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Hyperfine sublevel correlation (HYSCORE) spectra of paramagnetic centers that have nuclei with nuclear
spin I ) 1 and isotropic hyperfine interactions (HFIs) and arbitrary nuclear quadrupole interactions (NQIs)
are shown to consist of ridges that have zero width. A parametric presentation of these ridges is suggested
that shows the range of possible frequencies in the HYSCORE spectrum and aids in spectral assignments and
rapid estimation of spin Hamiltonian parameters. An alternative approach for the spectral density calculation
is presented. This methodology is based on spectral decomposition of the Hamiltonian and requires only the
eigenvalues. An atlas of HYSCORE spectra is given in the Supporting Information for this paper. This approach
is applied to the estimation of the spin Hamiltonian parameters of the oxovanadium-EDTA complex.

Introduction

The pulsed electron paramagnetic resonance (EPR) technique
is widely used to investigate the structure of molecules that
contain paramagnetic centers (PCs) or labeled with appropriate
spin labels. The hyperfine interactions (HFIs) of unpaired
electrons with surrounding nuclei lead to the appearance of
quantum beats in the system response to microwave (mw)
pulses. In the case of electron spin-echo (ESE), these beats
are called ESE envelope modulation (ESEEM).1 The frequency
spectrum of such modulations contains information about the
system Hamiltonian parameters and can be used to draw valid
conclusions about the structure of the system in question.

Several variations of the ESE technique are used to obtain
two-dimensional (2-D) modulation spectra.2 The use of two
dimensions leads to better resolution and easier interpretation
of the data by separating overlapping lines and by correlating
frequencies to aid spectral assignment. The most widely used
2-D method is HYSCORE (HYperfine Sublevel COrRElation)
spectroscopy.3 It applies a four-pulse sequence to the system

accompanied by phase cycling to remove additional unwanted
echoes and free induction decay signals. The signal measured
is the stimulated echo signal produced by the action of pulses
1, 2, and 4, as a function of timest1 and t2. The third pulse
causes an electron spin flip, which produces a correlation of
the nuclear hyperfine frequencies from different electron spin
manifolds. In the simplest case of electron spinS ) 1/2 and
nuclear spin I ) 1/2, there is a straightforward graphical
algorithm that rapidly provides the hyperfine values.4,5 In the

more-complex situation of nuclear spinsI g 1 that have
significant quadrupolar interactions, only numerical simulation
has been used for detailed analysis in noncrystalline samples.6-8

Systems withI ) 1 and significant quadrupolar coupling,
such as14N and2H, are widespread and are important in biology,
chemistry, and materials science. This contribution is devoted
to the analysis of HYSCORE spectra for aS ) 1/2 and I ) 1
system with arbitrary quadrupolar interaction and isotropic
nuclear hyperfine and Zeeman interactions. This treatment is
based on the exact solution of theI ) 1 spin Hamiltonian9,10

and its spectral presentation using the Cayley-Hamilton
theorem.11,12

Theory

The HYSCORE Signal in the Case of Arbitrary Nuclear
Spin. In an earlier paper,13 we developed a recurrence relation
for the echo signals as a function of the number of applied mw
pulses. Applying this to the four-pulse sequence (sequence 1),
the following expression may be obtained for the time course
of the HYSCORE echo signal:

Here, the trace is taken over nuclear spins,A is an instrumental
echo amplitude scaling factor,δω is the difference of the
resonance frequency of the PC in question and the frequency
of mw pulses, and the timet′′ is measured from the maximum
of the echo signal (t′′ ) t - (t1 + t2 + 2τ)). The operatorsK̂m

are nuclear subsystem propagators for each electron spin
manifold, wherem denotes the eigenstate (R or â) throughout
this paper:

The nuclear spinI sub-Hamiltonians are written (all quantities
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(π2)1
s τ s (π2)2

s t1 s (π)3 s t2 s (π2)4
s τ s echo (1) V(t′′) ) A exp(ιδωt′′)Tr[N̂(-τ - t′′) ×

{K̂â(-t2)K̂R(-t1)N̂(τ)K̂R(t1)K̂â(t2) +
K̂R(-t2)K̂â(-t1)N̂(τ)K̂â(t1)K̂R(t2)}] (2)

K̂m(t) ) exp{ιtĤI,m} (3)
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in units of radians per second), in the laboratory frame, as

with ωI, a, and Q6 being the nuclear Zeeman frequency, the
hyperfine coupling constant, and the quadrupolar interaction
tensor, respectively. The modulation operatorN̂ is used in eq 2
for compact presentation:

Equation 2 is obtained in the limit of hard pulses that excite
the entire EPR spectrum of the PC. All unwanted signals are
assumed to be removed by means of appropriate phase cycling.

Equation 2 may be rewritten to give the echo intensity,
measured at its maximum value att′′ ) 0:

Here,V′ ) V/A. The equality Tr(ÂB̂) ) Tr(B̂Â) was used to
transform eq 2. The two terms on the right-hand side of eq 6
are related to each other by an interchange of their indexes,
R S â.

