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Abstract. The transverse electron spin magnetization of a paramagnetic center with effective spin
S = 1/2 interacting with nonquadrupolar nuclei may be presented as a function of pairs of nuclei
magnetization vectors which precess around the effective magnetic field directions. Each vector of
the pair starts its precession perpendicular to both effective fields. The free induction decay (FID)
signal is proportional to the scalar product of the vectors for nuclear spin / = 1/2. The electron spin
echo (ESE) signal can be described with two pairs of magnetization vectors. The ESE shape is not
equal to two back-to-back FID signals except in the absence of ESE envelope modulation. A recur-
sion relation is obtained which allows calculation of ESE signals for larger nuclear spins in the
absence of nuclear quadrupole interaction. This relation can be used to calculate the time course of
the ESE signal for arbitrary nuclear spin as a function of the nuclear magnetization vectors. Although
this formalism allows quantitative calculation of modulation from nuclei, it also provides a qualita-
tive means of visualizing the modulation based on simple magnetization vectors.

1 Introduction

The method of electron spin echo (ESE) spectroscopy [1] is quite effective for
determining the structure of paramagnetic centers (PCs) and for studying nuclei
immediately surrounding the PC. The spin echo signal provides information on
the electron-nuclear hyperfine interaction through the periodic modulation of the
echo intensity known as electron spin echo envelope modulation (ESEEM) [1-
4]. This phenomenon makes it possible to determine accurate magnetic resonance
parameters that can be used to draw valid conclusions about its physical and
electronic structure.

In the field of magnetic resonance we usually deal with spaces having large
number of dimensions. For example, a paramagnetic center with spin S having
one nuclei with spin 7 has [(2S + 1)(2 + 1)]> — 1 degrees of freedom. The sys-
tem behavior can be described as the movement of a vector in the multidimen-
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sional space. Unfortunately, the high dimensionality results in a complicated de-
scription of related phenomena that is difficult to visualize. The most understand-
able and intuitively clear situation occurs where the observables can be presented
as the motion of a few vectors in subspaces having only two or three dimen-
sions. In such cases a “vector model” may be introduced that draws on our in-
tuitive understanding of mechanics and angular momentum in three dimensions.
A well-known example of a vector model is the Bloch equations for spin mag-
netization motion in external magnetic fields [5]. As far as ESEEM is concerned,
there are no vector models which quantitatively describe the phenomenon.
W. B. Mims and coworkers [6] (see also part 1 of ref. 2) used a vector model
as a qualitative description of ESE modulation but it was neither quantitative nor
extensible to other pulsed electron paramagnetic resonance (EPR) signals.

In the present paper we describe a quantitative vector model for modula-
tion which appears in both free induction decay (FID) and ESE signals. This
model results from an analysis of the time course of the echo signal and the
free induction behavior. Polarization operators [7] are used to obtain an ana-
lytical expression for the two-pulse ESEEM for a PC having nuclei with arbi-
trary spins. It is readily extensible to more complex forms of ESEEM such as
the stimulated echo and HYSCORE. Polarization operators make it easy to
calculate the integrated echo intensity that corresponds more closely to the
experimental measurement than does the traditional calculation of the echo peak
intensity.

In addition, the polarization operator formalism is readily extendable to high-
frequency EPR at low temperatures or to high-spin systems where the high-tem-
perature approximation breaks down and the electron spin states are highly po-
larized.

2 System Hamiltonian

Let us consider the case of a radical with electron spin S = 1/2 that interacts
with N nuclei having spins of /, (» numbers the nuclei, » =1, 2, ..., N). The
hyperfine interaction (hfi) of each nuclei is characterized by two quantities: the
isotropic hfi constant a, and the anisotropic hfi tensor T,, Tr(T,) = 0 (all param-
eters of the spin Hamiltonian are assumed to be in the angular frequency units,
rad/s). Both hfi parameters can vary widely with respect to the nuclear Zeeman
frequency ,. For convenience we will assume the anisotropy of the g tensor of
the unpaired electron to be small so that its spin is quantized along the direc-
tion of a large, external magnetic field which defines the z-axes of both the labo-
ratory and the rotating frames. The spin Hamiltonian for the coupled electron
and nuclei in the rotating frame for the electron spin in the absence of the mi-
crowave (mw) field is

~ ~ N A A A A ot
H, =808, + (a,S 1, +ST, -1, +w,l. +1Q,1). (1)

rPztrz ztr 7
r=1
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Here dw is the difference between the mw carrier frequency @ and the reso-
nance frequency, @), of the electron spin of the PC in question in the absence
of any nuclear couplings (8w = @, — w). The vector 7, is defined as the z-
row of the anisotropic hfi tensor of the r-th nucleus in the laboratory frame,
dot denotes the scalar product of the two vectors, and Q, is the nuclear qua-
drupole interaction tensor. The rotating frame for the electron spin is chosen
here because the phases of the mw magnetic field during action of the pulses
and of electron transverse magnetization are well defined only with respect to
this frame.

