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Abstract. The analytical expressions for the spectral density of the dead time free electron spin echo
envelope modulation (ESEEM) signal of disordered system are obtained for paramagnetic center with
nuclear spin 1/2 and weak axially symmetric hyperfine interaction. The spectral density is given by the
Fourier transformation of the ESE signal averaged over all orientations. The order of the two linear
operations may be changed. Fourier transformation of the nonaveraged ESE signal supplies us with the
sum of the Dirac d -functions. Averaging of such a spectrum is rather trivial operation leading to the
spectral densities in the final form.

1 Introduction

The method of electron spin echo (ESE) [1] is effectively used to analyze the
structure of paramagnetic centers (PCs) and to study the local nuclear surround-
ing of unpaired electron of free radical. The spin echo signal provides informa-
tion on hyperfine electron-nuclear interaction manifested in echo signal envelope
modulation (ESEEM) [1�2]. Analyzing this phenomenon makes it possible to
determine the magnetic resonance parameters of a system for drawing valid con-
clusions on its structure.

Note that so far there has been no analytical expression in the literature for
ESEEM spectra in a frequency domain although the formulae describing the ESE
signal modulation are simple enough. The analytical dependences for disordered
systems in the time domain have been derived earlier [3]. The response is expressed
in terms of the Fresnel integrals. With this report we are trying to compensate for
a deficiency in the theory.

2 Primary ESE

Let us consider the simplest case of a radical with one nucleus with spin 1/2.
Hyperfine interaction (hfi) is considered axially-symmetric (in this case, it can
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be fully characterized by two parameters: a, isotropic hfi constant and T^, aniso-
tropic hfi tensor component, all parameters of spin-Hamiltonian are measured in
hertz), and small as compared with the nuclear Zeeman frequency nI,

| a |, | T^| ? |nI |. (1)

The microwave (mw) pulses are supposed to excite the electron spin nonse-
lectively as concerns the electron paramagnetic resonance (EPR) transitions.

We restrict ourselves to the consideration of the signals of primary and stimu-
lated spin Echoes whose amplitudes are obtained in a given approximation with
the help of eqs. (36) and (37) from chapter 2 in ref. 2. It is assumed that all
conditions needed for the validity of these equations are met. Leaving the first
nonvanishing corrections due to hfi in cosine arguments, we get
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where t is the interval between the mw pulses forming the ESE signal, Tzq are
the components of anisotropic hfi tensor in the laboratory system of coordinates
(q " x, y, z) with axis z directed along the external magnetic field. In our case
of axial symmetry we get

)1(9 22222 XXTTT zyzx -=+ ^ ,

)31( 2XTTzz -= ^ ,

Qcos=X , (3)

where Q is the angle between the directions of the axis of symmetry and the
external magnetic field.

The relationship following from Eq. (2) may be useful, the relative modulation
amplitude in the ordered system is two times larger than the shift of the peak near
the second harmonic nuclear Zeeman frequency expressed in units of nI. Note also
that Eq. (2) is independent of the nI sign. Thus, in a given approximation it is
impossible to determine the sign of gyromagnetic ratio for the nucleus producing
the modulation effect. Therefore, we assume below that nI ` 0 for definiteness.

To obtain a signal for the disordered system, Eq. (2) should be averaged over
all possible orientations. In the case of axial symmetry this procedure is reduced
to integration of Eq. (2) over X from 0 to 1. However, switching to the frequency
domain gives the same information which is more convenient for interpretation,
because the Fourier transformation of cosines in the right-hand side in Eq. (2)
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gives the sum of Dirac d -functions. This allows integration over orientations for
the disordered system in the final form. In this case, the disordered system spect-
rum will have nonzero value at several segments of the frequency axis. Let us
denote the oscillating part of the averaged ESE signal as F(t ),
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Note that the relative modulation amplitude 22 5/3 ITk n^= . Applying the Fou-
rier transformation to Eq. (4), we get
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In this case c is the numerical coefficient. The F values obey the equations
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The spectrum is an even function of frequency. As follows from Eqs. (5)�
(8), it consists of five groups of lines, namely, two singlets in the vicinity of
frequencies )2nI , and three doublets centered about 0 and )nI . In this case, the
components of each doublet can overlap depending on the relationship between
isotropic (a) and anisotropic (T^) hfi components. The doublets centered about
the nuclear Zeeman frequency ()nI) display a spectral density of an opposite
sign as compared with the other components. Their form coincides with the sig-
nal near zero frequency but they are two times narrower. With Eq. (3), for the
axially-symmetric hfi tensor we get
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In this case, we introduce an auxiliary function
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For F1 and F2, we give expressions of spectral densities for positive values
of frequency. These for negative frequencies can be determined from the rela-
tion F(n ) " F(#n ).

