state II is 
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. The residence time of the system in reaction zone (
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4. Calculations
The recombination probability calculations were performed within the framework of density matrix formalism. As the basis states of system [image: image10.wmf]i
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, we took the product of the singlet-triplet basis of the reactive radical centers R1 and R2 and the bases of particles interacting with them.
Solving a secular equation, we get the stationary levels of energy Ei and the eigenwave functions of system [image: image11.wmf]i
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. The stationary wavefunctions in the basis [image: image12.wmf]i

j

 are represented as 
[image: image13.wmf]iijj

j

Q

y=j

å

, where 
[image: image14.wmf]ˆ

Q

 is the matrix of the transition from the original singlet-triplet basis to that of the system of eigenfunctions. The Hamiltonian in the basis [image: image15.wmf]i
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 will be of diagonal form. In this case all Ei and [image: image16.wmf]i
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 are real. Consequently the evolution of wave functions follows the law 
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Since the system can recombine only in the singlet state of the pair R1 and R2, the required density matrix 
[image: image18.wmf]ˆ

r

 should also be written in the [image: image19.wmf]i

j

 basis. Applying 
[image: image20.wmf]ˆ

Q

 to [image: image21.wmf]i

j

 , we get


[image: image22.wmf]111

ˆˆˆˆ

ˆˆ

(t)Q(t)Qexp(iHt)(0)Qexp(iHt)Q(0)

---

j=y=-y=-j


(3)
hence: 
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This equation in the Liouvillian representation can be written as 
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 is the Liouville evolution operator. Let us find [image: image27.wmf]SS

r

 for the initial singlet system state. Let’s assume that the system has only one state contains the singlet state of radical centers R1 and R2, and mark it as 
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Thus, in terms of the 
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For the chosen initial conditions, the element 
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Operator, describing the probability of the recombination various RP states from different states, is [
]
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where 
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 is the value of the Laplace transform of the spin evolution operator 
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 convolved with a function characterizing motion and averaged over the reaction zone, 
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 is the matrix of the constants of recombination in various spin states.
Thus, e.g., the recombination probability from the singlet state, providing the start is made from a singlet, is
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The matrix element 
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 characterizes the residence time in the reaction zone of radicals in the singlet state if their initial state was also singlet, U0 is the pseudomonomolecular constant of recombination rate.

Using 
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where g(s) is a motion-characterizing function, which is the Laplace transform of the spatial motion function [
].
In particular, for the two-position model, 
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 is of the form [
]:
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where n is the number of repeated encounters. Using (9), at [image: image51.wmf]s
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The mean residence time of a pair in the reaction zone in the singlet containing state, providing the start from the same state of the ensemble, corresponds to the real part of the expression derived, 
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(12)
and the recombination probability upon the start from a singlet containing state is, in this case [11],
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There is the unambiguous relation between 
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, the recombination probabilities in the cases of singlet and triplet initial states of a pair R1 and R2. It was shown [
] that if 
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Equations (12) – (14) were obtained on condition that there is only one singlet state in an ensemble, i.e., neglecting a possible transition of a system during evolution from one singlet containing state to the other. Calculating recombination probability in ensembles with two singlet containing states 
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, one should take into account a possible transition of a system from one singlet containing state into the other (e.g., 
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The recombination probability in the 
[image: image69.wmf]1

j

 state with the start from singlet and triplet states of R1-R2 pair, is, in this case, of the form
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, the residence times of the pair in the reaction zone in the first and second states of the ensemble with the start from the same state, are found from eq. (12). 

