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Hyperfine sublevel correlation (HYSCORE) spectra of paramagnetic centers that have nuclei with nuclear
spinl = 1 and isotropic hyperfine interactions (HFIs) and arbitrary nuclear quadrupole interactions (NQIs)
are shown to consist of ridges that have zero width. A parametric presentation of these ridges is suggested
that shows the range of possible frequencies in the HYSCORE spectrum and aids in spectral assignments and
rapid estimation of spin Hamiltonian parameters. An alternative approach for the spectral density calculation
is presented. This methodology is based on spectral decomposition of the Hamiltonian and requires only the
eigenvalues. An atlas of HYSCORE spectra is given in the Supporting Information for this paper. This approach
is applied to the estimation of the spin Hamiltonian parameters of the oxovana@bDmA complex.

Introduction more-complex situation of nuclear spins> 1 that have
ignificant quadrupolar interactions, only numerical simulation
as been used for detailed analysis in noncrystalline safigdies.
Systems withl = 1 and significant quadrupolar coupling,
such ag“N and?H, are widespread and are important in biology,
chemistry, and materials science. This contribution is devoted
to the analysis of HYSCORE spectra foiSa= 1/, and|l = 1
system with arbitrary quadrupolar interaction and isotropic
nuclear hyperfine and Zeeman interactions. This treatment is
based on the exact solution of the= 1 spin Hamiltoniaf°
and its spectral presentation using the Caylelamilton
theoremt1.12

The pulsed electron paramagnetic resonance (EPR) techniqu(%
is widely used to investigate the structure of molecules that
contain paramagnetic centers (PCs) or labeled with appropriate
spin labels. The hyperfine interactions (HFIs) of unpaired
electrons with surrounding nuclei lead to the appearance of
guantum beats in the system response to microwave (mw)
pulses. In the case of electron spiecho (ESE), these beats
are called ESE envelope modulation (ESEEMhe frequency
spectrum of such modulations contains information about the
system Hamiltonian parameters and can be used to draw valid
conclusions about the structure of the system in question.

Several variations of the ESE technique are used to obtain
two-dimensional (2-D) modulation specfrdhe use of two
dimensions leads to better resolution and easier interpretation The HYSCORE Signal in the Case of Arbitrary Nuclear
of the data by separating overlapping lines and by correlating Spin. In an earlier papel3 we developed a recurrence relation
frequencies to aid spectral assignment. The most widely usedfor the echo signals as a function of the number of applied mw
2-D method is HYSCORE (HYperfine Sublevel COrRElation) pulses. Applying this to the four-pulse sequence (sequence 1),
spectroscopy.lt applies a four-pulse sequence to the system the following expression may be obtained for the time course

of the HYSCORE echo signal:

Theory

f4 4 4 N
(5)1 —T— (5)2 4= (@t — (5)4 —7—echo (1) vt)=A exploat)TrIN(—7 = t") x

{Kﬁ(_tz) Ka(—t)N() Ka(tl)Kﬁ(tZ) +
accompanied by phase cycling to remove additional unwanted Ra(—tz)Rﬂ(—tl)N(r)Rﬂ(tl)Ka(tz)}] (2)
echoes and free induction decay signals. The signal measured
is the stimulated echo signal produced by the action of pulsesHere, the trace is taken over nuclear spis an instrumental
1, 2, and 4, as a function of timés andt,. The third pulse echo amplitude scaling factow is the difference of the
causes an electron spin flip, which produces a correlation of resonance frequency of the PC in question and the frequency
the nuclear hyperfine frequencies from different electron spin of mw pulses, and the tim¢ is measured from the maximum

manifolds. In the simplest case of electron s@ir= %, and of the echo signalt{ =t — (t; + t, + 27)). The operator&n
nuclear spinl = %5, there is a straightforward graphical are nuclear subsystem propagators for each electron spin
algorithm that rapidly provides the hyperfine valdédn the manifold, wherem denotes the eigenstate 0r 3) throughout

this paper:
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in units of radians per second), in the laboratory frame, as In the case of nuclear spin= 1/, it was possible to construct

a vector model for ESEEM phenomelaUnfortunately, the

motion of I = 1 with finite quadrupolar coupling is more
4) ke » ; :

complex and not easily visualized. One must find the eigen-
) S system of the Hamiltonian (eq 4) to calculate nuclear propaga-
with @, a, and Q being the nuclear Zeeman frequency, the (45 \hether using the aforementioned outlined formalism or
hyperfine coupling constant, and the quadrupolar interaction he traditional approach of Mims. Although numerical solutions
tensor, respectively. The modulation operatds used in€q 2 of the eigensystem are commonly used, an analytical solution

~ N
S5 -5

a/\
Hlaw)=(w,j:§)lz+ o)

for compact presentation: was developed in a series of papers by M&HaThe eigen-
R(t) = K (—H)K () (5) vectors of the nuclear Hamiltonian allow calculation of the Mims
‘1 p matrix M, whose elements are used together with the eigenvalues

in conventional calculations of HYSCORE spect.