In the case that several nuclei interact with the PC, the product
rule must be applied separately to each term on the right-hand
side of eq 6. If we define operatorsẐm(τ,t) as

eq 6 may be simplified:

The operatorsZR(â) describe the evolution of the nuclear
modulation operator (eq 5) under the influence of the nuclear
spin Hamiltonian belonging to different electron spin manifolds.
The ZR(â) operators have a clear physical interpretation in the
limit of short τ, when the modulation operator (eq 5) may be
approximated as

to give

Here, the operatorsJ describe the evolution of the projection
of the initial nuclear magnetization onto the hyperfine field under
the action of the nuclear spin sub-Hamiltonians for different
electron spin manifolds:

When the nuclear quantization axis coincides with the direction
of the hyperfine field,Ĵzm(t) is a constant and no modulation
occurs.

HYSCORE spectra are rarely measured in this shortτ limit.
However, for comparison of simulated spectra, it is convenient
to calculate spectra in the shortτ limit, where the so-called “τ
suppression effect” does not occur, rather than at some larger
value of τ, where some spectral features may vanish. The
calculated spectra presented here will use this shortτ ap-
proximation; however, all other calculations are valid for all
finite values ofτ.

In the case of nuclear spinI ) 1/2, it was possible to construct
a vector model for ESEEM phenomena.13 Unfortunately, the
motion of I ) 1 with finite quadrupolar coupling is more
complex and not easily visualized. One must find the eigen-
system of the Hamiltonian (eq 4) to calculate nuclear propaga-
tors, whether using the aforementioned outlined formalism or
the traditional approach of Mims. Although numerical solutions
of the eigensystem are commonly used, an analytical solution
was developed in a series of papers by Muha.9,10 The eigen-
vectors of the nuclear Hamiltonian allow calculation of the Mims
matrixM, whose elements are used together with the eigenvalues
in conventional calculations of HYSCORE spectra.3,14

Here, we present an alternative approach that is based on the
Cayley-Hamilton theorem and on the spectral decomposition
of linear operators, where only the eigenvalues of the Hamil-
tonian are needed to calculate projection operators onto the
Hamiltonian eigenstates11,12 for the calculation of HYSCORE
spectra. It is broadly applicable to other forms of coherent
spectroscopy and to HYSCORE spectra from any general
nuclear spin Hamiltonian, although we explicitly considerI )
1 with nuclear quadrupole interactions (NQIs), Zeeman inter-
actions, and isotropic HFIs. This approach results in highly
efficient calculation of the spectra and provides considerable
insight into the form of HYSCORE spectra and their detailed
interpretation.

Analysis of the Nuclear Hamiltonian.The Hamiltonian (eq
4) has its simplest form in the principal axis frame, (X,Y,Z), of
the quadrupolar interaction, where

Here,κ is the quadrupolar coupling constant,η the asymmetry
parameter, andDBm the sum of the external magnetic field and
the hyperfine field, in the nuclear quadrupole frame

Here,θ andφ are the polar and azimuthal angles that denote
the orientation of the external magnetic field in the frame, and

The secular equation forI ) 1 in each electron spin manifold
is

The coefficients are readily expressed in terms of the invariants
of the Hamiltonian, as

whose explicit forms are

with

HIR(â) ) (ωI ( a
2)Î z + IB̂ Q6 IB̂ (4)

N̂(t) ) K̂R(-t)K̂â(t) (5)

V′ ) Tr[K̂R(-t1)N̂(τ)K̂R(t1)K̂â(t2)N̂(-τ)K̂â(-t2)] +
Tr[K̂â(-t1)N̂(τ)K̂â(t1)K̂R(t2)N̂(-τ)K̂R(-t2)] (6)

Ẑm(τ,t) ) K̂m(-t)N̂(τ)K̂m(t) (7)

V′ ) Tr[ẐR(τ,t1)Ẑâ(-τ,-t2) + Ẑâ(τ,t1)ẐR(-τ,-t2)] (8)

N̂(τ f 0) ) 1 - ιτaÎz (9)

Ẑm(τ f 0,t) ) 1 - ιaτĴzm(t) (10)

Ĵzm(t) ) K̂m(-t)Î zK̂m(t) (11)

HI,m ) κ{[3ÎZ
2 - I(I + 1)] + η(ÎX

2 - ÎY
2)} + DBm‚ IB̂ (12)

DBm ) Dm{sin θ cosφ, sinθ sinφ, cosθ} (13)

Dm ) ωI ( a
2

(14)

Ωm
3 + pmΩm - qm ) 0 (15)

pm ) - 1
2
Tr(HI,m

2 ) (16)

qm ) 1
3
Tr(HI,m

3 ) (17)

pm ) -[Dm
2 + κ

2(3 + η2)] (18)

qm ) κDm
2 f(η,θ,φ) - 2κ

3(1 - η2) (19)

f(η,θ,φ) ) cos2 θ + cos 2θ + η sin2 θ cos 2φ (20)
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The solution of eq 15 gives the eigenvalues9,10

for j ) 0, 1, 2, and

The right-hand side of eq 22 always lies between-1 and 1, so
that the eigenvalues are real quantities for all values of the
Hamiltonian parameters. Let us note that the eigenvalues (eq
21) are dependent onDm

2 . This means that the exchange of
parameters

does not alter the eigenvalues of the nuclear subensembles,
although it will alter the eigenvectors. The practical consequence
of this fact will be illustrated later in the paper.