5. Results and discussion
The approach developed in the present paper was applied for the modelling of MFEs detected earlier on the product of the photolysis of 7,7’-dimethylsilanorbornandiene in the presence of oxygen and in deaerated solution [5].
According to ref. [5], the magnetosensitive stage in this process, is defined by the triplet-singlet transitions in silicon-containing 1,6-biradicals and its complexes with oxygen – the main precursors of reaction products. The possible structures of the complexes are represented on the Fig. 1 [
]. It has been fund that the presence of oxygen led to the shift of the extreme position on the field dependence to the high field, and noticeably increasing of the magnitude of MFE [5] (Fig. 2).
Several assumptions of the calculation of MFE in this reaction had been made early [15, 5], but it had not considered the influence of the added spin of oxygen on the spin evolution in biradicals.
In the present paper, the biradical-oxygen complex is considered as a radical triad, in which oxygen is the paramagnetic center R3 with spin 1 and the reactive biradical centers R1 and R2 have ½ spins. In such a system, the initial [image: image73.wmf]i
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 basis can be obtained by product the basis of biradical 
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. Transitions in the system can occur with the preservation of the projection of the total system spin. Therefore, the ensemble can be divided into noninteracting subensembles of the states with identical projections of the total spin.
The resulting ensemble of 24 wavefunctions is divided into six subensembles (by the number of the projections of the total spin):
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Obviously, subensembles 1 and 6 contain no singlet biradical states and, thus, cannot recombine. Subensembles 2 and 5 have one singlet state each, with the recombination probability calculated from eq. (14). The recombination in subensembles 3 and 4 is possible in two states containing the biradical singlet state and their recombination probability is calculated from eq. (16). The total recombination probability is the sum of the recombination probabilities in various subensembles with to their statistic weight taken into account.
In the framework of the model chosen, the calculation results depend on a number of parameters. The product of spin-independent recombination constant and the total residence time ([image: image78.wmf]0p
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) of the system in state II characterizes the spin-independent recombination probability and affects exclusively on the scale of the MFEs. The lifetime of system [image: image79.wmf]c

t

 was determined to be 10-7 – 10-6 sec and in these limits, it has no noticeable effect on calculation results. On the one hand, this time is long enough for the effects to fully manifest themselves (approximation of long-lived pairs) and on the other hand, it is shorter than the times of radical spin relaxation, which could also decrease the effects calculated. The g-factors of biradical radical centers are taken to be equal to those free radicals with the similar structure, g1 = 2.0025 and g2 = 2.0031. The g-factor of triplet oxygen (g3 = 2,019) is taken to be equal to that of the peroxide radical [
] (for 
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). However, for these values, the (g mechanism of S-T conversion in the fields under study (up to 100 mT) is practically unobservable. Therefore, the accuracy of the assignment of g-factors has no considerable effect on calculation results. The value of the HFI constant is characteristic for organic radicals (1 mT).

As for the values of J1 used in the calculations, it corresponds to the position of extreme on the abovementioned experimental field dependence of MFEs detected in ref. [5] in the absence of oxygen 24 mT (Fig. 2a).
Quantum chemical calculations of the energy of electron exchange interaction of different biradical conformations and the dependencies of signs and values of J on the dihedral angles between orbitals of unpaired electrons have also been made in ref. [15]. The results of these calculations demonstrated that there are a lot of conformations that similar to the experimental ones have small values of energy of electron exchange interaction.

