Оптические спектры и кинетические характеристики радикалов, возникающих при фотолизе водных растворов комплекса FeOH_{a0}²⁺ и фенола

И. П. Поздняков,^а Ю. А. Соседова,⁶ В. Ф. Плюснин,^а* В. П. Гривин,^а Д. Ю. Воробьев,⁶ Н. М. Бажин^а

^аИнститут химической кинетики и горения Сибирского отделения Российской академии наук, Российская Федерация, 630090 Новосибирск, ул. Институтская, 3. Факс: (383 2) 34 2350. E-mail: plyusnin@ns.kinetics.nsc.ru ^бНовосибирский государственный университет, Российская Федерация, 630090 Новосибирск, ул. Пирогова, 2

Определена природа, оптические спектры и кинетические характеристики промежуточных короткоживущих радикалов, возникающих при фотолизе водных растворов комплекса FeOH_{aq}^{2+} с добавками фенола. Первичный радикал 'OH реагирует с фенолом с образованием *орто-* и *пара-*изомеров радикала $\text{Ph}(\text{OH})_2$ '. Радикал $\text{Ph}(\text{OH})_2$ ' элиминирует молекулу воды, генерируя феноксильный радикал PhO'. Последний исчезает при реакциях с комплексами Fe^{III} , рекомбинации и диспропорционировании. Определены конечные продукты фотохимических превращений, среди которых идентифицированы *о-*хинон и дифенохиноны.

Ключевые слова: фотохимия, водные растворы, комплексы железа, фенол, радикалы, лазерный импульсный фотолиз, оптические спектры, кинетика.

Фенол — широко используемое в химической промышленности сырье для синтеза пластмасс, лекарств, красителей, пестицидов, консервантов и поверхностно-активных веществ (ПАВ)¹. Его мировое производство превышает 6 млн. т в год². Активное использование фенола приводит к загрязнению окружающей среды. Концентрация фенолов в сточных водах может достигать величины 100 мкг • л⁻¹ ≈ 10^{-6} моль · л⁻¹.³ Фенол крайне токсичен (ПДК ≈ 1 мкг • $\pi^{-1} \approx 10^{-8}$ моль • π^{-14}), поэтому исследование механизмов его деградации в природной воде представляет значительный интерес с точки зрения экологии. Важную роль в удалении загрязняющих веществ из природных водных систем могут играть фотохимические процессы⁵⁻⁷. Особое внимание привлекают фотопроцессы с участием гидроксокомплексов Fe^{III}, при фотолизе которых образуется радикал •ОН — одна из активнейших частиц в химии, способная окислять практически все растворенные в воде органические примеси, в том числе такие опасные, как производные фенольного ряда⁸⁻¹⁰. Концентрация ионов железа в природной воде может достигать величин ~10⁻³ моль · л⁻¹.^{11,12} В отсутствие координирующих органических лигандов гидроксокомплексы являются основными формами Fe^{III} в воде с pH < 5, и фотохимия данных комплексов может существенно влиять на баланс органических примесей^{6,13}.

Среди гидроксокомплексов Fe^{III} наибольшую фотохимическую активность проявляет комплекс $FeOH_{aq}^{2+}$, при возбуждении которого происходит генерация радикала 'OH с высоким квантовым

выходом ($\varphi = 0.2$, $\lambda = 308$ нм)^{14,15}. Энергия активации формирования радикала 'ОН всего ~10 кДж·моль⁻¹,¹⁵ что дает возможность объяснить его появление фотопереносом электрона на ион Fe^{III} как с внутрисферного гидроксид-иона (реакция (1)), так и с внешнесферной молекулы воды (реакция (2))¹⁵.

$$[FeOH_{aq}^{2+}] \xrightarrow{h_{v}} [Fe_{aq}^{2+}... OH] \longrightarrow$$

$$\longrightarrow Fe_{aq}^{2+} + OH \qquad (1)$$

$$[FeOH_{aq}^{2+}]...H_{2}O \xrightarrow{h_{V}} [FeOH_{aq}^{+}]...OH + H^{+} \longrightarrow$$
$$\longrightarrow Fe_{aq}^{2+} + OH \qquad (2)$$

Появление радикала 'ОН при возбуждении комплекса FeOH_{aq}²⁺ подтверждено в ряде работ по стационарному^{6,7,14} и импульсному фотолизу^{10,15,16} с использованием акцепторов радикала 'ОН. В литературе предложено по крайней мере три механизма фотоиндуцированной комплексом FeOH_{aq}²⁺ деградации фенола и его производных, которые включают реакции (3)—(9).

$$FeOH_{aq}^{2+} \xrightarrow{hv} Fe_{aq}^{2+} + OH$$
(3)

<u>Механизм 1 (М1)</u>

$$OH + PhOH \longrightarrow Ph(OH)_2$$
 (4)

$$Ph(OH)_2$$
 \rightarrow $PhO' + H_2O$ (5)

^{© 2004 «}Известия Академии наук. Серия химическая», Российская академия наук, Отделение химии и наук о материалах Российской академии наук, Институт органической химии им. Н. Д. Зелинского Российской академии наук

Механизм 2 (М2)

$$^{\circ}\text{OH} + \text{C}_{6}\text{H}_{4}(\text{Cl})\text{OH} \longrightarrow \text{C}_{6}\text{H}_{4}(\text{Cl})\text{O}^{\circ} + \text{H}_{2}\text{O}$$
(7)

$$[FeOH_{aq}^{2+}]^* + (C_8H_{17})C_6H_4OH$$

$$\longrightarrow [FeOH_{aq}^{2+}(C_8H_{17})C_6H_4OH]^* \longrightarrow Fe_{aq}^{2+} + (C_8H_{17})C_6H_4O^{-1}$$
(8)

$$OH + (C_8H_{17}C_6H_4OH \longrightarrow (C_8H_{17})C_6H_4(OH)_2$$
 (9)