Here, we present an alternative approach that is based on the
Cayley—Hamilton theorem and on the spectral decomposition
of linear operators, where only the eigenvalues of the Hamil-
tonian are needed to calculate projection operators onto the
Hamiltonian eigenstatés!? for the calculation of HYSCORE

" >t R\ ? QAR ([ spectra. It is broadly applicable to other forms of coherent

V= TR tl)’\j(T)K‘*(t}) KﬁEtZ)N(A T)K/i( tZ)]A—l— spectroscopy and to HYSCORE spectra from any general
TR (—tN@KEK(LIN(—D)K (1] (6) nuclear spin Hamiltonian, although we explicitly consitler

) . A A P 1 with nuclear quadrupole interactions (NQIs), Zeeman inter-

Here, V' = V/A. The equality TriB) = Tr(BA) was used 0 acions, and isotropic HFIs. This approach results in highly

transform eq 2. The two terms on the right-hand side of eq 6 officient calculation of the spectra and provides considerable

are related to each other by an interchange of their |ndexes,msight into the form of HYSCORE spectra and their detailed

o= p. - ) interpretation.
In the case that several nuclei interact with the PC, the product  Anaysis of the Nuclear Hamiltonian. The Hamiltonian (eq

rgle must be applied sgparately to each term on the right-hand4) has its simplest form in the principal axis fram¥,Y2), of
side of eq 6. If we define operator(z,t) as the quadrupolar interaction, where

Z (1) = K(—ON@)K (1) @)

Equation 2 is obtained in the limit of hard pulses that excite
the entire EPR spectrum of the PC. All unwanted signals are
assumed to be removed by means of appropriate phase cycling

Equation 2 may be rewritten to give the echo intensity,
measured at its maximum valuetét= 0:

Hym= {317 = 10 + D] + 57 = 1,3} + DT (12)
eq 6 may be simplified: Here,« is the quadrupolar coupling constantthe asymmetry
V= Tr[za(r,tl)zﬁ(—r,—tz) + Zﬁ(Tytl)za(—T,—tz)] (8) parameter, an®r, the sum of the external magnetic field and
the hyperfine field, in the nuclear quadrupole frame
The operatorsZ,p describe the evolution of the nuclear
modulation operator (eq 5) under the influence of the nuclear
spin Hamiltonian belonging to different electron spin manifolds.
The Z ) operators have a clear physical interpretation in the
limit of short z, when the modulation operator (eq 5) may be
approximated as

D,,= D, {sinf cos¢, sinf sing, cos}  (13)

Here, 0 and ¢ are the polar and azimuthal angles that denote
the orientation of the external magnetic field in the frame, and

a

R A Dh,=o % (14)
Nz —0)=1— ral, 9) 2
. The secular equation fdr= 1 in each electron spin manifold
to give is
Z (t—0)=1—ard, (1) (10)
" ol Q3 +p,Q,—0,=0 (15)

Here, the operatord describe the evolution of the projection . i ) . )
of the initial nuclear magnetization onto the hyperfine field under '€ coefficients are readily expressed in terms of the invariants
the action of the nuclear spin sub-Hamiltonians for different ©f the Hamiltonian, as

electron spin manifolds:

J,uf) = K (=01 K (1) (11)

_1l s

When the nuclear quantization axis coincides with the direction Om = §Tr(Hl,m)
of the hyperfine fieldJ,«{(t) is a constant and no modulation
occurs. whose explicit forms are

HYSCORE spectra are rarely measured in this shdinit.
However, for comparison of simulated spectra, it is convenient Py = —[D% + K* 3+ 77)] (18)
to calculate spectra in the shartimit, where the so-called?"
suppression effect” does not occur, rather than at some larger On= KDrznf(n,O,d)) - 2/(3(1 - 172) (29)
value of 7, where some spectral features may vanish. The
calculated spectra presented here will use this shoap- with
proximation; however, all other calculations are valid for all
finite values ofr. f(5,0,¢) = cos 0 + cos D + y sif O cos 2  (20)

P = = 3Tr(HE) (16)

17)
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The solution of eq 15 gives the eigenvali¥s e
apJ\¥2 (A + 27 oo 1=
(el
Qi —( 3 co 3 (22) )
0.96

forj=0, 1, 2, and

3 \32(%m
cosi,=[—]| |+ 22 0.92 -
" (lpml) (2) 2
The right-hand side of eq 22 always lies betweehand 1, so 0.88

that the eigenvalues are real quantities for all values of the

H i i . i T T T T T T
amiltonian parameterg Le’F us note that the eigenvalues (eq 15 10 05 00 o5 10 15 20