The transition frequencies between thejth andkth levels (eq
21) in the same manifold are

where the dimensionless factor

is introduced. The index is uniquely determined (n ) 1, 2, 3),
because transitions must be between different levels so thatj
* k in eq 24.

Analysis of the Transition Frequencies

The most important feature of the nuclear Hamiltonian with
isotropic HFI is that the dependence of the eigenvalues (eq 21)
and the transition frequencies (eqs 24, 25) on the orientation of
the external magnetic field is confined to the parameterf in eq
20. The range of this parameter is

asθ andφ are varied independently through their own ranges.
Such a dependence allows us to relate the transition frequency
in one electron spin manifold with that in the other manifold
without explicit attention to the orientation of the external
magnetic field in the nuclear quadrupole frame. In the case of
anisotropic HFI,Dm becomes orientation-dependent, as dopm

andqm.
Let us consider the properties of the factorê in eq 25 as

functions of f and n. The quantity λm is dependent onf
monotonically, because arccos(x) is a monotonic function of
its argument inside the interval 0e λm e π. This means that
êm,2 and êm,3 are also monotonic functions off, because the
argument of the sine in eq 24 may vary between 2π/3 andπ in
the case ofêm,2 and betweenπ and 4π/3 in the case ofêm,3. In
the case ofêm,1 the sine argument may vary betweenπ/3 and
2π/3 and provide a maximum value of 1 whenλm ) π/2. We
can consequently arrange the relative values of these factors

(and respective transition frequencies) as follows:

Relation 27 shows thatêm,1 has the largest absolute value and
produces the so-called “double quantum nuclear transition” in
themth manifold, whereas the other two frequencies correspond
to the single quantum transitions.

Making use of relations 22 and 26, one can easily find the
minimum and maximum values ofλm:

Here, we assume thatκ > 0, so thatλm
max > π/2. If κ < 0, the

max and min labels are exchanged. In either case, for the point
π/2 to be contained betweenλm

min and λm
max , the following

relationship is required:

in which case the maximum value of the factorêm,1 ) 1 occurs
at

Interestingly, note that, forη ) 1, the double quantum transitions
in both manifolds have their maximum values of 2x|pR| and
2x|pâ| at the same value off ) 0. Examples of the depen-
dence ofêm,1(f) are shown in Figure 1. The relationship depicted
in expression 30 defines a “weak quadrupole” condition and a
“strong quadrupole” condition.

The HYSCORE Spectrum in an Orientationally
Disordered System

We can now present an alternative way to calculate the 2-D
spectrum of the HYSCORE signal from the eigenvalues, based

Figure 1. Dependence of the double quantum transition frequency
factorê on the parameterf. Curves 1 and 2 respectively correspond to
the weak and strong quadrupole conditions of eq 30. The following
parameter values were used for the calculations:η ) 0.5, Dm/κ ) 2
(for curve 1), andDm/κ ) 0.5 (for curve 2).

Ωm,j ) (4|pm|
3 )1/2

cos(λm + 2πj

3 ) (21)

cosλm ) ( 3
|pm|)3/2(qm

2 ) (22)

a
2

S ωI (23)

Ωm
j,k ) Ωm,j - Ωm,k ) 2|pm|1/2 sign[k - j]êm,j+k (24)

êm,n ) sin(λm + πn

3 ) (25)

-(1 + η) e f e 2 (26)

1 g êm,1 g
x3
2

g êm,2 g 0 g êm,3 g -
x3
2

(27)

λm
max ) arccos[- ( 3

|pm|)3/2κDm
2 (1 + η) + 2κ

3(1 - η2)

2 ] (28)

λm
min ) arccos{( 3

|pm|)3/2
[κDm

2 - κ
3(1 - η2)]} (29)

Dm
2 > κ

2(1 - η2) (30)

fm )
2κ

2(1 - η2)

Dm
2

(31)
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on the spectral decomposition of a linear operator, in terms of
the projection operators.

TheP̂m,n projection operators for the Hamiltonian eigenstates
(eq 12) are related to the eigenvalues as11,12

Here,n, j ) 0, 1, 2 and1̂ is used as the unity operator in the
nuclear spin subspace. ForI ) 1, these are 3× 3 matrixes and
may be written as

Equations 32-33 are valid in the absence of degeneracy in the
Hamiltonian eigensystem, which is always the case, except when
the magnetic field is oriented along theZ-axis of the nuclear
quadrupole frame withη ≡ 0 or when an accidental degeneracy
occurs.