Механизм М1 предложен исследователями¹⁶, которые наблюдали генерирование радикала PhO[•] при фотолизе FeOH_{aq}²⁺ в присутствии фенола. Время образования и выход радикала PhO[•] не зависят от начальной концентрации фенола в широком диапазоне $(10^{-4}-10^{-2} \text{ моль} \cdot \pi^{-1})$. Аналогично опубликованной ранее работе¹⁷ по изучению импульсного радиолиза водных растворов фенола было высказано¹⁶ предположение, что в реакции радикала [•]OH с фенолом генерируется радикал Ph(OH)₂[•], который, однако, в этой работе не зарегистрирован.

При исследовании¹⁰ фотолиза FeOH_{aq}²⁺ в присутствии 4-хлорфенола (4-ClC₆H₄OH) обнаружено образование двух интермедиатов, суммарный квантовый выход которых ($\varphi = 0.071$, $\lambda = 355$ нм) совпадает с квантовым выходом образования радикала [•]OH ($\varphi = 0.075$, $\lambda = 360$ нм)¹⁴. Это совпадение и данные¹⁸ по импульсному радиолизу водных растворов 4-ClC₆H₄OH позволили предположить¹⁰ одновременное образование радикалов C₆H₄Cl(OH)₂[•] ($\varphi = 0.056$) и C₆H₄Cl(O[•]) ($\varphi = 0.015$) в реакции радикала [•]OH с 4-ClC₆H₄OH (механизм M2, реакции (6) и (7)).

Изучена⁸ фотохимия FeOH_{aq}²⁺ в присутствии 4-октилфенола (OP) в водно-ацетонитрильных растворах. Большая концентрация ацетонитрила (~2 моль· π^{-1}) и достаточно высокая (2.2·10⁷ π ·моль⁻¹·c⁻¹⁹) константа скорости реакции

$$^{\circ}OH + MeCN \longrightarrow H_2O + ^{\circ}CH_2CN$$
(10)

позволили предположить⁸, что радикал 'ОН полностью исчезает при данном взаимодействии. Однако при импульсном фотолизе комплекса FeOH_{aq}²⁺ в этих условиях зарегистрировано формирование поглощения ($\lambda = 415$ нм) 4-октилфеноксильного радикала ((C_8H_{17}) C_6H_4O = • OPR). Наблюдаемая константа скорости этого процесса ($k_{app} = 1.5 \cdot 10^6 \text{ c}^{-1}$) не зависит от концентрации ОР, поэтому сделан вывод о неучастии радикала · CH₂CN в реакции генерации радикала 'OPR. Высказана гипотеза⁸, что происходит образование внешнесферной пары возбужденный комплекс-молекула ОР с последующим переносом электрона (механизм М3, реакция (8)). Это предположение вызывает сомнения, так как пикосекундные измерения продемонстрировали короткое временя жизни (τ ≈ 55 пс) возбужденного комплекса

FeOH_{aq}²⁺.²⁰ При использованной в работе⁸ концентрации OP ~10⁻³ моль $\cdot n^{-1}$ доля возбужденных комплексов, содержащих молекулу OP во второй координационной сфере, не будет превышать 0.1%.

Отсутствие зависимости времени образования OPR от концентрации OP может быть объяснено в рамках механизма М1. Анализ показывает, что при константе скорости реакции $k(\cdot OH + OP) \approx 5 \cdot 10^9$ л • моль⁻¹ • c^{-1} и [OP] ≈ 10^{-3} моль • π^{-1} около 10% радикала 'ОН может исчезать в реакции с ОР. Действительно, после лазерного импульса наблюдается⁸ рост поглощения при 350 нм со скоростью, в 3 раза большей скорости образования 'OPR ($\lambda = 415$ нм). Из работ по импульсному радиолизу известно^{17,18,21}, что в области 300-350 нм поглощают аддукты присоединения радикала 'ОН к фенолам. Таким образом, поглощение при 350 нм может быть связано с образованием радикала (C₈H₁₇)C₆H₄(OH)₂, который при потере молекулы воды может приводить к радикалу • OPR. В этом случае скорость образования • OPR не будет зависеть от концентрации ОР.

Таким образом, вопрос о механизме реакций, протекающих при фотолизе $FeOH_{aq}^{2+}$ в присутствии фенола и его производных, остается открытым. В данной работе исследована фотохимия водных растворов комплекса $FeOH_{aq}^{2+}$ в присутствии фенола методами лазерного импульсного фотолиза, оптической спектроскопии и ВЭЖХ. Главной целью являлось определение природы реакций, спектроскопических и кинетических параметров промежуточных частиц.

Экспериментальная часть

В работе использовали установку лазерного импульсного фотолиза с эксимерным XeCl-лазером (308 нм) с длительностью импульса 15 нс и средней энергией импульса 20 мДж²². Все измерения проводили в кювете с оптической толщиной 1 см. Для стационарного фотолиза применяли излучение XeCl-лазера или ртутной лампы (ДРШ-500) с набором стеклянных фильтров для выделения отдельных линий. Электронные спектры поглощения регистрировали с помощью спектрофотометра «Hewlett Packard HP 8453». Для анализа конечных продуктов фотохимических реакций использовали хроматограф ВЭЖХ «Spectra Physics SP8800-20» с УФ-детектором (220 нм). При численном моделировании кинетических кривых для решения системы дифференциальных уравнений применяли специально разработанную программу.