21) are dependent oD;,. This means that the exchange of f

parameters

Figure 1. Dependence of the double quantum transition frequency
factor& on the parametdr Curves 1 and 2 respectively correspond to
a_, » (23) the weak and strong quadrupole conditions _of eqg 30. The following
2 ' parameter values were used for the calculations= 0.5, Dp/k = 2
(for curve 1), andDy/k = 0.5 (for curve 2).
does not alter the eigenvalues of the nuclear subensembles ) . ) _
although it will alter the eigenvectors. The practical consequence (and respective transition frequencies) as follows:
of this fact will be illustrated later in the paper.
The transition frequencies between jtieandkth levels (eq ~/_1—3 _ £3
: . 1=§,.,,= >E,,20=§& .= 27)
21) in the same manifold are : 2 h h 2

Qo= — 0o =2 1¥sianlk — il&... 24 Relation 27 shows thaly,1 has the largest absolute value and
m m mk = 2IPnl” " SigNk = JJEm1c - (24) produces the so-called “double quantum nuclear transition” in
themth manifold, whereas the other two frequencies correspond

where the dimensionless factor . o
to the single quantum transitions.

A+ Making use of relations 22 and 26, one can easily find the
Enn = Sin(mT) (25) minimum and maximum values @
2 34 2
is introduced. The index is uniquely determined= 1, 2, 3), A= arcco$— (i)WKD’“(l ) 2 =) (28)
because transitions must be between different levels sg that [Pl 2

Z= kin eq 24. . 312
Amin — arcco{ (“Di') D2 — (1 772)]} (29)
Analysis of the Transition Frequencies K
) o _ Here, we assume that> 0, so thatiy™ > /2. If k < 0, the
The most important feature of the nuclear Hamiltonian with 4% and min labels are exchanged. In either case, for the point
isotropic HFI is that the dependence of the eigenvalues (eq 21) /5> 5 pe contained betweetﬂ]i” and A™ | the following
and the transition frequencies (egs 24, 25) on the orientation of relationship is required: mo
the external magnetic field is confined to the paramétereq '
20. The range of this parameter is
d P D% > (1= 117) (30)
—-1+n)=f=<2 26 . : .
( ) (26) in which case the maximum value of the facay; = 1 occurs

as6 and¢ are varied independently through their own ranges. at

Such a dependence allows us to relate the transition frequency ) ,

in one electron spin manifold with that in the other manifold f = 21— 1) 31)
without explicit attention to the orientation of the external m D2
magnetic field in the nuclear quadrupole frame. In the case of "
anisotropic HFI,D,, becomes orientation-dependent, aspdo
and gm.

Let us consider the properties of the factin eq 25 as
functions of f and n. The quantityl, is dependent orf
monotonically, because arccgp{s a monotonic function of
its argument inside the interval ® A, < 7. This means that
&m2 and &y,3 are also monotonic functions d¢f because the
argument of the sine in eq 24 may vary betweaf82andz in
the case o€ and betweenr and 47/3 in the case 0€ny 3. In
the case o1 the sine argument may vary betweef8 and
27/3 and provide a maximum value of 1 whép = 7/2. We We can now present an alternative way to calculate the 2-D
can consequently arrange the relative values of these factorsspectrum of the HYSCORE signal from the eigenvalues, based

Interestingly, note that, foy = 1, the double quantum transitions
in both manifolds have their maximum values of [p,| and
2,/Ipgl at the same value df = 0. Examples of the depen-
dence of1(f) are shown in Figure 1. The relationship depicted
in expression 30 defines a “weak quadrupole” condition and a
“strong quadrupole” condition.

The HYSCORE Spectrum in an Orientationally
Disordered System



HYSCORE Spectra of = 1

on the spectral decomposition of a linear operator, in terms of
the projection operators.

The P, projection operators for the Hamiltonian eigenstates
(eq 12) are related to the eigenvaluestas

~ ~

p M ~ 12, (32a)
=[1—— a
o,n
J=n Qa,n - Qa,j
R Hlﬁ — iszﬁv.
Pon=[1——0 (32b)
0 50— Q)

Here,n, j = 0, 1, 2 andl is used as the unity operator in the
nuclear spin subspace. Hor 1, these are X 3 matrixes and
may be written as

A2, + H Qo+ 19,2, 7
an = - (33a)
30,82,0" — 2P,
L R A Qs+ gt
Py =——— A (33b)

Equations 3233 are valid in the absence of degeneracy in the
Hamiltonian eigensystem, which is always the case, except when
the magnetic field is oriented along tieaxis of the nuclear
qguadrupole frame witly = 0 or when an accidental degeneracy
occurs.