Let us write the spin Hamiltonian Eq. (1) with electron polarization opera-
tors which are defined as [8]

P =S ExS, @)

with £ being the identity operator. These operators are also projection operators
onto the eigenstates of the electron spin. With the above operators the Hamilto-
nian Eq. (1) is

o, = B, {87"’ T ZKm - “7)1 F (D) linr}}

+P {—57“’ + ZKw E ﬂjfﬂ A ?,Q,.f,} NG

Equation (3) clearly shows that the system consists of two subensembles which
could be characterized by the quantum number of the electron spin. We wish to
emphasize that the two terms at the right-hand side of Eq. (3) do commute with
each other. Equation (3) is equivalent to the standard high-field approximation
for the electron so that the Hamiltonian is block-diagonal with respect to the elec-
tron spin quantum number m;.

We now define quantization axes z;, for each nuclear spin subensemble along
the net hyperfine and zeeman fields as follows:

- 1 1 1 1
k' ,=—|+-T,, =T, w,*+—(a, +T. 4
rx a)r’+( 2 rx 2 ry I 2( )j ( )

. T2+ T2 1 ’
with o, = T+ , iE(ar +T)) (5)

and ];r,,t being the unit vectors along the respective z,, axis for mg= +1/2 or
—1/2. The rotating frame Hamiltonian then can be reduced to
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A

O){?/}' = f)+ |:67w+ Z(a)r,+[rz,'_+ +[irQr?r ) :|+ P |:_87+ Z((()I — r7 I IA )j| (6)

Now we can calculate the evolution operator of our system during a free pre-
cession period where there is no applied mw magnetic field

U (t) = exp(ue ) = exp{ltP [—+ Yo, 1, +1Q1 )}}

Xexp{th [—8——#- Z(a)rf e ILYQ,,ILr )}} @)

The set of polarization operators (2) and the raising and lowering operators .§‘i
given by

S, =8, +i8, (8)

provide a simple and convenient basis set for the density matrix in each electron
spin subspace. This set is easier to use as compared with a more traditional one,
E, S, S S due to more 31mple multiplication properties given by P P =39, P
S,8;= (1 —8,)P, =(1-8,,8, P,S,= SH/BS (a, =+, —) Here S5
is the Kronecker delta.

With the series expansion and properties of polarization operators, one ob-
tains

explP LTy =1+ Sy p e -1, )

where F is any arbitrary function of the nuclear spins operators. Thus one can
rewrite Eq. (7) as

U, () = (P + exp[ 62 ot )111@@))[[1 + exP(_lSTa’fj ﬁk(r)j
xp( 82 jPK (Z)+exp( 82‘”)}3_1%_(;), (10)
where nuclear subsystem evolution operators are introduced for each subensemble,

)}. (11

These nuclear operators are products of individual operators of each nuclear spin
because the operators for different nuclei commute with each other,

Nl)

ki (t) = exp{ltz(a)r,+f;‘z,f+ i Q
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K. =TIK,.0), (12)

K,.(0) = explu(@, .1, +1,Q,1, ). (13)

The relations (10) and (12) are the mathematical foundation for the ESEEM “product
rule”.

For convenience we will make some assumptions about the mw pulses in
order to simplify discussion of the evolution of the system following them. We
will explicitly consider the simplest situation of ideal “hard” pulses where the
whole spectrum of every PC is excited and the pulses can be described as delta
function pulses with operators

Upn (¢n’ @n) = exp[l @n( S; cos ¢n + Sy Sin ¢n)]

= Ecos(®2” j—i— 24( S; cosg, + S; sin ¢n)sin(®2” j , (14)

where ¢, is the phase on the n-th mw pulse in the rotating frame with respect
to the first pulse, that is, we take ¢, = 0, and @, is the “turning angle” of the
electron spin by the n-th mw pulse. The case of narrow band excitation was con-
sidered in ref. 9, see also ref. 4 for more sophisticated techniques that are readily
incorporated into our formalism. The approach to the semiquantitative analysis
of the manifestation of the finite amplitude of mw pulses in ESEEM spectros-
copy was suggested in ref. 10.

3 Calculation Scheme

We seek to describe the evolution of the spin system following a number, N, of
applied mw pulses with the focus on the simple situations N, = 1, 2 or 3 corre-
sponding to the free induction decay (FID), primary ESE and stimulated ESE
signals respectively.

The signal measured by a modern pulse EPR spectrometer consists of two
parts — the “in-phase” and the “out-of-phase” components of transverse magne-
tization. Both quantities can be measured simultaneously and are proportional to
the electron transverse magnetization V' given by

V() =V, (6) +1V,(t) = Te(S, p(0)) . (15)

Here p(f) is the density matrix of our system in the rotating frame. The out-
of-phase (V) and in-phase (V) components of the signal are given by the real
and imaginary parts of V, respectively. The relation (15) means that the broad-
band detection system is used. To emulate narrow band detection discussed by
Zhidomirov and Salikhov [9], frequency filtering or integration of Eq. (15) may
be used [10].
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For our purposes, we can describe the evolution of the spin system density
matrix in the form

pO)=Ust =t )UG y PU U, (= 75) . (16)