Эксперименты проводили в обескислороженных водных растворах с pH \approx 3. Для удаления кислорода растворы продували 20 мин азотом или аргоном. При pH \approx 3 ~85% ионов Fe^{III} существуют в виде комплекса FeOH_{aq}²⁺ и 15% — в виде Fe_{aq}³⁺.¹⁴ Коэффициент экстинкции при 308 нм для FeOH_{aq}²⁺ (1880 л · моль⁻¹ · см⁻¹) намного выше, чем для FeOH_{aq}²⁺ (1880 л · моль⁻¹ · см⁻¹) намного выше, чем для Fe_{aq}³⁺ (64 л · моль⁻¹ · см⁻¹) намного выше, чем для Fe_{aq}³⁺ (64 л · моль⁻¹ · см⁻¹) поэтому основной поглощающей и фотоактивной частицей был комплекс FeOH_{aq}²⁺ (стандартная концентрация 4 · 10⁻⁴ моль · л⁻¹). Для приготовления растворов использовали соль Fe(ClO₄)₃ · H₂O («Aldrich») и дважды дистиллированную воду. Фенол («Aldrich») и использовали без дополнительной очистки. Его водные растворы не поглощают при 308 нм и устойчивы к воздействию лазерного излучения.

Обсуждение полученных результатов

Лазерный импульсный фотолиз растворов FeOH_{aq}²⁺ с добавками фенола. Импульсное фотовозбуждение водных растворов FeOH_{aq}²⁺ приводит к исчезновению поглощения этого комплекса, без появления сигналов промежуточного поглощения. В водных растворах $FeOH_{aq}^{2+}$, содержащих фенол, после лазерного импульса появляется промежуточное поглощение, кинетика изменения которого при 335 и 400 нм для случая небольшой концентрации фенола (3.4 · 10⁻⁵ моль \cdot л⁻¹) показана на рисунке 1. После лазерного импульса при 335 нм возникает просветление, связанное с исчезновением поглощения FeOH_{aq}²⁺ (для сравнения там же представлена кинетика при нулевой концентрации фенола). Коэффициент экстинкции для FeOH_{aq}²⁺ при 335 нм равен $1085 \,\mathrm{л} \cdot \mathrm{моль}^{-1} \cdot \mathrm{см}^{-1}$. Через ~2 мкс при этой длине волны формируется новое поглощение, которое начинает исчезать через 3 мкс. Просветление при 400 нм не может быть зарегистрировано, так как для FeOH_{aq}²⁺ $\varepsilon^{400} = 85 \, \text{л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$. Промежуточное поглощение при этой длине волны начинает возрастать от нулевого значения и проходит через максимум в районе 20 мкс при данной концентрации фенола (см. рис. 1).

Повышение концентрации фенола приводит к ускорению процессов формирования промежуточного поглощения. Кинетические кривые при тех же длинах волн при более высокой концентрации фенола

Рис. 1. Кинетические кривые изменения поглощения (ΔA) при импульсном фотолизе растворов FeOH_{aq}²⁺: *1*, *2* – длина волны регистрации 400 и 335 нм соответственно, [PhOH] = 4.5 · 10⁻⁵ моль · л⁻¹; *3* – 335 нм, [PhOH] = 0 моль · л⁻¹. Гладкие кривые – расчет по схеме реакций (18)–(26) с параметрами, указанными в таблицах 1 и 2.

Рис. 2. Кинетические кривые изменения поглошения (ΔA) при импульсном фотолизе растворов FeOH_{aq}²⁺ с разными (*a*, *b*) временными развертками: *1*, 2 — длина волны регистрации 400 и 335 нм соответственно, [PhOH] = $1.1 \cdot 10^{-3}$ моль· π^{-1} ; 3 — 335 нм, [PhOH] = 0 моль· π^{-1} . Гладкие кривые — расчет по схеме реакций (18)—(26) с параметрами, указанными в таблицах 1 и 2.

 $(1.1 \cdot 10^{-3} \text{ моль} \cdot n^{-1})$ представлены на рисунке 2. В данном случае поглощение при 335 нм появляется за время <50 нс, и можно зарегистрировать только его исчезновение. На временной развертке в 400 мкс хорошо видно, что это поглощение уменьшается в два этапа с существенно отличающимися скоростями. Время формирования поглощения при 400 нм также уменьшается с ростом содержания фенола, но в значительно меньшей степени. Даже при высокой концентрации фенола время появления составляет еще несколько микросекунд. Поглощение при 400 нм продолжает нарастать даже в то время, когда при 335 нм оптическая плотность уже уменьшается.

Изменение промежуточных спектров во времени показано на рисунке 3. При построении этих спектров учтено первоначальное просветление в области полосы поглощения комплекса FeOH_{aq}^{2+} . При концентрации фенола $5.9 \cdot 10^{-5}$ моль $\cdot n^{-1}$ за 0.8 мкс формируется полоса с максимумом при 335 нм и две более слабые полосы при 380 и 400 нм. С течением времени интенсивность двух последних полос синхронно увеличивается и через ~15 мкс достигает максимума. Значительно позже поглощение при этих длинах волн уменьшается до нуля, а в области 335 нм формируется просветление, связанное с исчезновением поглощения комплекса FeOH $_{aq}^{2+}$.