Now it is possible to express the propagators (eq 3) for nuclear
spins, in terms of the projection operators (eq 33):

The HYSCORE signal (eq 6) becomes

with

or, in the smallτ limit (eq 9),

The A and B factors in eq 35 are identical to those in the
conventional matrix formulation of HYSCORE. However, here,
they are expressed in terms of the Hamiltonian and its
eigenvalues, rather than in terms of the eigenvectors in the Mims
matrix M of the conventional description.3

We will now obtain the spectral density of the signal
following our earlier procedure,15 where Fourier transformation
is applied before integration of the signal over orientations of
the system. Two-dimensional Fourier transformation of eq 35,

with respect to timest1 and t2, gives

Here, δ(x) is the Diracδ-function, andωi are the frequency
conjugates of the timesti, for i ) 1, 2. There are ridges located
along both axes whenj ) n or r ) s but they are generally
suppressed during data processing and will not be considered
explicitly here.

The product of twoδ-functions on the right-hand side of eq
40 and the dependence of the eigenvaluesΩm,j on a single
argumentf leads to the retention of oneδ-function on the right-
hand side after signal integration. This means that the 2-D
spectrum in the case of isotropic HFI is a set of zero-width
ridges (ZWRs), regardless of the symmetry of the quadrupole
interaction, unlike the case for anisotropic HFI that was reported
previously.3

To find the HYSCORE spectrum of an orientationally
disordered system, one must integrate eq 40 over a hemisphere
of all possible orientations of the external magnetic field:

First, we rewrite the integral in terms off andφ to simplify the
calculations:

whereJ(f,φ) is the Jacobian for the transformation to the new
integration variables, in this case,

The region of integration is 0e φ e 2π and-1 + η cos 2φ e
f e 2; it is shown in Figure 2. To complete the transformation,
one must substitute

as needed.

P̂R,n ) ∏
j*n

ĤI,R - 1̂ΩR,j

ΩR,n - ΩR,j

(32a)

P̂â,n ) ∏
j*n

ĤI,â - 1̂Ωâ,j

Ωâ,n - Ωâ,j

(32b)

P̂R,n )
ĤI,R

2 + ĤI,RΩR,n + 1̂qRΩR,n
-1

3qRΩR,n
-1 - 2pR

(33a)

P̂â,n )
ĤI,â

2 + ĤI,âΩâ,n + 1̂qâΩâ,n
-1

3qâΩâ,n
-1 - 2pâ

(33b)

K̂m(t) ) ∑
n

P̂m,n exp{ιtΩm,n} (34)

V′ ) ∑
n,j,r,s

exp{ιt1(ΩR,j - ΩR,n) +

ιt2(Ωâ,r - Ωâ,s)}Anjrs(θ,φ) + ∑
n,j,r,s

exp{ιt1(Ωâ,j - Ωâ,n) +

ιt2(ΩR,r - ΩR,s)}Bnjrs(θ,φ) (35)

Anjrs(θ,φ) ) Tr[P̂R,nN̂(τ)P̂R,jP̂â,rN̂(- τ)P̂â,s] (36)

Bnjrs(θ,φ) ) Tr[P̂â,nN̂(τ)P̂â,jP̂R,rN̂(- τ)P̂R,s] (37)

Anjrs(θ,φ) ) a2τ2Tr[P̂R,nÎzP̂R,jP̂â,r ÎzP̂â,s] (38)

Bnjrs(θ,φ) ) a2τ2Tr[P̂â,nÎzP̂â,jP̂R,r ÎzP̂R,s] (39)

Figure 2. Region of integration for variablesf andφ. The valueη )
0.5 was used for this example. The position of the pointφ0 for some
particular value off (see eq 50 in the text) is also shown.

V′F(θ,φ) ) ∑
n,j,r,s

δ(ω1 - ΩR,j + ΩR,n)δ(ω2 - Ωâ,r +

Ωâ,s)Anjrs(θ,φ) + ∑
n,j,r,s

δ(ω1 - Ωâ,j + Ωâ,n)δ(ω2 -

ΩR,r + ΩR,s)Bnjrs(θ,φ) (40)

VhF ) 2 ∫∫
0eφe2π

0ecosθe1

V′F(θ,φ) dφ d(cosθ) (41)

VhF ) 2∫∫V′F(f,φ)J(f,φ) dφ df (42)

J(f,φ) ) {4(f + 1 - η cos 2φ)(3 - η cos 2φ)}-1/2

(43)

θ ) arccos(f + 1 - η cos 2φ
3 - η cos 2φ )1/2

(44)
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Direct calculations of the aforementioned integrals can be
performed, but it leads to rather cumbersome relations. That
approach must be used in the more-general case of anisotropic
HFI. However, in this particular case of isotropic HFI, it is faster
to calculate the spectral densities using a parametric presentation
of the ZWRs. Let us integrate theAnjrs term in eq 40 for the
HYSCORE spectrum:

This term is nonzero only along the ZWR that correlates thej
f n transition in theR manifold with ther f s transition in
the â manifold. This ridge may be conveniently described
parametrically as a three-dimensional vectorRBR,â

jn,rs, with each
component being dependent on a single parameterf:

The first two components are a pair of frequenciesω1 andω2,
and the third component is the spectral density of the signal
correlating those two frequencies:

Here, the normalization factorQ is introduced. It appears
because of the variation in the speed of motion of the point
{ω1,ω2} as f is varied

to provide the actual signal intensity per unit length of the ZWR
in the plane. The interval of integration forφ is (see also Figure
2)

where

The normalization factor may be simplified using eq 24,

with the derivatives

so that

with the quantitiesλR andλâ defined in eq 22. For the ridges
that originate from theB terms, the appropriate equations are
obtained by the exchange ofR S â in the aforementioned
equations.