Here the superscript plus denotes the Hermitian conjugate of an operator. The
evolution operator U, N, =UU,.. U,UN for the time period between the end of
the first mw pulse and the end of the last pulse describes free precession be-
tween pulses and the action of all pulses except the first one. The quantity 7y is
the total time after the first pulse and equals the sum of the time intervals r,
between pulses numbered i + 1 and i,

N,—-1
=> 1, (17)

p; is the density matrix immediately after the action of the i-th mw pulse, thus
giving for p,

p=U,pU, . (18)

p, 1s the initial density matrix, usually at thermal equilibrium. In the high-tem-
perature approximation

hv, =« S
0§ =—M,S,.
kTTr(1)

Py~ - (19)

The substitution of Eqs. (14) and (19) into Eq. (18) supplies us with the system
density matrix immediately after the action of the first mw pulse,

P =M,[S sin@ — S cos@]. (20)

We note that p, does not depend upon the state of the subsystem of nuclear spins.
The case of partial or selective excitation when p, is also dependent on the
nuclear spin operators will be considered in a separate paper.

The trace at the right-hand side of Eq. (15) allows us to make calculations
easier with Eqgs. (15) and (16) and the relation Tr(AB) = Tr(BA). One can ob-
tain

V(t) - TI'(S UJr (t )Uev N perv,Npr (t/))
= Tr(U ()S,U} (W4, AU ,) = THM () py, )+ 1)

where ¢ is the time after the last pulse,
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V=t—r1,, (22)
M.()=U,08.U; @), (23)
and Py, = U;/,Np perv,Np . (24)

An important feature is that the operator M . 1s independent of any previous his-
tory of the spin (which is contained in pr) and needs to be calculated only once
for a given spin Hamiltonian. If needed, M, can be integrated over time inde-
pendently of p to correspond to the use of analog integration or low-pass filters
in data acquisition, as is typical in ESE measurements. This particular property
is more useful for the FID, the stimulated echo and HYSCORE pulse sequences
where the observation window is typically fixed relative to the last mw pulse
and a single calculation of M . can be used for an entire dataset. In contrast, the
measurement window in a two-pulse echo measurement changes with respect to
the final pulse in order to track the position of the electron spin echo so that
for each point in the dataset a different function of M . is generally required.
After simple algebra making use of Eq. (10) one can obtain from Eq. (23)

M (1) = S, exp(idn)K, ()K* (1) = S, exp(Bewt) K, (1)K (1) . (25)

The electron and nuclear motions during the free precession period are separated.
It is useful to introduce the nuclear modulation operator N,

N() = K:(OK (1) = K, (-DK (1), (26)
so that Eq. (25) becomes
M (1) = S, exp(idwr)N(~t) . (27)

With Eq. (12) one can write the modulation operator of the whole system as a
product of modulation operators of individual nuclei,

N(I)ZHNr(f) (28)
with N.(t)=K, (-OK,_(1). (29)

In the most general case the density matrix of a PC with § = 1/2 may be writ-
ten as

pt)=S.f,.(O)+S_f_(t)+P.f, . ()+Pf, (D). (30)
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The operators f”st, f - are functions of the nuclear spins and depend on the spin
system history. In appendix the dependence of these operators immediately fol-
lowing a number of mw pulses is found. One can write a formal expression for
the signal Eq. (21) with Egs. (24), (27) and (30)

V)= Tr[S exp(d ot )N(— t)(S+ﬂ+P +8 f » +Pf +Pf )]
- exp(lSa)t’) nucl[N(_t )f:v—p] > (3 1)
where subscript “nucl” means that the trace at the right-hand side of Eq. (31) is
taken over all nuclei.

The initial values of the operators, f 4+ (@ =p, s), can be found with Eq. (20)
and Eq. (A2) from appendix

fl = —éMO sin®,, f1= éMO sin®,,
o1 o]
e = —EMO cos@,, = EMO cosO,. (32)

In the hard-pulse limit, these are scalar functions because the density matrix does
not depend on the nuclear spin operators. .

The second term in Eq. (20), proportional to the operator S,, produces an
FID-like signal after a second pulse or additional echoes after a third pulse. Such
signals are unwanted when the focus, as in this paper, is on the primary or the
stimulated echo in two- or three-pulse sequences. The unwanted signals gener-
ally are removed by means of phase cycling and so we truncate Eq. (32) to con-
sider only those signals arising from transverse magnetization during 7,

fl. =Fsin6, fl, =0. (33)
Now we are prepared to calculate the signal Eq. (31), as a function of the
number of applied pulses in the final form. First, we want to summarize our re-
sults so far. In Eq. (21), ¥(¢) = Tr(M. (¢ )py ), is the detected signal, M, (¢') is a
function only of the spin Hamiltonian and the time following the final pulse while
Pw, is the spin density operator at the end of the final pulse and does not evolve
durmg the detection period. Consequently in this formalism, the experimental
practicalities of detection, such as an integrator window, are separated and can
be treated independently of the spin density matrix and its preparation.

4 Free Induction Decay

In the simplest case of N, =1 the quantity measured is the FID and ¢ =1 in
Eq. (31). After substitution of Eq. (33) one can immediately obtain for the nor-
malized signal
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Ve () = _t sin®, exp(dwt)Tr, (1\7 (-1)). (34)

r.nucl

Application of Eq. (28) leads to a “product rule” for the FID signal and
merely reflects the fact that the frequency-domain EPR spectrum is the con-
volution of the hyperfine structure from each of the nuclei. As expected, the
Fourier transform of this FID is the EPR spectrum of the system in the fre-
quency domain.