Рис. 3. Спектры промежуточного поглощения (*A*) при импульсном фотолизе раствора комплекса $\operatorname{FeOH}_{\mathrm{aq}}^{2+}$ в присутствии фенола ($5.9 \cdot 10^{-5}$ моль · π^{-1}): *1*, 2 — спектры через 0.8 и 2.4 мкс после лазерного импульса; 3, 4 — опубликованные ранее спектры радикалов $\operatorname{Ph}(OH)_2$ · ¹⁷ и PhO · ²⁶ соответственно.

Из работ по импульсному радиолизу известно²¹, что при реакции радикала 'OH с ароматическими молекулами (ArH) образуется преимущественно соответствующий гидроксициклогексадиенильный радикал (Ar('OH)H). Максимум поглощения большинства аддуктов присоединения радикала 'OH к производным бензола проявляется в области $310-350 \text{ нм}^{17,18,21}$ (320-330 нм для радикала Ph(OH)₂ · 17,21). Эти данные позволяют предположить, что первичная промежуточная полоса поглощения с максимумом при 335 нм отвечает радикалу Ph(OH)₂ · , спектр которого представлен на рисунке 3 (см. лит.¹⁷).

Радикал Ph(OH)₂ · элиминирует молекулу воды с образованием вторичного феноксильного радикала PhO', причем данный процесс ускоряется в присутствии кислот и щелочей 17,24. Феноксильный радикал обладает характерным спектром с двумя полосами поглощения, имеющими максимумы при 380 и 400 нм. Впервые оптический спектр этой частицы зарегистрирован при изучении²⁵ импульсного фотолиза водных растворов фенола. В дальнейшем получены спектры замещенных феноксильных радикалов, содержащие полосы поглощения в районе 370-430 нм, которые по форме и положению близки к полосам в спектре незамещенного феноксильного радикала^{18,26-28}. Спектр радикала PhO^{•26} (см. рис. 3, спектр 4) хорошо согласуется с полученным нами спектром. Таким образом, данные лазерного импульсного фотолиза свидетельствуют о последовательном образовании радикалов Ph(OH)2 · и PhO · при возбуждении комплекса FeOH_{aq}²⁺ в присутствии фенола.

Механизм образования и реакции радикала $Ph(OH)_2$. Радикал 'OH может присоединяться по двойной связи к молекуле фенола в четыре возможных положения. При γ -радиолизе водных растворов фенола зафиксировано преимущественное образование *орто-* и *пара*-изомеров радикала $Ph(OH)_2$. (соответственно 48 и 36% от числа исчезнувших молекул фенола)^{10,24}. В кислой среде (pH 3—4) основным каналом гибели этих изомеров является кислотно-катализируемая реакция элиминирования молекулы воды с образованием феноксильного радикала²⁴:

$$p-Ph(OH)_{2} \cdot H^{+} \longrightarrow PhO^{\cdot} + H_{2}O + H^{+}$$

$$(k_{11} \approx 10^{9} \, \pi \cdot \text{MOR}^{-1} \cdot c^{-1}). \qquad (11)$$

$$p-Ph(OH)_{1} \cdot H^{+} \longrightarrow PhO^{\cdot} + H_{1}O + H^{+}$$

$$p$$
-Ph(OH)₂[•] + H⁺ \longrightarrow PhO[•] + H₂O + H⁺
($k_{12} \approx 10^9 \, \mathbf{n} \cdot \mathbf{м}$ оль⁻¹·c⁻¹). (12)

Существование двух временных интервалов со значительно отличающимися скоростями исчезновения полосы поглощения при 335 нм также указывает на образование двух изомеров радикала $Ph(OH)_2^{\bullet}$. Это хорошо видно при больших концентрациях фенола (~10⁻³ моль·л⁻¹) и на временной развертке 400 мкс (см. рис. 2, *b*). Помимо реакций (11) и (12) дополнительными каналами исчезновения первичного радикала $Ph(OH)_2^{\bullet}$ могут являться процессы диспропорционирования

$$2 \text{ Ph(OH)}_2$$
 \longrightarrow PhOH + C₆H₄(OH)₂ + H₂O, (13)

$$Ph(OH)_2$$
 + PhO \longrightarrow $C_6H_4(OH)_2$ + $PhOH$ (14)

и реакция

$$\mathsf{Ph}(\mathsf{OH})_2^{\,\cdot} + \mathsf{Fe}^{\mathrm{III}} \longrightarrow \mathsf{Fe}^{\mathrm{II}} + \mathsf{C}_6 \mathsf{H}_4 (\mathsf{OH})_2 + \mathsf{H}^+. \tag{15}$$

Для радикала $C_6H_4(Cl)(OH)_2$ · константа скорости исчезновения в реакции второго порядка $k_{13} = 3 \cdot 10^8$ л.моль-1.с-1.29 Если предположить, что эти константы для радикалов $Ph(OH)_2$ и $C_6H_4(Cl)(OH)_2$ близки, то наблюдаемая константа скорости исчезновения радикала $Ph(OH)_2$ в реакции (13) ($k_{app} =$ k_{13} [Ph(OH)₂·]₀ ~ 6·10³ c⁻¹) будет намного меньше наблюдаемых констант скорости реакций (11) и (12) при pH = 3 ($k_{app} = k_{11}$ [H⁺] $\approx 10^5$ c⁻¹, $k_{app} = k_{12}$ [H⁺] $\approx 10^6$ c⁻¹). Варьирование начальной концентрации Fe^{III} практически не влияет на скорость исчезновения радикала Ph(OH)2[•], что свидетельствует о небольшой константе скорости реакции (15). В то же время реакция (14) может играть существенную роль в исчезновении радикала Ph(OH)2. 18,30 из-за высокого редокс-потенциала феноксильного радикала $(E_0(PhO', H^+/PhOH) = 1.33 B)^{31}$, и ее вклад будет рассмотрен ниже.