Now it is possible to express the propagators (eq 3) for nuclear
spins, in terms of the projection operators (eq 33):

K =5 Pro exp{tQp,.} (34)
n
The HYSCORE signal (eq 6) becomes
V= exp{tt (R, — L) T
nJ,r,s
Ltz(Q/;,r - Qﬁ,s)}Anjrs(G-¢) + Z exp{ Ltl(Qﬂ,j - Qﬁ,n) +
nJ,r,s
LtZ(Qa,r - Qa,s)} anrs(el(p) (35)
with
Ais(0.9) = TP, N(2)Py, Py, N(— D)P; ] (36)
Brys(6:9) = TP NPy P, N(— 0P, d  (37)
or, in the small limit (eq 9),
Anjrs(01¢) = aZTZTr[Isa,nizlsa,j l:-\)ﬁ,rAzlf)ﬁ,'s] (38)
Byis(0.0) = &1 Tr[P; 1 P4 P, 1 Py d (39)

The A and B factors in eq 35 are identical to those in the
conventional matrix formulation of HYSCORE. However, here,
they are expressed in terms of the Hamiltonian and its
eigenvalues, rather than in terms of the eigenvectors in the Mims
matrix M of the conventional descriptioh.

We will now obtain the spectral density of the signal
following our earlier procedurt,where Fourier transformation
is applied before integration of the signal over orientations of
the system. Two-dimensional Fourier transformation of eq 35,

J. Phys. Chem. B, Vol. 108, No. 27, 2008415

~

T 27

¢0 q)
Figure 2. Region of integration for variabldsand¢. The valuen =

0.5 was used for this example. The position of the pgintor some
particular value of (see eq 50 in the text) is also shown.

with respect to times; andt,, gives

Ve(0,9) = Z ow, — Qa,j +Q, )o(w, — Qﬂ,r +
nJ,r,s
Qﬁ,s)Anjrs(0’¢) + Z o(wy — Qﬁ,j + Qﬁ,n)é(wz -
nJj,r,s

Qa,r + Qa,s)anrs(0!¢) (40)

Here, 6(X) is the Diraco-function, andw; are the frequency
conjugates of the timetg fori = 1, 2. There are ridges located
along both axes whep= n or r = s but they are generally
suppressed during data processing and will not be considered
explicitly here.

The product of twa)-functions on the right-hand side of eq
40 and the dependence of the eigenvallkg; on a single
argument leads to the retention of orefunction on the right-
hand side after signal integration. This means that the 2-D
spectrum in the case of isotropic HFI is a set of zero-width
ridges (ZWRs), regardless of the symmetry of the quadrupole
interaction, unlike the case for anisotropic HFI that was reported
previously3

To find the HYSCORE spectrum of an orientationally
disordered system, one must integrate eq 40 over a hemisphere
of all possible orientations of the external magnetic field:

Ve=2 [ [ Vi(6.4) dg d(cosb)
0Zonsttt

(41)

First, we rewrite the integral in terms b&nd¢ to simplify the
calculations:

Ve =2 [Vi(f.$)d(f.6) dp cif (42)

whereJ(f,¢) is the Jacobian for the transformation to the new
integration variables, in this case,

_ _ _ -1/2
J(f,9) = {4 + 1 — 5 cos 2)(3 — 1 cos )} (43)

The region of integration is & ¢ < 2rand—1 + 5 cos 2 <
f < 2; itis shown in Figure 2. To complete the transformation,
one must substitute

_ f+ 1 — n cos p\1/2
0= arccom)

(44)

as needed.
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Direct calculations of the aforementioned integrals can be s
performed, but it leads to rather cumbersome relations. ThatQ' M=
approach must be used in the more-general case of anisotropic

HFI. However, in this particular case of isotropic HFI, it is faster

to calculate the spectral densities using a parametric presentation

of the ZWRs. Let us integrate th&s term in eq 40 for the
HYSCORE spectrum:

Veanis = 2 [0(w, — Q' (H)0(w, —
Q) Ays(f.0)I(F.9) dop df (45)

This term is nonzero only along the ZWR that correlatesjthe
— n transition in theo. manifold with ther — s transition in
the # manifold. This ridge may be conveniently described
parametrically as a three-dimensional ved&jl;’, with each
component being dependent on a single paranfeter

QM)
Qs3(h)
Akjrs(f)

The first two components are a pair of frequencigsand ws,

R = (46)

and the third component is the spectral density of the signal

correlating those two frequencies:
Ars() = 2QR°0) [ oA )IED) do - (47)

Here, the normalization facto® is introduced. It appears

Maryasov and Bowman

P Aq +a(n +])
Dip,?sin %A, cosz[—] +

Ay +a(r + s)]} —1/2

A

Dip,” sin 2 4, co§[ (53)
with the quantitiesl, and A defined in eq 22. For the ridges
that originate from thdé3 terms, the appropriate equations are
obtained by the exchange of < f in the aforementioned
equations.