The modulation operator is easily calculated in a final form in the special
case of I = 1/2 for all interacting nuclei r. In this situation the quadrupole in-
teraction is absent so that Eq. (13) becomes

A o, .t — 2| ot
K. .()= cos[ 2” J-l— 2k, 1, sm( 2” j . (35)

The scalar (dot) product at the right-hand side gives lgr’,i -1 EIA,,Z;+. After
simple algebra (the equation (XIII.83) from ref. 11 was also used in the

form (G, 1)G,-1)=(1/4)G, -G, +(/2)(G, ®§,) I here) one can obtain for the
modulation operator of the r-th nucleus with spin 1/2,

% @, +t @, _t r r . @, +t . @, _t - 2
N, (t) = cos| —— |cos| —— |+ k|, -k, _sin| —— |sin| —— |+ 2:4,(¢¥)- I,. (36)
2 2 ’ ' 2 2
. . (ot o .t) - [(o.t w, t
where q,(t) = k] _sin| —— |cos| —— | — Kk, sin| —— |cos| —=
’ 2 2 ' 2 2

= (o). (.t
+k/, ®k_sin 2 sin 2 . 37

Here symbol ® denotes the vector (cross) product of the two vectors. The direc-
tions of the effective magnetic fields l;:i are given by Eq. (4).

The first two terms in Eq. (36) account for the in-phase electron spin coher-
ence of the form S, that appears in the signal while the last term accounts for
the antiphase coherence or S,/ in the signal. This antiphase coherence plays an
important role in the ESE signal as shown below. Yet, it makes no contribution
to the FID signal because it has zero trace, or in other words, because the EPR
spectrum is symmetric about its center.

These equations can be rewritten in a more compact form with a pair of auxil-
iary magnetization vectors i, (¢) defined as follows,

o, .t

~ N N . -
i, . (t) =k, cos[w; } +m, sm( 2* J , (38)
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where lgr is a unit vector perpendicular to both effective field directions, l;,f, N
and k! _,

. ki, ®k!_
P el (39)
|kl ® k|

and the vector m,_ is perpendicular to both k’ and k These vectors are
shown in F1g 1, along with two sets of orthogonal axes defined by the unit vec-
tors {kr+, ., k} The vectors £, . (¢) describe the nuclear magnetlzanons from
the two electron spin subensembles. At the end of the first microwave pulse, both
4, .(t) lie along the direction k, (see Fig. 2) and begin free precession around
its own respective effective field directed along k.. but scaled to one half of
their real strength. Auxiliary vectors with the same properties appeared in the
theory of pulsed ELDOR spectroscopy when the finite amplitude of mw field
was taken into account [7].

The vector, k,, is undefined when the directions of the effective magnetic
fields E;i coincide (Eq. (39)). In that case both vectors i, (¢) rotate in the
same plane and their initial directions coincide but their precession frequencies
will generally differ. In such situation the FID signal is modulated by the hy-
perfine splitting but the modulation of the ESE envelope disappears [3]. When
the directions of effective fields do not coincide, 4., precess in planes that lie
at some angle with respect to each other and intersect only along k’ This tilt
gives rise to the so-called forbidden spin-flip satellite lines in the EPR spectrum,
to additional frequencies in the FID, and to the appearance of ESEEM.

The nuclear magnetization vectors permit Egs. (36) and (37) to be simpli-
fied as

wk',
e |
,//”/ //
",—"’ // +0)hﬁ
~ /
~
~ /

Fig. 1. Effective magnetic fields affecting nuclear spin. The external magnetic field is directed along

the Z-axis (marked with @,) of the both laboratory and rotating frames. The hyperfine field direction

is defined by the orientation of the principle axes of the hfi tensor with respect to the laboratory

frame and by the electron quantum number, it is marked with +a,;. Vector k (see text) is directed
perpendicular to the plane of the drawing.
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Fig. 2. Vectors of nuclear magnetization in three dimensions. The two vectors of effective magnetic
fields (they are marked in the figure) affecting nucleus lie in the horizontal plane. Vertical axis is
perpendicular to both effective fields. At the start moment the directions of the nuclear magnetiza-
tion vectors of unit length coincide (shown in the figure) and are parallel to the vertical axis. Each

vector rotates (precesses) in the plane which is perpendicular to the respective effective field, the
vector and the effective field are drawn in the same style. Its arrowed end draws a circle on the

plane. These circles are also marked in the figure. The vector positions at some nonzero moment of
time are also shown.