Механизм образования и реакции радикала PhO[•]. Наблюдаемая константа скорости образования поглощения феноксильного радикала (при $\lambda = 400$ нм) нелинейно растет с увеличением концентрации фенола и достигает стационарного значения при концентрации выше 10^{-3} моль $\cdot n^{-1}$ (в этой области $k_{\rm app} \approx 10^6$ с⁻¹ (рис. 4)). Данные результаты исключают возможность

Рис. 4. Зависимость наблюдаемой константы скорости образования поглощения радикала PhO[•] (400 нм) от начальной концентрации фенола. Гладкая кривая — аппроксимация экспериментальных данных по формуле (16).

образования феноксильного радикала по механизму M3, так как в этом случае k_{app} должна определяться временем жизни возбужденного комплекса [FeOH_{aq}²⁺...PhOH]* и не может зависеть от концентрации фенола. Нелинейная зависимость k_{app} от концентрации фенола делает также маловероятной реализацию механизма M2. Верхняя оценка бимолекулярной константы скорости реакции отрыва радикалом 'OH атома H от молекулы фенола (k_{bim}), полученная с использованием величины k_{app} , дает значение $k_{bim} = k_{app}/[PhOH] \le 10^9 \, л \cdot моль^{-1} \cdot c^{-1}$. Константа скорости реакции присоединения радикала 'OH к молекуле фенола на порядок больше^{17,26,32}, поэтому отрыв не может давать существенного вклада в образование радикала PhO'.

Можно отметить, что полученные экспериментальные данные хорошо объясняются в рамках механизма М1. Анализ показывает, что зависимость наблюдаемой константы скорости появления радикала PhO[•] от концентрации фенола в приближении реакций псевдопервого порядка ([PhOH], [H⁺] >> >> [Ph(OH)₂[•]], [PhO[•]]) определяется выражением

$$k_{\rm app} = \frac{k_{\rm m} k_{\rm bim} [\rm PhOH]}{k_{\rm m} - k_{\rm bim} [\rm PhOH]} \ln \frac{k_{\rm m}}{k_{\rm bim} [\rm PhOH]},$$
(16)

где $k_{\rm bim}$ — константа скорости реакции присоединения радикала 'ОН к молекуле фенола, $k_{\rm m}$ псевдомономолекулярная константа реакции Ph(OH)₂' \rightarrow PhO' (при данной концентрации H⁺). При небольших концентрациях фенола ($k_{\rm bim}$ [PhOH] $\ll k_{\rm m}$) наблюдается зависимость $k_{\rm app} \sim$ [PhOH], близкая к линейной. В этом случае скорость появления PhO' лимитируется скоростью формирования первичного радикала Ph(OH)₂'. В противном случае ($k_{\rm bim}$ [PhOH] $\gg k_{\rm m}$) лимитирующей является скорость распада Ph(OH)₂, и рост $k_{\rm app}$ с увеличением концентрации фенола существенно замедляется. Сплошной линией на рисунке 4 показана удовлетворительная аппроксимация экспериментальных данных по формуле (16) с величинами $k_{\rm bim} \approx$ $6.7 \cdot 10^9 \, {\rm J} \cdot {\rm мonb}^{-1} \cdot {\rm c}^{-1}$ и $k_{\rm m} \approx 3.6 \cdot 10^5 \, {\rm c}^{-1}$. Эти параметры хорошо согласуются с результатами точных расчетов кинетических кривых в рамках предложенной кинетической схемы.

Для определения природы реакций, в которых исчезает вторичный феноксильный радикал PhO[•], можно с использованием кинетики исчезновения поглощения этого радикала (400 нм) определить зависимость k_{app} от амплитуды сигнала (варьирование интенсивности лазерного импульса), от концентрации фенола и иона Fe^{III}. Как показано на рисунке 5, *a*, зависимость $k_{app} \sim \Delta A(400 \text{ нм})$ имеет линейный характер с ненулевым отсечением на оси ординат. Это отсечение увеличивается при увеличении концентрации Fe^{III} (рис. 5, *b*). Наблюдаемая константа скорости исчезновения радикала PhO[•] не зависит от концентрации фенола.

Полученные данные показывают, что радикал PhO[•] исчезает в реакции второго порядка и в реакции с комплексами Fe^{III}. Угол наклона прямых на рисунке 5, *а* позволяет для реакции второго порядка определить величину $2k/\varepsilon = 3.3 \cdot 10^5$ см·с⁻¹ (k — константа скорости реакции второго порядка, ε — коэффициент экстинкции полосы поглощения радикала

Рис. 5. Зависимость наблюдаемой константы скорости исчезновения поглощения радикала PhO[•] (400 нм) от амплитуды сигнала (*a*) при [Fe^{III}]·10⁴ = 1.6 (*I*), 3.5 (*2*), 5.7 моль· π^{-1} (*3*) и зависимость отсечения на оси ординат на графике *a* от концентрации Fe^{III}(*b*).

PhO[•] при 400 нм). Наклон прямой на рисунке 5, *b*, определяет константу скорости реакции PhO[•] с комплексами Fe^{III} ($k = 1.2 \cdot 10^7 \, \text{л} \cdot \text{моль}^{-1} \cdot \text{c}^{-1}$).