The ZWRs are the peaks and ridges in the HYSCORE
spectrum that correlate frequencies from different electron spin
manifolds. They form several characteristic patterns that are
helpful in an initial analysis. The simplest situation occurs for
the ZWR that correlates single quantum transitions in both
manifolds, denoted here as;Cand also known as an sq,sq
correlation:

n+j=2
r+s=2

(54a)
(54b)

In this case, both frequencies are monotonic, with respeft to
thus giving a monotonic curve in the plane with extreme values
of the frequencies at each end of the curve.

A less-trivial situation is observed when one transition is
single quantum and the other is double quantump)(Ghis is
called an sq,dqg or dqg,sq correlation:

minn+j,r+s =1
max( +j,r+9s) =2

(55a)
(55b)

because of the variation in the speed of motion of the point There are two possibilities in this case:

{w1,02} asfis varied

]n 2) —1/2
ro-{[e] ) o

to provide the actual signal intensity per unit length of the ZWR
in the plane. The interval of integration fgris (see also Figure
2)

{¢} =0=¢p <27  (if — 1+ n =< f < 2and otherwise it

consists of two regions)

={pp= ¢ =7 — ¢} and{m + ¢y < ¢ = 271 — ¢}
(iff<—=1+n) (49)

where

b= 1 arcco{sH_Tl) (50)

2

The normalization factor may be simplified using eq 24,

f 9 12 12
nJI’S(f) — _{ (1]+n( ) ‘pﬂ‘ [%} } (51)
with the derivatives
0 V3cD? A+ 70
—=— 37 . CO (52)
of 2|p,[¥?sinA,, 3

so that

(a) In the case of weak NQI in the electron spin manifold of
the double quantum frequency, as defined by the inequality in
eq 30, there will be an extreme valugy on the interior of
the curve. The absolute value of this extreme frequency is

2,/1pyl

(b) In the case of strong quadrupoles in the dqg frequency
manifold, the ridge will be a monotonic curve, as in the case of
Ci.

The most complex situation occurs when both transitions are
double quantum (&), which is known as a dq,dq correlation:

(56)

eyl =

n+j=1
r+s=1

(57a)
(57b)

There are three possibilities in this case:

(a) Strong NQI are present in both manifolds, which produces
a monotonic curve, as observed for;@nd Gap

(b) The NQI is strong in one manifold and weak in the other.
There will be curve with an internal extreme value along one
axis, as observed in the case ohbe

(c) A weak NQI situation exists in both manifolds. The curve
will have internal extreme values along both frequency axes,
but, generally, the maxima will not occur simultaneously.

Only in case (c) is it possible to measutgy, from both
manifolds simultaneously if the shape of the dqg,dq peaks is
resolved. The absolute value of the hyperfine constamiay
be easily determined:

2 2
extra wextrﬂ

&l = =5,

‘w
(58)
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The other quantity that can be determined is

2 2
w’ + o
/(2(3 + 772) =+ =

2
8 |

2
a
7@ (59)

This relation allows us to estimate the quantifywithin an
accuracy of 25% when the value pfis unknown. Even when

the shape of the ridge is poorly resolved, egs 58 and 59 may be

used to estimate the respective quantities from the extreme edge
of the dg,dq peaks in the limit of purely isotropic HFI with
weak quadrupoles. Figure 3 illustrates the variation of the C
ZWR on the asymmetry of the quadrupole interaction in the
weak quadrupole case.

Let us examine the case of high asymmetry in the quadrupole
interaction wheny = 1. In this case, the weak quadrupole
condition (eq 30) is valid, regardless of the value of the
quadrupole coupling constant. The range of values for
parameteif is now symmetric: —2 < f < 2. As mentioned
previously, the maximum values of the double quantum
frequencies in both manifolds occur in the middle of this range
(see eq 31) wheh= 0. It is easily shown that, in this particular
case,&mi(f) = Ema(—F). This means that the two branches of
the Gy ridge for +f coincide (see also Figure 3 for illustration)
and the ridge, as a whole, has a;®pe appearance. One
important relation is also valid in this caséma(f) = —&ma(—

f). The ridges that correlate single quantum transitions now
coincide. The total number of ridges in the two quadrants is 20
instead of 36 in this case.