The ZWRs are the peaks and ridges in the HYSCORE
spectrum that correlate frequencies from different electron spin
manifolds. They form several characteristic patterns that are
helpful in an initial analysis. The simplest situation occurs for
the ZWR that correlates single quantum transitions in both
manifolds, denoted here as C11 and also known as an sq,sq
correlation:

In this case, both frequencies are monotonic, with respect tof,
thus giving a monotonic curve in the plane with extreme values
of the frequencies at each end of the curve.

A less-trivial situation is observed when one transition is
single quantum and the other is double quantum (C12); this is
called an sq,dq or dq,sq correlation:

There are two possibilities in this case:
(a) In the case of weak NQI in the electron spin manifold of

the double quantum frequency, as defined by the inequality in
eq 30, there will be an extreme valueωextr on the interior of
the curve. The absolute value of this extreme frequency is

(b) In the case of strong quadrupoles in the dq frequency
manifold, the ridge will be a monotonic curve, as in the case of
C11.

The most complex situation occurs when both transitions are
double quantum (C22), which is known as a dq,dq correlation:

There are three possibilities in this case:
(a) Strong NQI are present in both manifolds, which produces

a monotonic curve, as observed for C11 and C12b.
(b) The NQI is strong in one manifold and weak in the other.

There will be curve with an internal extreme value along one
axis, as observed in the case of C12a.

(c) A weak NQI situation exists in both manifolds. The curve
will have internal extreme values along both frequency axes,
but, generally, the maxima will not occur simultaneously.

Only in case (c) is it possible to measureωextr from both
manifolds simultaneously if the shape of the dq,dq peaks is
resolved. The absolute value of the hyperfine constanta may
be easily determined:

VhFA,njrs ) 2∫∫δ(ω1 - ΩR
j,n(f))δ(ω2 -

Ωâ
r,s(f))Anjrs(f,φ)J(f,φ) dφ df (45)

RB R,â
jn,rs ) {ΩR

j,n(f)

Ωâ
r,s(f)

A′njrs(f)
} (46)

A′njrs(f) ) 2QA
njrs(f)∫{φ}(f)

Anjrs(f,φ)J(f,φ) dφ (47)

QA
njrs(f) ) {[∂ΩR

j,n(f)

∂f ]2

+ [∂Ωâ
r,s(f)

∂f ]2}-1/2

(48)

{φ} ) 0 eφ e2π (if - 1 + η e f e 2 and otherwise it
consists of two regions)

) {φ0 e φ e π - φ0} and{π + φ0 e φ e 2π - φ0}
(if f < -1 + η) (49)

φ0 ) 1
2

arccos(f + 1
η ) (50)

QA
njrs(f) ) 1

2{|pR|[∂êR,j+n(f)

∂f ]2

+ |pâ|[∂êâ,r+s(f)

∂f ]2}-1/2

(51)

∂êm,n

∂f
) -

x3κDm
2

2|pm|3/2 sin λm

cos(λm + πn

3 ) (52)

QA
njrs(f) ) 1

x3|κ|{DR
4pR

-2 sin-2 λR cos2[λR + π(n + j)

3 ] +

Dâ
4pâ

-2 sin-2 λâ cos2[λâ + π(r + s)

3 ]}-1/2

(53)

n + j g 2 (54a)

r + s g 2 (54b)

min(n + j, r + s) ) 1 (55a)

max(n + j, r + s) g 2 (55b)

|ωextr| ) 2x|pm| (56)

n + j ) 1 (57a)

r + s ) 1 (57b)

|a| ) |ωextr,R
2 - ωextr,â

2

8ωI
| (58)
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The other quantity that can be determined is

This relation allows us to estimate the quantityκ2 within an
accuracy of 25% when the value ofη is unknown. Even when
the shape of the ridge is poorly resolved, eqs 58 and 59 may be
used to estimate the respective quantities from the extreme edges
of the dq,dq peaks in the limit of purely isotropic HFI with
weak quadrupoles. Figure 3 illustrates the variation of the C22c

ZWR on the asymmetry of the quadrupole interaction in the
weak quadrupole case.

Let us examine the case of high asymmetry in the quadrupole
interaction whenη ) 1. In this case, the weak quadrupole
condition (eq 30) is valid, regardless of the value of the
quadrupole coupling constantκ. The range of values for
parameterf is now symmetric: -2 e f e 2. As mentioned
previously, the maximum values of the double quantum
frequencies in both manifolds occur in the middle of this range
(see eq 31) whenf ) 0. It is easily shown that, in this particular
case,êm,1(f) ) êm,1(-f). This means that the two branches of
the C22 ridge for(f coincide (see also Figure 3 for illustration)
and the ridge, as a whole, has a C11-type appearance. One
important relation is also valid in this case:êm,2(f) ) -êm,3(-
f). The ridges that correlate single quantum transitions now
coincide. The total number of ridges in the two quadrants is 20
instead of 36 in this case.