Кинетическая схема реакций. На основе результатов проведенного исследования можно предложить следующую схему реакций при фотолизе FeOH_{aq}^{2+} в присутствии фенола:

$$\mathsf{FeOH}_{\mathsf{aq}}^{2+} \xrightarrow{h_{\mathsf{V}}} \mathsf{Fe}_{\mathsf{aq}}^{2+} + \mathsf{OH}, \tag{17}$$

 $^{\circ}OH + ^{\circ}OH \longrightarrow H_2O_2, \qquad (18)$

$$OH + PhOH \longrightarrow o-Ph(OH)_2$$
, (19)

$$OH + PhOH \longrightarrow p-Ph(OH)_{2},$$
 (20)

$$o-Ph(OH)_2^{\cdot} + H^+ \longrightarrow PhO^{\cdot} + H_2O + H^+, \qquad (21)$$

$$p$$
-Ph(OH)₂[•] + H⁺ \longrightarrow PhO[•] + H₂O + H⁺, (22)

$$o-Ph(OH)_2$$
 + PhO · \longrightarrow $o-C_6H_4(OH)_2$ + PhOH, (23)

$$p$$
-Ph(OH)₂⁺ + PhO⁺ $\longrightarrow p$ -C₆H₄(OH)₂ + PhOH, (24)

 $PhO' + Fe^{III} \longrightarrow Fe^{II} + P,$ (25)

$$2 \text{ PhO}^{\cdot} \longrightarrow \text{C}_{12}\text{H}_8(\text{OH})_2. \tag{26}$$

Пары реакций (19), (20) и (21), (22) соответствуют процессам с участием *орто-* и *пара-*изомеров радикала Ph(OH)₂[•].

В рамках схемы реакций (17)-(26) проведен расчет кинетических кривых численным решением дифференциальных уравнений методом Рунге-Кутта четвертого порядка. Одновременно рассчитывали и подгоняли под экспериментальные кинетические кривые при 335 и 400 нм. В качестве фиксированных параметров использовали начальную концентрацию радикала 'ОН (определяли по величине просветления при 335 нм для растворов FeOH_{aq}²⁺ без фенола), коэффициент экстинкции комплекса FeOH_{aq}²⁺ при 335 нм и константы скорости реакций (18)—(22), (25). Варьировали коэффициенты экстинкции радикалов Ph(OH)₂[•] (335 нм) и PhO[•] (400 нм), константы скорости реакций (23), (24), (26) и коэффициент экстинкции при 335 нм продукта Р, образующегося в реакции (25).

Наилучшее согласие экспериментальных и расчетных кинетических кривых достигнуто при использовании близких к литературным данным величин коэффициентов экстинкции радикалов o-Ph(OH)2, $p-Ph(OH)_2$ и PhO' (табл. 1). Значение константы скорости реакции радикала 'ОН с фенолом, полученное в радиационно-химических экспериментах (1.4 · 10¹⁰ л.моль $^{-1} \cdot c^{-1} \cdot 1^{7}$), было поделено между изомерами. Для реакций распада изомеров радикала Ph(OH)₂. константы скорости совпали с литературными значениями (табл. 2). Как видно из рисунков 1 и 2, расчетные кривые хорошо соответствуют экспериментальным кинетическим кривым в широком диапазоне концентрацией фенола. Это согласие подтверждает адекватность описания фотохимических превращений в системе Fe^{III}-фенол в рамках механизма M1.

Таблица 1. Коэффициенты экстинкции (ε) полос поглощения промежуточных частиц, использованные при расчете кинетических кривых

Частица	λ/нм	$\epsilon \cdot 10^{-3}$ /л · моль ⁻¹ · см ⁻¹		Ссылка
		Расчет	Лит. данные	
$p-Ph(OH)_2$	335	3.1±0.3*	$4.4 {\pm} 0.8$	17
$o-Ph(OH)_2$.	335	3.7±0.9*	4.4 ± 0.8	17
PhO'	400	2.1 ± 0.3	2.2 ± 0.2	17, 26
P**	335	2.0 ± 0.6	_	

* $\varepsilon^{335} = (k_{19}\varepsilon_o^{335} + k_{20}\varepsilon_p^{335})/(k_{19} + k_{20}) = (3.4\pm0.7)\cdot10^3$ л·моль⁻¹·см⁻¹. ** Р — продукт, образующийся в реакции (25).

Таблица 2. Константы скорости реакций (*k*), использованные при расчете кинетических кривых

Реакция	$k \cdot 10^{-9}$	Ссылка	
	Расчет	Лит. данные	
18	5.5*	5.5	19
19	8*	14**	17, 32
20	6*	14**	17, 32
21	1*	1	24
22	0.1*	0.1	24
23, 24	$2.9{\pm}0.6$	_	
25	0.012*	_	
26	$0.49 {\pm} 0.17$	0.30	26
		0.79	33
		0.54	34

* Фиксированный параметр. ** $k = k_{19} + k_{20}$.

Конечные продукты реакций радикалов. Независимо от природы феноксильных радикалов и способа генерации (стационарный фотолиз³⁵, импульсный радиолиз в присутствии азида³⁶, фотохимическое²⁷ и ферментативное³⁷ окисление) в отсутствие сильных окислителей они исчезают при рекомбинации с образованием димерных продуктов (преимущественно дигидроксибифенилов). Конечными продуктами реакций (13) и (14) радикала Ph(OH)₂ • являются дигидроксибензолы — катехол и гидрохинон^{18,30,38–41}.

В присутствии окислителей (кислород, ионы переходных металлов) происходит окисление как радикалов Ph(OH)₂[•] и PhO[•], так и продуктов их взаимодействия (дигидроксибифенилов и дигидроксибензолов) до соответствующих хинонов и продуктов раскрытия цикла^{27,38,42–47}.