Figure 4 displays the spatial relationships for the different

types of peaks and ridges in the frequency plane in the case of

isotropic HFI. Because of the symmetry of the HYSCORE
spectra, usually only the positive valuesmf are presented. It

is important to note that the &type ridges may appear only
in four small rectangles, which are positioned symmetrically,
with respect to thew,-axis. The maximum size of these
rectangles may be defined using relation 27, so that, in the
positive quadrant,

V3Pl = @1 = 2//Ip,l (60a)
V3Ipyl = ;= 2,/Ipy| (60b)
V3Dl = o, = 2,/Ipyl (60c)
V3Ipa| = @, < 2//Ip,] (60d)

These dq peaks are often prominent features of the spectra
Equations 58 and 59 can be used to measure the isotropic HFI
and quadrupole interactions when the weak quadrupole condition
applies, andwexr can be identified in both electron spin
manifolds. This can be prevented by poor resolution, or “blind
spots” from the variation of spectral intensity witlor the strong
quadrupole condition. Even then, relation 60 shows that eq 58
may be used to estimate the hyperfine constant value with at
least 25% accuracy, whereas eq 59 allows estimation of the
quadrupole splitting with less accuracy. Figure 3 shows that
C,, may extend over only a small fraction of its allowed range.
Equations 5860 determine the possible range of parameters
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0.94 0.96 0.98 1.00
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Figure 3. Dependence of the dqg,dq zero width ridge (ZWR) on the
asymmetry of the quadrupole interaction in the case of weak quadrupole
interaction G, The values of the parameters are as follows:= 1,
a=1; « = 0.3; andy = 0 (for curve 1), 0.4 (for curve 2), 0.7 (for
curve 3), 0.9 (for curve 4), and 1 (for curve 5). In the casey ef 1

(the dotted curve), the two branches of the ridge coincide.

0‘)2
Z 0.8660,,
(Dextr,(x
S o,
0 ('oextr,B
0.8660,,
dg,dq dg,sq sq,dq sq,sq
| NN =

Figure 4. Location of different types of correlation ridges in the
HYSCORE spectrum fromh = 1 with arbitrary nuclear quadrupole
interactions (NQIs) and isotropic hyperfine interactions (HFIs). These
regions are useful for assigning ridges to particular types of transitions,
because only a small overlap or regions is allowed for dqg,sq or sq,dq
correlations with regions of sqg,sq correlations, as indicated by the
overlapping cross-hatched regions.

The Supporting Information contains an atlas of HYSCORE
spectra of an orientationally disordered system, as a function
of the dimensionless parametets= a/w,, ' = k/w;, andy.

To reduce the number of parameters, the shagproximation

(eq 9) was used for the intensity calculations. Each ZWR is
resented as a set of 50 circles. The centers of these circles are
aken at equidistant values of parameferwhereas their

diameters are proportional to the spectral intensity at this point.

Their color denotes the sign of the intensity: red for positive

values, blue for negative values. Note that, because of the

symmetry of the Hamiltonian (eq 23), the substitutiai —

4/a, ' = 2¢'la’} gives the same pattern but with a different

frequency scale and intensity distribution.

Experimental Section

EPR. A 10 mM sample of the ethylenediaminetetraacetic acid

for numerical simulation of the spectra, to further refine (EDTA) complex of oxovanadium (VO(IyEDTA) in a 30%
parameters. The double quantum frequencies, as measured fromglycerol:HO solution was prepared from a VO(II) sulfate in a
dg,dq or dg,sq correlation ridges, must obey eq 60 and Figure Wilmad model 707-SQ 4-mm-outer diameter (OD) EPR sample
4 if the HFI is purely isotropic. Thus, these relations are a tube, as described by Dikanov et*l.

necessary condition for experimental HYSCORE spectra, to EPR measurements were made on a Bruker model ESP380E
apply the analysis methods presented here. pulsed EPR/ENDOR spectrometer with an X-band Flexline
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F1:[MHz]

12

10

F2:[MHz]

Figure 5. Low-frequency region of the HYSCORE spectrum of 10 mM oxovanadi&@@TA complex in a mixture of water and glycerol at 30

K with = 168 ns, showing the correlations of tH&l atom. The contours are logarithmically spaced to reveal the shape of the extended correlation
ridges. The highest contour is set well below the amplitude of the intense dqg,dq correlation peaks. A so-called “skyline projection” of the two-
dimensional (2-D) spectrum is shown at the top of the figure.

ENDOR resonator and a cryostat with an Oxford model ITC- quadrant of the spectrum is an artifact that occurs when there
503 temperature controller. Measurements were made at ais insufficient time for total relaxation of spins between
temperature of 30 K with a magnetic field of 344.4 mT, which repetitions of the pulse sequence. There are also a few weak
corresponded to the maximum absorption peak atnlﬁe= peaks where at least one frequency has a magnitud& dHz.
—1/, line of the VO(Il) complex with EDTA. The standard These peaks result from combinations of frequencies from the
HYSCORE pulse sequence was used with nominal pulse widthstwo nitrogens in the complex and are consistent with predictions
of 16 and 24 ns for tha/2 andx pulses, respectively. Unwanted of the so-called “product rule”.
echoes were suppressed by phase cycling. A2356 dataset By far, the most intense peaks are a pair of sharp lines
was recorded with timef andt; incremented in 16-ns steps  at (+-7.4, —3.9) and (3.9, —7.4), abbreviated here as
from initial values of 48 and 32 ns, respectively, with= 168 [+£7.4,F3.9]. They are so intense that the tops of the peaks are
ns at a pulse repetition rate of 997 Hz. well above the highest contour line and only the base of the
Spectral Processing.The HYSCORE datasets were pro- peak is indicated by the contour lines. However, their full
cessed using the 2-D WIN-EPR software package from Bruker. intensity is visible in the skyline projection at the top of the
Contour lines are drawn at logarithmically spaced intervals, and figure. These are the dq,dq correlation peaks. Their line shape