N(6) = B (6) B (6) + 2G,(6) T, (40)
qr(t) = ﬁr,+ (t) ® /_’zr,— (t) > (41)
making use of the fact that k/ -k’ _

—/ -/

B 5 = mr,+ : mr,f
Calculation of the FID signal when all nuclei in the system have /= 1/2 re-
quires just taking the trace of Eq. (40),

Ve (¢) = 1sin @, exp(1d a)t)H a, . (0)-p, (1) (42)

with the relation Trnucl(N(—t)) = Trnucl(](/(t)) for nuclear spins of /= 1/2.
These results provide a “vector picture” of FID formation in the presence
of nuclear spins on the basis of the familiar precession of nuclear spins in their
respective effective magnetic fields. The most important feature is that the mea-
sured quantity is a scalar product of the vectors whose evolution in time is
readily predicted. It is interesting to note that these nuclear magnetization vec-
tors were suggested by Mims [6] to explain qualitatively the ESEEM phenom-
enon but no quantitative relationships similar to Egs. (42) or (56) were found.
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5 Two-Pulse ESE

Now we consider the primary ESE signal produced by two mw pulses with a
time delay 7 between them. The relevant operator f2 in the spin density opera-
tor is derived in appendix in terms of the modulation operator as

f2 = 15in@ [exp(wr)q,N* (7) — exp(2d, — 8w7)p,N(7)], (43)

where the probability, p,, of an electron spin flip under the action of i-th mw
pulse and the complimentary probability, g,, for the electron spin to retain its
projection value are introduced

O, O.
c=sin?| = |, . =cos?| =L |. 44
1z (2] 4 (2) (44)

The first term in the curly brackets in Eq. (43) leads to a FID-like signal and the
second term gives rise to the spin echo. The FID-like signal disappears after av-
eraging over an inhomogeneously broadened EPR spectrum but it can also be elimi-
nated by phase cycling of the second pulse, for example, in the form

72 _ l 2 — _ 72 = 1
J-(ESE) = 5 {f (9, =0)— 1~ (9’52 > )}
= —1sin@ p, exp(—zScor)]\AI (7). (45)

The echo signal has its expected maximum value close to the time 27 and can
be calculated by substitution of Eq. (45) into Eq. (31),

{
Tt (1)
where t" =t-2z 47)

VQr+1t") = sin @, p, exp(dwt”) Tt [N(—7 — t")N(7)], (46)

In our limit of delta-function hard pulses, the moment of exact magnetization
refocusing occurs at # = 27 and the ESE signal is

- . . (6, - o
V(2r) = Tj(l)sm O, sin? (7) Tr JN(—7)N(7)]. (48)

Use of Eq. (28) leads to the product rule for ESEEM [3], and for the time course
of the ESE signal

V(2r +1") = -/ (0) exp(szt”)ﬁK(Zr +1Y. (49)

r=1
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Here V.Qr+1t") = Tt [N.(—7 — t")N,(7)]. (50)

Trnucl (1)

Equation (49) and the product rule are valid at every point in time after the
second microwave pulse in the limit of delta-function mw pulses. However, it is
a subtle but important practical point that the use of boxcar integration or most
other forms of bandwidth limitation on the ESE signal Eq. (49) during the time
t" leads to violation of the product rule because the integral of a product is not
equal to the product of integrals.

This expression can be simplified easily in the case of / = 1/2 nuclear spins.
After cumbersome algebra one can reduce the operator at the right-hand side of
Eq. (50) to

N,(~z = ")N,(0) =1, . (~c = 1") - i, (~1 =)l . () B, _(7)]

=g, (-7 =1 ¢, O+ 2{[4, , (=7 = 1") - &1, (=t = 1")][4,(7) 1]

i, (1), (ONG, =z =) - L1=[G,(~t 1) ® G, ()] 1} . 1)

After substitution of Eq. (37) into Eq. (51) we obtain

V,Qe+1") =14, (~7—1")- f, (=7 =), () 4, _(7)]

~f, (-t =)@ f, (~t— 1] [, (DO 4_(D].  (52)

This is a vector picture for the ESE signal on the basis of the same simple
nuclear magnetization vectors. But the resulting equation is much more complex
than the one for FID, Eq. (42). This additional complexity is due to the antiphase
coherence mentioned earlier which appears in the last term of Eq. (52). These
vector cross products are difficult to visualize. In addition, there is only partial
separation of 7 from ¢”.

Equation (52) forms a starting point for alternate expressions. With Eq. (38)
one can rewrite Eq. (52) in terms of the coordinates of the nuclear magnetiza-
tion vectors. After a long chain of trigonometric transformations the above for-
mula becomes

. CU, +t” a)y 7l(” ) a)r +t” ) a)r 7ZL”
V. (27 +t") = cos| — cos| —= + cosf sin| — sin| —=
2 2 2 2

: (o, (c+t")) (o (+1")) (0.7 (0.7
—2sin?fB sin| —= sin| —= sin| —— [sin| —— |. (53)
2 2 2 2

Here p is the angle between the two effective magnetic fields, Eq. (4), which
affect nuclear spin,
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T 1 ]:’% + ]:2 + ar + 7:'2 ?
cosB=k., -kl _ 2 -=7 ( ) (54)
’ o, 0, 4
> (T2 + T2
and sin?f3 = o1, *1,) (55)

(@,,0,_)

The ESEEM amplitude is proportional to sin?f. This form of the equation easily
reduces to the classic expressions of Mims and Zhidomirov and Salikhov for
ESEEM when t” = 0. Eq. (52) can be rewritten alternatively as