Для определения конечных продуктов фотодеградации фенола в присутствии FeOH_{aq}^{2+} проводили стационарный фотолиз (308 нм) водных растворов комплекса с добавками фенола с последующим спектрофотометрическим и хроматографическим анализом. Обнаружено, что после прекращения облучения происходит медленное образование новой полосы поглощения в области 400 нм (рис. 6, *a*). Скорость ее возникновения зависит от начальной концентрации ионов Fe^{III} (рис. 6, *b*). Коэффициент экстинкции этой полосы значительно превышает коэффициент погло-

Рис. 6. *а.* Изменение оптического спектра (k_{ins}) раствора комплекса FeOH_{aq}²⁺ в присутствии фенола ($1.07 \cdot 10^{-3}$ моль· π^{-1}) после облучения (XeCl-лазер, 308 нм, 600 мДж за 15 с, объем раствора 3 мл: спектр до облучения (I), через 4 (2), 9 (3), 15 (4) и 50 мин (5) после облучения. *b.* Зависимость k_{app} появления новой полосы поглощения при 400 нм от концентрации Fe^{III}.

щения полосы FeOH_{aq}^{2+} (300 нм), так как при увеличении оптической плотности при 400 нм поглощение при 300 нм изменяется мало.

Известно^{42,44}, что дифенохиноны характеризуются полосой поглощения с максимумом в области 400 нм с коэффициентами экстинкции ~ 10^4-10^5 л·моль⁻¹·см⁻¹ ($\epsilon^{418} = 9.0 \cdot 10^4$ л·моль⁻¹·см⁻¹ для 3,3',5,5'-тетраметилдифенохинона⁴⁴). Таким образом, полоса при 400 нм может быть связана с образованием дифенохинонов по реакции окисления дигидроксибифенилов (продукты рекомбинации двух феноксильных радикалов) ионами Fe^{III}. Это предположение согласуется с результатами хроматографического анализа облученных растворов (рис. 7). Самую высокую интенсивность имеют пики 3, 4 с большим временем выхода, которые могут быть отнесены к изомерным дифенохинонам.

Образующиеся в реакциях (23) и (24) дигидроксибензолы (катехол и гидрохинон) способны легко окисляться в соответствующие хиноны^{42—47}. Время выхода пика *1* совпадает с временем выхода *о*-хинона, полученного химическим окислением катехола ионами Fe^{III}. В рамках предложенной выше схемы реакций был проведен численный расчет выхода гидрохинона и катехола по реакциям (23) и (24) с использованием указанных в таблице 2 величин кон-

Рис. 7. Хроматограмма продуктов фотолиза водных растворов комплекса FeOH_{aq}²⁺ в присутствии фенола ($1.4 \cdot 10^{-3}$ моль· π^{-1}): *1* — *о*-хинон, *2* — фенол, *3* и *4* — димерные продукты (дифенохиноны). Фотолиз (XeCl-лазер, 308 нм, 4 Дж за 100 с, объем 3 мл) с последующей экстракцией CH₂Cl₂, отгонкой экстрагента и растворением сухого остатка в этаноле. Колонка 4×150 мм, Lichrospher RP-18, 5 мкм, УФ-детектор (220 нм); растворители: *А* — вода, *B* — ацетонитрил, градиент — линейный: 0 мин — 0% *B*, 20 мин — 85% *B*; скорость потока 1.0 мл·мин⁻¹.

стант скорости реакций (18)—(26). Эти расчеты показали, что лишь незначительное количество *орто-* и *пара*-изомеров радикала $Ph(OH)_2$ (~10 и 1% соответственно) могут принимать участие в реакциях (23) и (24). Небольшой выход гидрохинона в реакции (23) объясняет отсутствие пика *n*-хинона при хроматографии.

Таким образом, проведены прецизионные измерения кинетики реакций радикалов, возникающих при фотолизе водных растворов FeOH_{aq}²⁺ и фенола. Зарегистрирован оптический спектр и кинетические параметры радикала Ph(OH)2, генерируемого при взаимодействии радикала 'ОН с фенолом. Полученные данные позволили предложить схему фотохимической деградации фенола. Показано, что происходит образование двух изомеров радикала Ph(OH)2, которые трансформируются в феноксильный радикал PhO' с отщеплением молекулы воды. На основе сопоставления расчетных и экспериментальных кинетических кривых определены коэффициенты экстинкции и константы скорости реакций радикальных частиц. Среди конечных продуктов фотохимических превращений идентифицированы о-хинон и дифенохиноны.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 02-03-32797, № 03-03-33314 и № 03-03-39008ГФЕН) и Министерства образования Российской Федерации (программа «Университеты России», грант УР.05.01.002).