“skyline” projections of the 2-D spectra are shown. is approximately Gaussian, as determined by the apodization
function used on the 4s x 4 us dataset. Other major ridges
Results include dq,sq correlations at[f.4,F1] and [7.4, 3], as well as
VO—EDTA was chosen to illustrate our treatment of S%54 correlations att3, ¥1], [4, 2] and a weaker pair at

HYSCORE for several reasons: (i) the oxovanadium ion has [4, 1].
two equivalent nitrogens as direct ligands; (ii) the nitrogens have ~ The experimental spectra resemble the general shape of
a HFI that seems to be completely isotropic; (iii) this complex calculated spectra foe = 4w, x = (0.5-1.0)v in the
has one region in its spectrum (e’ = —1/, vanadium Supporting Information. A few calculated spectra are reproduced
hyperfine line), where almost all orientations of the complex in Figure 6. One must remember that interference effects and
are simultaneously resonant at the X-band, minimizing com- the so-called # suppression effect” in the experimental spectra
plications from unintended orientation selection); and (iv) this May prevent observation of all the ridges that have been
complex is a spectroscopic model for oxovanadium complexes calculated for the smaft limit in the Supporting Information.
that can be formed with biological molecules and proteins. This The significant features are that (i) the coordinates for the dq,dq
brief example illustrates the application of the quantitative Peaks have an approximate ratio of 2:1; (i) the dq,sq ridges
relations developed earlier for the analysis of HY SCORE spectra Show considerable overlap; and (iii) the sq,sq ridges are tilted
of I = 1 nuclei when the hyperfine coupling is isotropic. It also  slightly from either the diagonal or “anti-diagonal”.
demonstrates how both the size and location of regions in Figure The full width of the dg,dq peaks at the baseline are
4 can be used to assign spectral features and how they can beignificantly broadened by the apodization of the limited dataset
used as necessary conditions for accepting that the hyperfinethat was recorded. The dg,dq peaks are within the range ef 6.9
coupling is isotropic. 7.6 MHz in one dimension and 34.2 MHz in the other. The
The low-frequency region of the HYSCORE spectrum is peak widths in both dimensions, after considering that these
shown in Figure 5. The diagonal ridge on the left-hatd ) are baseline-to-baseline widths and that there is significant
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% 4 o2 | =2 1 & s -2 -2 | _2_ 4 & features. Ridges for the different types of HYSCORE correla-
bt *ﬁ’—? v~ tions (the dq,dq or dg,sq or sq,sq correlations, where dg denotes
N / double quantum and sq denotes single quantum) are found in
° - AN | ~ strictly delineated regions of the spectrum, when the HFI is
[ . isotropic. This aids both in the assignment of ridges to specific
el T types of transitions and in the rapid estimation of hyperfine and
Y eyt F guadrupole coupling constants. The application of these results
was illustrated on a HYSCORE spectrum obtained from the
ethylenediaminetetraacetic acid (EDTA) complex of oxovana-
dium. An atlas of simulated spectra in the Supporting Informa-
tion is provided for a broad range of isotropic hyperfine and
guadrupole couplings, for comparison with experimental spectra.

[ 2 2 4
[ Pgl : The particular case of = 1 with isotropic hyperfine and
4 - \/ wh \ B arbitrary quadrupoles treated in detail here does have some
@ | : (:L‘?-E{ :A}J:) practical importance. We have observed HYSCORE spectra that
( ) TR oPETTTTY 8T seem to have isotropic nitrogen HFI with sharp dg,dq correla-
ol : D

&

--4 Q-.’___‘B 2 » : & _-l' -‘.’* --:-Br.\;—.l 1{_\3 ?5 '7
|

e tions and well-resolved dg,sq and sqg,sq zero width ridges

Figure 6. Numerically calculated spectra that are similar to the (7\Rs), reminiscent of Figure 5 in several classes of samples.
experimental spectrum shown in Figure 5. The peak intensities shown <o jncjude oxovanadium complexes of nitrogen-containing
here are proportional to the area of the circles (in the Supporting i d h he EDTA ill dh d histidf
Information, where pictures are presented in a scalable form, intensities''9ands, such as the llustrated here and histidine,
are proportional to the radii). The values of parameters are as follows: Several metalloproteins and oxovanadium complexes of proteins,

a = 4w); « = 0.50 (left column); x = w, (right column); andy = and small nitrogen-containing molecules adsorbed onto activated
0.001, 0.5, and 0.999 for the first, second, and third rows, respectively. metal oxide surfaces. The results obtained here are aiding in
The last row illustrates that some ridges coincide when 1. their detailed interpretation.