Figure 4 displays the spatial relationships for the different
types of peaks and ridges in the frequency plane in the case of
isotropic HFI. Because of the symmetry of the HYSCORE
spectra, usually only the positive values ofω2 are presented. It
is important to note that the C22-type ridges may appear only
in four small rectangles, which are positioned symmetrically,
with respect to theω2-axis. The maximum size of these
rectangles may be defined using relation 27, so that, in the
positive quadrant,

These dq peaks are often prominent features of the spectra.
Equations 58 and 59 can be used to measure the isotropic HFIs
and quadrupole interactions when the weak quadrupole condition
applies, andωextr can be identified in both electron spin
manifolds. This can be prevented by poor resolution, or “blind
spots” from the variation of spectral intensity withτ or the strong
quadrupole condition. Even then, relation 60 shows that eq 58
may be used to estimate the hyperfine constant value with at
least 25% accuracy, whereas eq 59 allows estimation of the
quadrupole splitting with less accuracy. Figure 3 shows that
C22 may extend over only a small fraction of its allowed range.
Equations 58-60 determine the possible range of parameters
for numerical simulation of the spectra, to further refine
parameters. The double quantum frequencies, as measured from
dq,dq or dq,sq correlation ridges, must obey eq 60 and Figure
4 if the HFI is purely isotropic. Thus, these relations are a
necessary condition for experimental HYSCORE spectra, to
apply the analysis methods presented here.

The Supporting Information contains an atlas of HYSCORE
spectra of an orientationally disordered system, as a function
of the dimensionless parametersa′ ) a/ωI, κ′ ) κ/ωI, andη.
To reduce the number of parameters, the shortτ approximation
(eq 9) was used for the intensity calculations. Each ZWR is
presented as a set of 50 circles. The centers of these circles are
taken at equidistant values of parameterf, whereas their
diameters are proportional to the spectral intensity at this point.
Their color denotes the sign of the intensity: red for positive
values, blue for negative values. Note that, because of the
symmetry of the Hamiltonian (eq 23), the substitution{a′ w
4/a′, κ′ w 2κ′/a′} gives the same pattern but with a different
frequency scale and intensity distribution.

Experimental Section

EPR. A 10 mM sample of the ethylenediaminetetraacetic acid
(EDTA) complex of oxovanadium (VO(II)-EDTA) in a 30%
glycerol:H2O solution was prepared from a VO(II) sulfate in a
Wilmad model 707-SQ 4-mm-outer diameter (OD) EPR sample
tube, as described by Dikanov et al.16

EPR measurements were made on a Bruker model ESP380E
pulsed EPR/ENDOR spectrometer with an X-band Flexline

κ
2(3 + η2) )

ω+
2 + ω-

2

8
- a2

4
- ωI

2 (59)

x3|pR| e ω1 e 2x|pR| (60a)

x3|pâ| e ω2 e 2x|pâ| (60b)

x3|pâ| e ω1 e 2x|pâ| (60c)

x3|pR| e ω2 e 2x|pR| (60d)

Figure 3. Dependence of the dq,dq zero width ridge (ZWR) on the
asymmetry of the quadrupole interaction in the case of weak quadrupole
interaction C22c. The values of the parameters are as follows:ωI ) 1;
a ) 1; κ ) 0.3; andη ) 0 (for curve 1), 0.4 (for curve 2), 0.7 (for
curve 3), 0.9 (for curve 4), and 1 (for curve 5). In the case ofη ) 1
(the dotted curve), the two branches of the ridge coincide.

Figure 4. Location of different types of correlation ridges in the
HYSCORE spectrum fromI ) 1 with arbitrary nuclear quadrupole
interactions (NQIs) and isotropic hyperfine interactions (HFIs). These
regions are useful for assigning ridges to particular types of transitions,
because only a small overlap or regions is allowed for dq,sq or sq,dq
correlations with regions of sq,sq correlations, as indicated by the
overlapping cross-hatched regions.
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ENDOR resonator and a cryostat with an Oxford model ITC-
503 temperature controller. Measurements were made at a
temperature of 30 K with a magnetic field of 344.4 mT, which
corresponded to the maximum absorption peak at themI

V )
-1/2 line of the VO(II) complex with EDTA. The standard
HYSCORE pulse sequence was used with nominal pulse widths
of 16 and 24 ns for theπ/2 andπ pulses, respectively. Unwanted
echoes were suppressed by phase cycling. A 256× 256 dataset
was recorded with timest1 and t2 incremented in 16-ns steps
from initial values of 48 and 32 ns, respectively, withτ ) 168
ns at a pulse repetition rate of 997 Hz.

Spectral Processing.The HYSCORE datasets were pro-
cessed using the 2-D WIN-EPR software package from Bruker.
Contour lines are drawn at logarithmically spaced intervals, and
“skyline” projections of the 2-D spectra are shown.