Список литературы

- 1. Г. Д. Харлампович, Ю. В. Чуркин, *Фенолы*, Химия, Москва, 1974, 328 с.
- 2. Г. И. Панов, А. С. Харитонов, *Рос. хим. журн.*, 2000, **44**, 7 [*Mendeleev Chem. J.*, 2000, **44** (Engl. Transl.)].
- 3. E. M. Thurman, *Organic Geochemistry of Natural Waters*, Martinus Nijhoff, Dr W. Junk Publisher, Kluwer Academic Publishers Group, Dordrecht—Boston—Lancaster, 1985, 610 pp.
- Предельно допустимые концентрации химических веществ в окружающей среде, под ред. Г. П. Беспамятнова, Ю. А. Кротова, Химия, Ленинград, 1985, 528 с.
- The Handbook of Environmental Chemistry, Ed. P. Boule, 2, Part L: Environmental Photochemistry, Springer, Berlin, 1999.
- 6. B. S. Faust and J. Hoigne, *Atmospheric Environment*, 1990, 24A, 79.
- 7. W. Feng and D. Nansheng, Chemosphere, 2000, 41, 1137.
- 8. N. Brand, G. Mailhot, M. Sarakha, and M. Bolte, J. Photochem. Photobiol. A: Chem., 2000, **135**, 221.
- N. Brand, G. Mailhot, and M. Bolte, *Environ. Sci. Technol.*, 1998, **32**, 2715.
- P. Mazellier, G. Mailhot, and M. Bolte, *New J. Chem.*, 1999, 23, 133.
- В. В. Добровольский, Основы биогеохимии, Высшая школа, Москва, 1998, с. 93.
- 12. А. И. Перельман, *Геохимия*, Высшая школа, Москва, 1989, с. 444.
- 13. Y. Zuo and J. Holdne, Environ. Sci. Technol., 1992, 26, 1014.
- 14. H. J. Benkelberg and P.Warnek, J. Phys. Chem., 1995, 99, 5214.
- I. P. Pozdnyakov, E. M. Glebov, V. F. Plyusnin, V. P. Grivin, Y. V. Ivanov, D. Y. Vorobyev, and N. M. Bazhin, *Pure Appl. Chem.*, 2000, **72**, 2187.
- 16. V. A. Nadtochenko and J. Kiwi, Inorg. Chem., 1998, 37, 5233.
- 17. E. J. Land and M. Ebert, Trans. Far. Soc., 1967, 63, 1181.
- U. Stafford, K. A. Gray, and P. V. Kamat, J. Phys. Chem., 1994, 98, 6343.
- 19. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513.
- 20. T. Okazaki, N. Hirota, and M. Terazima, J. Phys. Chem. A, 1997, 101, 650.
- 21. L. M. Dorfman, I. A. Taub, and R. E. Buhler, *J. Chem. Phys.*, 1962, **36**, 3051.

- V. P. Grivin, I. V. Khmelinski, V. F. Plyusnin, I. I. Blinov, and K. P. Balashev, *J. Photochem. Photobiol. A: Chem.*, 1990, 51, 167.
- 23. F. S. Dainton and D. G. L. James, *Trans. Faraday Soc.*, 1958, **54**, 649.
- 24. N. V. Raghavan and S. Steenken, J. Am. Chem. Soc., 1980, 102, 3495.
- 25. E. J. Land, G. Porter, and E. Strachan, *Trans. Faraday Soc.*, 1961, **57**, 1885.
- 26. R. J. Field, N. V. Raghavan, and J. G. Drummer, *J. Phys. Chem.*, 1982, **86**, 2443.
- 27. M. Sarakha, M. Bolte, and H. D. Burrows, J. Photochem. Photobiol. A: Chem., 1997, 107, 101.
- 28. G. Dobson and L. I. Grossweiner, *Trans. Faraday Soc.*, 1965, 61, 708.
- 29. N. Getoff and S. Solar, Radiat. Phys. Chem., 1988, 31, 121.
- S. Schmid, P. Krajnik, R. M. Quint, and S. Solar, *Radiat. Phys. Chem.*, 1997, **50**, 493.
- 31. P. Wardman, J. Phys. Chem. Ref. Data, 1989, 18, 1637.
- M. Roder, L. Wojnarovits, G. Foldiak, S. S. Emmi, G. Beggiato, and M. D'Angelantonio, *Radiat. Phys. Chem.*, 1999, 54, 475.
- 33. E. J. Land and G. Porter, Trans. Faraday Soc., 1963, 59, 2016.
- 34. L. I. Grossweiner and E. F. Zwicker, J. Chem. Phys., 1961, 34, 1411.
- 35. H.-J. Joschek and S. I. Miller, J. Am. Chem. Soc., 1966, 88, 3273.
- 36. M. Ye, R. H. Schuler, J. Phys. Chem., 1989, 93, 1898.
- 37. E. Laurenti, E. Ghibaudi, G. Todaro, and R. P. Ferrari, *J. Inorg. Biochem.*, 2002, **92**, 75.
- 38. J. Sikora, M. Pado, M. Tatarko, and M. Izakovic, J. Photochem. Photobiol. A: Chem., 1997, 110, 167.
- 39. J. Chen, L. Eberlein, and C. H. Langford, J. Photochem. Photobiol. A: Chem., 2002, 148, 183.
- 40. C. Liu, X. Ye, R. Zhan, and Y. Wu, J. Molecular Catalysis A: Chem., 1996, 112, 15.
- 41. G. Stein and J. Weiss, J. Chem. Soc., 1951, 3265.
- 42. Al-Ajlouni, A. Bakac, and J. H. Espenson, *Inorg. Chem.*, 1993, **32**, 5792.
- 43. H. Huang, D. Sommerfeld, B. C. Dunn, E. M. Eyering, and C. R. Lloyd, J. Phys. Chem., 2001, 105, 3536.
- 44. N. Kitajima, T. Koda, Y. Iwata, and Y. Moro-oka, J. Am. Chem. Soc., 1990, **112**, 8833.
- 45. A. Nemes and A. Bakac, Inorg. Chem., 2001, 40, 746.
- 46. R. Gupta and R. Mukherjee, *Tetrahedron Lett.*, 2000, **41**, 7763.
- 47. E. J. Land, J. Chem. Soc., Faraday Trans., 1993, 89, 803.

Поступила в редакцию 17 мая 2004