. . - . In addition, the exact results obtained here for isotropic HFI
experimental broadening, are within the limits for dq,dq peaks provide a good starting point for addressing the more-difficult

that have been described previously and in Figure 4. The widths ;. 4p1em of arbitrary HFIs. It is more complicated in two ways.
or positions of the dg,dq peaks did not change in HYSCORE pirqt the frequencies are no longer a function of the single
spectra that were obtained at other values éiso, HYSCORE rientational parametefr but, instead, are dependent on two
spectra measured at other positions in the EPR.spectrum ,Shqwe‘garameters. As a result, the ridges no longer have zero width
the shifts that were expected from the change in magnetic field , ;s haye a two-dimensional shape, with the added complication
but did not exhibit any OT the properties of_gn anisotropic HFl that a transition frequency in one electron spin manifold does
measured under orientation selection conditions. All indications not map onto a single frequency in the other manifold but rather
are.t.hat the hyperfine coupllng is completely isotropic. In gh 5 range of frequencies. Consequently, the equations for
addition, the dg,sq and sq,sq ridges seem to have the sameng ghapes of the ridges are much more complicated. Second,
constant width, as expected of ZWRs with apodization. the number of degrees of freedom is greater. Instead of the
The very rough hyperfine and quadrupole estimates that_""?requadrupole coupling constant, its asymmetry, and a single
made from the spectral atlas place this spectrum well within pyperfine coupling, there are the quadrupole coupling constant,
the weak quadrupole limit. Thus, the maximum magnitudes of its asymmetry, three anisotropic hyperfine coupling constants,
the double quantum frequencies correspondotg; in both and the three Euler angles relating the quadrupole and hyperfine
dimensions, because the hyperfine coupling is isotropic. How- axjs systems. Identifying the key spectral features, analogous
ever, the experimental broadening causes the peak rather thag, . . that would allow rapid estimation of the spin Hamil-

the edge to be a better estimate of thgw. That givesvexr tonian parameters, is much more difficult in the general case.
values {exr = wexs/277) Of 3.78 &+ 0.1 and 7.3+ 0.1 MHz, However, the results for isotropic hyperfine couplings provide
which correspond t@qs values of—3.6 + 0.2 and—13.3+ a valuable starting point for the treatment of weak hyperfine

0.2 MHZ, giving an isotropic hyperfine coupling of 4.58 anisotropy, such as that observed in the histidine ligands to the

0.05 MHz and«*(3 + 7% = 2.08 £ 0.05 MHZ. The latter  Rjeske iron sulfur clustefsor for weakly coupled deuterons.
relation leads to the estimation 0.72 MHz|«| < 0.83 MHz. During the development of these specific resultsifer 1

The value ofwexr can also be measured from the da,sq it isotropic HFIs, three important results of much greater

Condifon fs et i s a G dge, wnose maximn frequency  2PPICEDITY were observed
, A ’ H : ;
of 7.38 MHz along the center of its ridge is equaldg and | (1) The V(.actorhformallslm develzp?d_prevg)déllszonefscrlbe
agrees well with the value obtained from the dqg,dq peak. electron spir-echo envelope modulation (ES ) for one-,
two-, and three-pulse sequences was extended to describe

HYSCORE spectra. This formalism provides a compact de-
scription that applies to any nuclear spin and to any arbitrary

The hyperfine sublevel correlation (HYSCORE) spectra of HFI or quadrupole interactions.
paramagnetic centers that have electron §gin'/, and nuclear (2) The form of the HYSCORE spectrum in the limit of small
spinl = 1 in the presence of isotropic hyperfine interactions t was developed. Whenis smalt-that is, much smaller than
(HFIs) and nuclear quadrupolar interactions (NQIs) of arbitrary the period of the largest frequency in the spectrtihre intensity
strength have been explicitly considered. The HYSCORE of the spectrum then scales with however, the relative
spectrum, under these conditions, is a set of 36 ridges that haventensities of the different peaks do not change. This feature
zero width. An analytical expression in parametric form for the makes the short limit very useful for both theoretical and
location and intensity of these ridges is derived and is useful numerical HYSCORE simulations, because it provides an
either for simulating spectra or for understanding their general accessible standard set of conditions for comparing different

Conclusions
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simulations and it is free of the so-calledSuppression effect”

that can cause some HYSCORE features to disappear in spectra

that have been measured or simulated at larger values of
(3) A new method of calculating HYSCORE modulation (or

Maryasov and Bowman
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