Below, we represent our results of the calculations of MFEs and their field dependencies in triads. In the extreme case of J2 = 0, the situation should reduce to the model of an isolated biradical. Indeed, as follows from Fig. 3, at J2 = 0, the calculations based on the method proposed provide the well-known result, i.e., a single recombination probability maximum on the field dependence in the field equal to J1, which corresponds to the intersection of S and T- terms of biradical. Assuming constant exchange interactions, the MFE extreme width is determined by the HFI constant.
For nonzero J2 values, we observe a more complex MFE pattern (Fig. 4). Introducing additional exchange interaction affects both the location and number of extremes in the MFE field dependence and the recombination probability far from the extreme point.
 Let us start our consideration with the analysis of probability recombination behavior.
The dependence of recombination probability far from the extreme point on the magnitude of J2 is shown in Fig. 5. It is seen from Fig. 5, that the recombination probability increases when passing the biradical state (J2 = 0) to the radical triad (J2 ≠ 0). This unambiguously corresponds to the phenomenon of spin catalysis. It is worth to note that unlike the triad model, with the exchange interaction between all radical centers [1], the phenomenon of spin catalysis in the present work was observed for the triad, where two radical centers do not interact with each other (J1-3 = 0).
Most unexpected is the existence of more than one extreme in the MFE field dependence in the triad (Fig. 4). For the calculation parameters used (J1 = -24 mT, J2 < 0), the main extreme location is in the range of algebraic sum of the triad exchange interactions. The position of additional weaker extremes can be hardly referred to any system parameter. Their existence is, probably, due to both the term structure that is more complex than that of an isolated biradical or the peculiarities often demonstrated by the one-nucleus model used in the calculation. Fig. 6 shows the dependence of term energy of one of the subensembles on external magnetic field. As follows from the figure, there are several critical points (the regions of term intersection), at which the transition efficiency is high. To exclude the assumption that the presence of a number of extremes is the peculiarity of the one-nucleus model, we modified the calculation scheme by introducing a semiclassical description of the hyperfine electron-nuclear interaction [
]. Similar to the model suggested by Shulten [17] for MFE description in a radical pair, the hyperfine interaction is defined by the classical vector of additional field Hloc with the value of the effective HFI constant in a biradical. The Hamiltonian, in this case, is of the form
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Fig. 7 shows the calculation results for such a modified system. The MFE field dependence contains a number of extremes. In this case, the location of the main one also corresponds to the sum of exchange interactions in the triad. A change in the value of local field causes a change only in the width of the extreme and has no effect on their position. Thus, we conclude that the existence of several extreme in the recombination probability field dependence has no relation to the peculiarities of the one-nucleus model and is determined by a more complex structure of triad terms and their dependence on magnetic field.
It is expected that the existence of exchange interaction distribution for conformational movements of a biradical will lead to the widening of extremes. However, the form of the field dependence even for the wide distribution over the exchange integral value should differ from the case of an isolated biradical where the system has only one exchange interaction.
Fig. 4 shows a series of the field dependences of the recombination probability of the triad with J1 = -24 mT, (the modelling of biradical-oxygen complex) at various J2. It is readily seen that in the case of negative J2, the main recombination probability extreme shifts to the high field and the secondary smaller extremes arise in lower fields. The main extreme is located in the region of the sum of constants J1 and J2. On the contrary, in the case of positive J2, the main extreme slightly shifts to the low field and the secondary smaller extremes arise in higher fields (Fig. 8). The plots indicate that the reasonable (as compared with experiment) J2 values are in the range of -30 mT. It is worth noting that for the positive J1, the case is quite opposite. In other words, the result is affected not by signs of individual exchange interactions integrals, but by the sign of their product.
According to the quantum chemical calculations made earlier [15], J1 in silica contained 1,6-biradicals depends strongly on the geometrical configuration of a biradical. Therefore, its value can considerably change due to formation of the complex with oxygen. Fig. 9 shows the field dependence of recombination probability of the triad, which models this complex, with various J1 at J2 = 26 mT. As J1 increases, the field dependence maximum shifts to the high field and the MFE magnitude increases. Fig. 10 and 11 demonstrate the dependence position of the MFE maximum of the field dependence and its magnitude on J1 for J2 = -26 mT. In addition, the MFE magnitude depends strongly on the value of J2 also (Fig. 10).
The case if J2 is assumed to be in the range of -25 – -30 mT, with the profile widening arising from some scattering in J1 around -20 – -30 mT, is getting close to the experimental situation (see fig.10 and fig.2). 
While the main of the peculiarity of the experimental field dependence of MFE detected in the presence of oxygen is its asymmetric shape [5] (Fig. 2). Indeed, according to ref. [5], in the presence of oxygen, the extreme location shifts to the high field by more than 20 mT and increasing recombination probability in the low field makes the contour asymmetric.