V,Qe+1") = A, (") i, (")
A, (T =) ® i, _(~t— [, (DO R, (D],  (56)

ot
where I, .(6) =l sin(”; j . (57)

Equation (56) is useful because it clearly shows partial focusing of the electron
magnetization at " =0 (¢ = 27). It is important to note that Fourier transfor-
mation of the ESE signal with respect to time ¢” does not reproduce the EPR
spectrum in the frequency domain as in the case of the FID. This effect would
be predicted on the basis of the results by Zhidomirov and Salikhov' [9] and
was later demonstrated in two-dimensional (2-D) ESEEM spectra [12]. The dif-
ference is caused by the term in Eq. (53) proportional to sin’f (compare also
Eq. (56) with Eq. (42) for the FID). It does not add additional frequencies to
the spectrum of the ESE signal but changes the relative intensities of the spec-
tral lines. This term also makes the right-hand side of Egs. (52), (53) and (56)
neither an odd nor an even function of the time ¢” thus producing potential
asymmetry in the ESE signal. The distortion is proportional to the amplitude of
the ESE envelope modulation.

6 Stimulated Echo

When three mw pulses are applied to the system in question, several echoes
appear as a response. Only two echoes are of interest here, those produced by

'Tt was shown that the modulation pattern should be different in the cases of broad-band and nar-
row-band detection of the ESE signal. This proves that the ESE signal is not proportional to two
back-to-back FID signals. If the suggestion about the two signals proportionality were true for the
system demonstrating the ESE EM effect, the echo signal would be presented as product of the
two factors, Vigeem(27+ 1) = Vip(t")Vem(27). Here Vi, (27) is the well known function describing
the modulation pattern. In that case, any manipulation with bandwidth of the receiver at the stage
of the signal detection would lead to some transformation of the first factor but could not affect
the modulation pattern. The theoretical and experimental results cited prove that the ESE signal
cannot be factored in such a manner.
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the cumulative action of all mw pulses, namely, the stimulated and the refocused
echoes. By exclusion of all FID-like signals and two-pulse echoes one can re-
duce Eq. (A16) from appendix to

2= —isin@1 sin@, sin@ , exp(—dwr,)

X{K_(—1)K, (—1)K_(7, + 7,) + K, [~(7, + 0,)]K_(r)K . (7;)
+i Sin@1p2p3 exp[zSa)(q -7 )]I%+ (_Tz )]%7 (_T] )1%+(11)I%7(72) s (58)

where ¢, = ¢, = 0 is assumed for simplicity. The first term of Eq. (58) is re-
sponsible for the appearance of the stimulated echo signal and will be briefly
considered below, the second one produces the refocused echo if z,> 7, and oth-
erwise the tail of the “virtual” echo.

In the case of the stimulated echo, 7, = 7 and 7, = 7. The echo signal ap-
pears close to the time 7+ 27 With Egs. (31) and (58) one can find

l

Vopse (T +27+1¢") = —msin O ,sin @ ,sin O exp(1dwt”)
XTr, AN(=7 —")[K,(~( + T)K (0)K (T)+ K (-T)K,(—0)K_(z +T)]}, (59)
with " =t—2r—T. (60)

We can present Eq. (59) in the traditional form of the sum of two terms,
Vopsg (T +27+1") = —isin O,sin @, sin O, exp(bwt”)[V, +V_], (61)

where each term may be calculated in accordance with product rule [3],

v =TI7.. (©)

with vV

rx

=———Tr, [N, (-t ="K, ,(-T)N,(0)K, .(T)]. (63)
' Trnucl(l) a .
After a long chain of transformations one can obtain
V,. =V,Qr+1") +sin(@, DG,(-7 — ") ®§,(0)] k.,
. a)y +T — " — "
+2sin’ (‘TJW" ~ QK 1[G, ®K.,  (64)

where the first term describes the primary echo signal and is given, e.g., in Eq.
(52). An alternative form is
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” : . a)ri(z--‘rt”) . a)rTrT . a)r +(2T+t”)
V,.=V.2r+1") —sin(w, . T){sin| — 2 sin| —— |sin| —=

2 2

(o (c+t)) (o.7) . [0..Q2r+1")
+cosf sin| —= sin| —— |sin| —=
2 2 2
) 0. T (o .(+t")). (o0.(c+t")). (0.7). (0.7

+2sin?| —= sin| —= sin| —= sin| —— |[sin| —=

2 2 2 2 2

i (o (z+1t7) o ., (t+t")) . (0.7 0, .T
—sin?f sin| —= cos| —= sin| —=— |cos| —= . (65)
2 2 2 2

The time course of the stimulated echo signal is different from that of the pri-
mary ESE. They coincide only when 7 = 0.

7 Recursion Relations for 7> 1/2 in the Absence of NQI

We can gain considerable insight into the problem of ESEEM from nuclei with
large nuclear spin but vanishing quadrupole couplings by considering the ques-
tion of two equivalent nuclei.