Results

VO-EDTA was chosen to illustrate our treatment of
HYSCORE for several reasons: (i) the oxovanadium ion has
two equivalent nitrogens as direct ligands; (ii) the nitrogens have
a HFI that seems to be completely isotropic; (iii) this complex
has one region in its spectrum (themI

V ) -1/2 vanadium
hyperfine line), where almost all orientations of the complex
are simultaneously resonant at the X-band, minimizing com-
plications from unintended orientation selection); and (iv) this
complex is a spectroscopic model for oxovanadium complexes
that can be formed with biological molecules and proteins. This
brief example illustrates the application of the quantitative
relations developed earlier for the analysis of HYSCORE spectra
of I ) 1 nuclei when the hyperfine coupling is isotropic. It also
demonstrates how both the size and location of regions in Figure
4 can be used to assign spectral features and how they can be
used as necessary conditions for accepting that the hyperfine
coupling is isotropic.

The low-frequency region of the HYSCORE spectrum is
shown in Figure 5. The diagonal ridge on the left-hand (+, -)

quadrant of the spectrum is an artifact that occurs when there
is insufficient time for total relaxation of spins between
repetitions of the pulse sequence. There are also a few weak
peaks where at least one frequency has a magnitude of>8 MHz.
These peaks result from combinations of frequencies from the
two nitrogens in the complex and are consistent with predictions
of the so-called “product rule”.

By far, the most intense peaks are a pair of sharp lines
at (+7.4, -3.9) and (+3.9, -7.4), abbreviated here as
[(7.4,-3.9]. They are so intense that the tops of the peaks are
well above the highest contour line and only the base of the
peak is indicated by the contour lines. However, their full
intensity is visible in the skyline projection at the top of the
figure. These are the dq,dq correlation peaks. Their line shape
is approximately Gaussian, as determined by the apodization
function used on the 4µs × 4 µs dataset. Other major ridges
include dq,sq correlations at [(7.4,-1] and [7.4, 3], as well as
sq,sq correlations at [(3, -1], [4, 2] and a weaker pair at
[4, 1].

The experimental spectra resemble the general shape of
calculated spectra fora ) 4ωI, κ ) (0.5-1.0)ωI in the
Supporting Information. A few calculated spectra are reproduced
in Figure 6. One must remember that interference effects and
the so-called “τ suppression effect” in the experimental spectra
may prevent observation of all the ridges that have been
calculated for the smallτ limit in the Supporting Information.
The significant features are that (i) the coordinates for the dq,dq
peaks have an approximate ratio of 2:1; (ii) the dq,sq ridges
show considerable overlap; and (iii) the sq,sq ridges are tilted
slightly from either the diagonal or “anti-diagonal”.

The full width of the dq,dq peaks at the baseline are
significantly broadened by the apodization of the limited dataset
that was recorded. The dq,dq peaks are within the range of 6.9-
7.6 MHz in one dimension and 3.4-4.2 MHz in the other. The
peak widths in both dimensions, after considering that these
are baseline-to-baseline widths and that there is significant

Figure 5. Low-frequency region of the HYSCORE spectrum of 10 mM oxovanadium-EDTA complex in a mixture of water and glycerol at 30
K with τ ) 168 ns, showing the correlations of the14N atom. The contours are logarithmically spaced to reveal the shape of the extended correlation
ridges. The highest contour is set well below the amplitude of the intense dq,dq correlation peaks. A so-called “skyline projection” of the two-
dimensional (2-D) spectrum is shown at the top of the figure.
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experimental broadening, are within the limits for dq,dq peaks
that have been described previously and in Figure 4. The widths
or positions of the dq,dq peaks did not change in HYSCORE
spectra that were obtained at other values ofτ. Also, HYSCORE
spectra measured at other positions in the EPR spectrum showed
the shifts that were expected from the change in magnetic field
but did not exhibit any of the properties of an anisotropic HFI
measured under orientation selection conditions. All indications
are that the hyperfine coupling is completely isotropic. In
addition, the dq,sq and sq,sq ridges seem to have the same
constant width, as expected of ZWRs with apodization.

The very rough hyperfine and quadrupole estimates that were
made from the spectral atlas place this spectrum well within
the weak quadrupole limit. Thus, the maximum magnitudes of
the double quantum frequencies correspond toωextr in both
dimensions, because the hyperfine coupling is isotropic. How-
ever, the experimental broadening causes the peak rather than
the edge to be a better estimate of theωextr. That givesνextr

values (νextr ) ωextr/2π) of 3.78 ( 0.1 and 7.3( 0.1 MHz,
which correspond topR/â values of-3.6 ( 0.2 and-13.3 (
0.2 MHz2, giving an isotropic hyperfine coupling of 4.58(
0.05 MHz andκ2(3 + η2) ) 2.08 ( 0.05 MHz2. The latter
relation leads to the estimation 0.72 MHz< |κ| < 0.83 MHz.

The value ofωextr can also be measured from the dq,sq
correlation ridge near [(7.4,-1]. Because the weak quadrupole
condition is met, this is a C12A ridge, whose maximum frequency
of 7.38 MHz along the center of its ridge is equal toωextr and
agrees well with the value obtained from the dq,dq peak.