The analysis of the calculated field dependences for the radical triad: “biradical+oxygen” allows the assumption that the asymmetry might result from the manifestation of the family of extremes (Fig. 12) and represents the envelope of the main and secondary extrems. A comparison between experimental dependence and calculations results indicates that the electron exchange interactions between paramagnetic centers in this system are of the same sign (as a rule, in the pairs of neutral radicals, these are negative). As it was mentioned above the results of the previous quantum chemical calculations [15] indicated the possibility of the existence of a series of 1,6-biradical conformations with the low energies of exchange interactions. Therefore, we should not rule out the possibility that the experimental field dependence can also result from the averaging of individual field dependences for separate long-lived biradical conformations with different J. Therefore, additional experiments are necessary to confirm the important conclusion following from the above calculations about the possible manifestation of several extremes in the field dependence.
5. Conclusions
Thus, the model proposed for calculating MFEs in a radical triad shows that the influence of the “third” spin on spin evolution in a biradical can be described by consideration of the spin exchange of additional spin with one of paramagnetic biradical centers. This results in both an increase in recombination (spin catalysis) and MFE magnitude, and a change in the form of field dependence. In this case, the field dependence is the family of the extremes, in which, for the most typical case of negative exchange integrals, the position of the main peak corresponds to the algebraic sum of the constants of exchange interaction in the biradical (J1), one of its centers and the added spin (J2). The other extremes exhibit lower intensity. Their positions depend on the sign of exchange interactions between J1 and J2. There is demonstrated the application calculations results to the modelling of the experimental field dependencies.
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Figure 1. Possible structures of complex biradical–oxygen [15].
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Figure 2. MFE observed in the photolysis 7,7’-dimethylsilanorbornandiene solutions [5] a) deaerated solution, b) aerated solution.
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Figure 3. Dependence of calculated recombination probability in the frame of one-nuclear model for the system biradical – oxygen on magnetic field strength. J1= -24 mT., J2= 0 mT, a = 1  mT, g1 = 2.0025, g2 = 2.0031, g3 = 2,015, (с = 10-6 s, U0(с = 0.5, n = 100.
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Figure 4. Dependence of calculated recombination probability in the frame of one-nuclear model for the system biradical – oxygen on magnetic field strength. J1= -24 mT., J2 varied from 0 to -70 mT. Other parameters are the same as in Fig. 3.
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Figure 5. Dependence of calculated recombination probability in the frame of one-nuclear model for the system biradical – oxygen at H = 100 mT on J2 value. J1= -24 mT. Other parameters are the same as in Fig. 3.
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Figure 6. Structure of the terms of subensemble III (total spin projection Jz = 1). J1= -30 mT., J2= -26 mT, a = 5 mT. Other parameters are the same as in Fig. 3.
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Figure 7. Dependences of calculated recombination probability for the system biradical – oxygen on magnetic field strength. a) one-nuclear approach, b) semiclassical approach.
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Figure 8. Dependences of calculated recombination probability in the frame of one-nuclear model for system biradical – oxygen on magnetic field strength. J1= -24 mT, a) J2= 0 mT, b) J2= 30 mT, c) J2= -30 mT. Other parameters are the same as in Fig. 3.
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Figure 9. Dependences of calculated recombination probability in the frame of one-nuclear model for the system biradical – oxygen on magnetic field strength. J1 varied from 0 to -70 mT., J2= -26 mT. Other parameters are the same as in Fig. 3.
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Figure 10. Dependence of the extreme value of calculated MFE in the frame of one-nuclear model for the system biradical – oxygen on J1 value. J2= -26 mT. Other parameters are the same as in Fig. 3.
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Figure 11. Dependence of the main extreme location of calculated MFE in the frame of one-nuclear model for the system biradical – oxygen on J1 value. J2= -26 mT. Other parameters are the same as in Fig. 3.
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Figure 12. Calculated MFE in the frame of one-nuclear model for the system biradical – oxygen. J1= -26 mT., J2= -30 mT. Other parameters are the same as in Fig. 3.
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