Let us examine a PC that interacts with only two hypothetical equivalent
nuclei that have identical hfi and nuclear zeeman interaction but different nuclear
spins: one with an arbitrary spin /; > 0 but the other with /, = 1/2. The Hamil-
tonian in this case becomes

:

+P {—%‘H (a), —%)(f,z +1) —%T -+ fz)] (66)

@fff,eq = P+|:67w+(w1 +%J(ilz + iZz) +

T-(

I~
b

1
- +
2

The identical parameters lead to the appearance of an additional constant of

motion, the sum of the nuclear spins /g,

I

A

I,=1+1,, (67)

o~
NN I

whose square commutes with the Hamiltonian. One can rewrite Eq. (66) in terms
of the new quantity,

Oyg},eq([z) = 13+|:87a)+ (‘01 +%jizz +_T'Iz:|

+13[—6—“’+(w, —%jizz —%f-fz] (68)
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The total nuclear spin /; cannot change during the time course of a magnetic
resonance experiment with this Hamiltonian, so that there is no intersystem cross-
ing in the nuclear subsystem. In the case under consideration fz can have two
values, Iy = I,=1/2.

The initial equilibrium state of this system may be written to take into
account the additional valid quantum number /;. Instead of Eq. (19) we can
use

Po z_]Mo‘SA‘zZ‘,‘](IlJz)|12><1>: ‘ (69)
12

with | I)(/;| being the projection operator onto the state having the total nuclear
spin /5 and with

21, +1

I.1.)=
9 15) 2021, +1)

(70)

being the probability to find this system in a state with the total nuclear spin /;.
After repeating the previous calculations for the case of these equivalent nuclei
one obtains

V2t +1") = =V (0)exp(Bwt”)V,, (27 +1") (71)

with the normalized modulation

” Q([lalz) Y 4% %
V Qr+t")y= ) —>==Tr [N, (=t —=t")N, (r
eq( ) % 212 +1 nucl[ 12( ) Iz( )]

_ Trnucl[NIIH/Z(_T - ZH)NIIH/Z(T)] + Trnucl[Nllfl/Z(_T - t,,)NII—I/Z(T)] (72)
2021, +1) '

Equation (26) is still valid for the operator ]\A/,E calculation after the substitution
r— Iy and

R, .= exp{z{(w, + %)1& + %f : ?2}} . (73)

Now we can combine the above Eqs. (71) and (72) and the product rules Egs.
(49) and (62) to obtain a relation between the ESEEM signals V,,(7) belonging
to a PC having only the nucleus with spin J,

J+1
V[J](t) V[I/Z](t) = —V[J+1/2](f)+

27 +1 Mm@ - (74)

2J +1



228 A. G. Maryasov et al.

This equation produces the following recursion formula

4 2J —1

I/[J](t) = T‘_]HV[J—l/z](t) V[I/Z](t) - #K]—l](t) . (75)

Here J = 1, Vi =1, V}y;5(?) can be taken from Egs. (52), (53) and (65). Let us

note that Eq. (75) provides additional possibilities for ESEEM calculation as com-

pared with the one developed by Shubin [13, 14] and are closely related to the
results by Ponti [15].

Now it is possible to derive a vector picture for the ESE signal for a system
with arbitrary nuclear spin / in the absence of NQI with Eq. (75) with the help
of either Eq. (52) or Eq. (56).

For example, for /=1 Eq. (75) gives

V() = w , (76)

which can be expanded to

Ve +17) = %{[ﬁ,.,+ @) B, (P -1
4L (") By (L, (7~ ) ® iy, (—7 = )] [, (0) ® fiy, (0]
+4{[/_1u,+ (—r—1")® [ﬁr,f (—z—1")] [:Z'ﬂr,Jr(T) ® ﬁlr,f (D1} 77

The above equation is more complicated than that for a single 7 = 1/2, but it
demonstrates the possibility to represent the ESEEM signal for any nucleus of
arbitrary spin in the limit of vanishing quadrupole coupling in terms of the same,
simple precessing vectors of nuclear magnetization.

8 Conclusions

A quantitative description of the effects of nuclei with negligible quadrupole
couplings on pulsed EPR signals is developed in terms of simple products of
vectors moving in a 3-D space. These vectors correspond to nuclear magnetiza-
tion precessing in the combined effective fields of the external magnet and the
hyperfine interaction. There is an effective field for each electron spin projec-
tion mg and the time evolution of the nuclear magnetization vectors is determined
only by the precession frequency in each effective field and the angles between
the effective fields. The simple vector motion is the same as that described by
the classic Bloch equations in the limit of negligible spin relaxation and can be
readily visualized. The different experimental pulse sequences produce signals that
are vector and scalar products of these simple vectors, however the complexity
of the expressions increases rapidly with the number of microwave pulses and
the nuclear spin 1.
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This vector description provides a simple route to the quantitative calcula-
tion of ESEEM modulation. In addition, the motion of the vectors is quite simple
and allows a qualitatitive visualization of the time course of individual terms and
products in the ESEEM equations.

This vector description produces two other important results. The first is the
formal result that the pulsed EPR signal is the mathematical trace of the product
of two operators. One is the density matrix operator describing the effect of all
the microwave pulses and the evolution periods between them. The other opera-
tor is the evolution operator for magnetization following the final microwave pulse
and is independent of the history of the spin system before that detection pe-
riod. As a result, it is possible to consider the detection period with any analog
integration and filtering independently from the microwave pulses and the vari-
able or swept delays between them that are used to generate the pulsed EPR
signal. For the typical stimulated echo or HYSCORE measurement, only a single
calculation of the operator for the detection period is necessary.