Conclusions

The hyperfine sublevel correlation (HYSCORE) spectra of
paramagnetic centers that have electron spinS) 1/2 and nuclear
spin I ) 1 in the presence of isotropic hyperfine interactions
(HFIs) and nuclear quadrupolar interactions (NQIs) of arbitrary
strength have been explicitly considered. The HYSCORE
spectrum, under these conditions, is a set of 36 ridges that have
zero width. An analytical expression in parametric form for the
location and intensity of these ridges is derived and is useful
either for simulating spectra or for understanding their general

features. Ridges for the different types of HYSCORE correla-
tions (the dq,dq or dq,sq or sq,sq correlations, where dq denotes
double quantum and sq denotes single quantum) are found in
strictly delineated regions of the spectrum, when the HFI is
isotropic. This aids both in the assignment of ridges to specific
types of transitions and in the rapid estimation of hyperfine and
quadrupole coupling constants. The application of these results
was illustrated on a HYSCORE spectrum obtained from the
ethylenediaminetetraacetic acid (EDTA) complex of oxovana-
dium. An atlas of simulated spectra in the Supporting Informa-
tion is provided for a broad range of isotropic hyperfine and
quadrupole couplings, for comparison with experimental spectra.

The particular case ofI ) 1 with isotropic hyperfine and
arbitrary quadrupoles treated in detail here does have some
practical importance. We have observed HYSCORE spectra that
seem to have isotropic nitrogen HFI with sharp dq,dq correla-
tions and well-resolved dq,sq and sq,sq zero width ridges
(ZWRs), reminiscent of Figure 5 in several classes of samples.
These include oxovanadium complexes of nitrogen-containing
ligands, such as the EDTA illustrated here and histidine,16

several metalloproteins and oxovanadium complexes of proteins,
and small nitrogen-containing molecules adsorbed onto activated
metal oxide surfaces. The results obtained here are aiding in
their detailed interpretation.

In addition, the exact results obtained here for isotropic HFI
provide a good starting point for addressing the more-difficult
problem of arbitrary HFIs. It is more complicated in two ways.
First, the frequencies are no longer a function of the single
orientational parameterf, but, instead, are dependent on two
parameters. As a result, the ridges no longer have zero width
but have a two-dimensional shape, with the added complication
that a transition frequency in one electron spin manifold does
not map onto a single frequency in the other manifold but rather
onto a range of frequencies. Consequently, the equations for
the shapes of the ridges are much more complicated. Second,
the number of degrees of freedom is greater. Instead of the
quadrupole coupling constant, its asymmetry, and a single
hyperfine coupling, there are the quadrupole coupling constant,
its asymmetry, three anisotropic hyperfine coupling constants,
and the three Euler angles relating the quadrupole and hyperfine
axis systems. Identifying the key spectral features, analogous
to ωextr that would allow rapid estimation of the spin Hamil-
tonian parameters, is much more difficult in the general case.
However, the results for isotropic hyperfine couplings provide
a valuable starting point for the treatment of weak hyperfine
anisotropy, such as that observed in the histidine ligands to the
Rieske iron sulfur clusters3 or for weakly coupled deuterons.

During the development of these specific results forI ) 1
with isotropic HFIs, three important results of much greater
applicability were observed:

(1) The vector formalism developed previously13 to describe
electron spin-echo envelope modulation (ESEEM) for one-,
two-, and three-pulse sequences was extended to describe
HYSCORE spectra. This formalism provides a compact de-
scription that applies to any nuclear spin and to any arbitrary
HFI or quadrupole interactions.

(2) The form of the HYSCORE spectrum in the limit of small
τ was developed. Whenτ is smallsthat is, much smaller than
the period of the largest frequency in the spectrumsthe intensity
of the spectrum then scales withτ; however, the relative
intensities of the different peaks do not change. This feature
makes the shortτ limit very useful for both theoretical and
numerical HYSCORE simulations, because it provides an
accessible standard set of conditions for comparing different

Figure 6. Numerically calculated spectra that are similar to the
experimental spectrum shown in Figure 5. The peak intensities shown
here are proportional to the area of the circles (in the Supporting
Information, where pictures are presented in a scalable form, intensities
are proportional to the radii). The values of parameters are as follows:
a ) 4ωI; κ ) 0.5ωI (left column); κ ) ωI (right column); andη )
0.001, 0.5, and 0.999 for the first, second, and third rows, respectively.
The last row illustrates that some ridges coincide whenη f 1.
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simulations and it is free of the so-called “τ-suppression effect”
that can cause some HYSCORE features to disappear in spectra
that have been measured or simulated at larger values ofτ.

(3) A new method of calculating HYSCORE modulation (or
any other ESEEM) was developed that uses only the spin
Hamiltonian and the eigenvalues but does not require calculation
of eigenvectors or the Mims matrixM. This method is based
on the Cayley-Hamilton theorem and is applicable to any value
of nuclear spinI with arbitrary HFI and quadrupole interactions.
In addition, it simplifies integration over different orientations
to give powder spectra.
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