The other important result is the recursion relation obtained for nuclei with
arbitrary spin and no quadrupole interaction. This was obtained from an analysis
of hypothetical equivalent nuclei. This recursion relationship allows the use of
the same simple nuclear magnetization vectors for all nuclear spins in the limit
of negligible quadrupole interaction.

Appendix. Density Matrix as a Function of Pulse Number

Let us assume that we know p,, the density matrix immediately after the action
of i-th mw pulse. One can write Eq. (30) in the form

p=S S S fL+ B + P ] (A1)

The operators, f, can be found easily,

fi = Try(S_p), i =Te, (S, p),
Ti = Tra(B.p), oo = Try(P.p,). (A2)

Here the subscript “el” denotes that trace is taken over electron spin variables.
The density matrix after (i + 1)-th pulse can be calculated as

Pin1 = U}[} (7530141, 0.0 PU 1, (734,41,6,11) (A3)

where the evolution operator

Uy (75041,6050) = U (t)U 1 141)(841,0,41) (A4)
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describes free motion during time 7; followed by the (i + 1)-th mw pulse. It may
be easily found from Egs. (10) and (14),

U,(7;4,0) = cos(@?j{exp(l6g)rjﬁ+k+ () + exp(— ZSCMJPIQ (7)}

+zsin(@?j{exp(’6m ¢)S +(r)+e.=xp[z¢— ’i‘”js K (¢ )} (A5)

It is now possible to express the operators f 1 in terms of f " applying Eq. (A2)
with the substitution of (i + 1) for i and using Eqgs. (A3) and (AS5). The step-
by-step calculations are presented below for f ™1 and the final ralations for all
the other operators. The indices (i + 1) for ¢ and ®, and i for 7 are omitted for
the sake of brevity. At the final stage, the relations Trl[S 1=0, Trl[P]—l
were used. The results are:

XS, Ji 4 ST+ P+ Pﬁ;wﬁ,(r;«ﬁ,@)}

=Tr, ﬁcos(%]exp( 18;()1)[1) K L= r) L+ S K (—r)f!;]
—zsin(—}exp(—m + lawTJ[S K (= r)f’ +PK (- T)f’ }
X{cos(@?j{exp( lsg)rjlili (o) + exp( IS?T]P K (7)}
+zsin(@?)[exp(ﬁ% - 1¢j§+1€+ (7)) + exp(zqﬁ — ISEMJS K (r)}}]

= exp(—ider)cos’ (%]K (~0) /1, R_(2) + exp(Bor — 2u)sin’ [@?j

oD
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XK (1) fi K, (1) + éexp(—l(/ﬁ)sin@

X{K, (~0) [, K () = K (-D)f} K (D)}, (A6)
/= exp(id@r)cos? (%jK (—0)f1 K, (1) + exp(2g — dwr)sin [@?j

XK, (=0) [/, K (1) + Zexp(ig)sin®

X[K_(=0)fi K ()= K.(~0) [1.K, (D], (A7)

S = cos? [@?j& (-0) /i, K, (7) +sin? [@?jK (—7) [ K_(7)

+é exp(1¢ — 13 wr)sin OK, (—r)f;' K (1)

_El exp(—1¢ + dwr)sin OK_ (—r)ﬁ,’;l% (0), (A8)
f;fl = cos? (%jl%(—r)fél%(r) + sin? (@?)IQ (—r)f];;rle+ ()

+El exp(dwr — 1) sinOK _ (—r)fx’;]&r (7)

—é exp(—dar + 1)sinOK, (—7) /1. K _(r). (A9)

We are interested here in signals resulting from the transverse electron magneti-
zation generated by the first mw pulse. For N, =1 we retain only terms gener-
ating transverse electron magnetization so that

fl. = Fsin6), f1.=0. (A10)

pt
After application of a second pulse all four terms in Eq. (Al) become poten-
tially relevant so that

2 =1sin0@, {exp(z&uq — 2u4,)sin? (%j[%(—q)&(q)

—exp(—18wr,)cos> [%J K, (-t)K (7, )} , (A11)

2 =1sin@, {exp(z?ia)z'l)cos2 [%j]%(—zﬂ[@(q)

—exp(2up, — Bwr,)sin? (%j]&+(—rl)k_(71):| , (A12)
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p+

. 1 . . N N
2 = 5 sin @, sin O,[exp(1¢, — dw7,)K, (—7))K_(7,)

+exp(—1, + dwr)K _(—7,)K, (7,)]> (A13)

fp{ = —% sin @, sin O, [exp(dwr, — 1)K (—7)K, (7))
+exp(—dor, + 1)K, (—7,)K_(7,)]- (A14)

In the above formulas we omit terms proportional to cos?(&/2) which lead to
appearance of unwanted signals. The same equation filtering is applied be-
low.

The operators for the third and subsequent pulses are generated in a straight-
forward manner.
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