Let us underline that the above relations do not take into account the dead
time of the ESE spectrometer. Its influence on ESEEM is considered thoroughly
in the book ref. 2 (see chapter 3, section II and chapter 6, section VIII, and
references therein).

Note that in the spectroscopy of pulsed electron-electron double resonance
(PELDOR) the ESE signal modulation is also observed for biradicals. It is caused
by the dipole-dipole electron-electron interaction (for details, see ref. 4). In this
case, in the frequency domain the so-called Pake doublet is observed whose com-
ponents could be distorted when the biradical ESR spectrum is partially excited.
To take this distortion of the Pake doublet into account, we have introduced in
[5] the x (X ) function (called the formfactor) and obtained the analytical formula
for its calculation as applied to the PELDOR method. Comparing Eqs. (4) and
(6) of this report with eq. (19) in ref. 5 shows that in the case of ESEEM,
x (X ) " X 2 # X 4. Expressions for F0 (to within constant multiplier) can be de-
rived from eq. (21) in ref. 5 by substituting J D a, w D D T^, and w T D n with
the help of the above expression for the formfactor.

As compared with the PELDOR spectrum (modified Pake doublet), the com-
ponents of the ESEEM spectrum doublets have no singularity points and are
continuous functions of frequency. This is due to the fact that when the exter-
nal magnetic field is oriented along the principal hfi tensor axes, the electron
and nuclear spins are quantized along the external magnetic field and there are
no forbidden transitions giving rise to the ESEEM effect. For ESEEM, the dou-
blet spectrum in the frequency domain shows no singularities and discontinuities.
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The doublet lineshape depends on the relationship between isotropic and aniso-
tropic hfi components, a and T^. As follows from Eqs. (9) and (10), in a given
case, only the sign of the a/T^ ratio can be determined. Figure 1 shows the F1

doublet centered about the nI frequency. In the absence of isotropic hfi (a " 0),
its width at the center of height n1/2 equals T^ to within good accuracy, n1/2 ¿
0.9656T^. The F0 doublet has the same lineshape, it is two times wider and its
amplitude is four times less F1!(n ) ! F1#(n ) " 8F0(2n  # n I). We suggest to call
them the �modulation doublets�.

The spectrum of singlet F2 depends on the only parameter n;, the reduced
value of frequency. As follows from Eqs. (11) and (13), the line near the doubled
nuclear Zeeman frequency has singularity of the inverse square root type at the
frequency
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which can be also used to determine T^ from the experimental data. It is note-
worthy that the singularity has been located correctly earlier (see, e.g., [2], eq. (50)
from chapter 6, and the original paper [6]). Figure 2 plots the spectral density of
F2 singlet vs. a reduced value of frequency.

The relative modulation amplitude and the relative singularity point shift from
the doubled nuclear Zeeman frequency are related via the equation
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Equation (15) can be used to estimate the number of nuclei of the same type in
the vicinity of an unpaired electron, because in a given approximation of weak
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Fig. 1. Spectral density of the modulation doublet near nuclear Zeeman frequency (it is described
by Eq. (10), see text). The value of a/T^ ratio is indicated above each curve. Each component of the

doublet has the maximum intensity at the frequency n " nI ) a/2.
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hfi the relative modulation amplitude will be proportional to the number of nu-
clei (according to the product rule [2]) and the shift of the line will be equal to
the mean one for all nuclei creating the ESE signal modulation.

The above formulae can be readily generalized for higher spins in the ab-
sence of quadrupole interaction. To obtain ESE amplitude within the same accu-
racy T^

2/nI
2 one may use eq. (1) from chapter 7 in ref. 2 as a starting point in-

stead of eq. (36) from chapter 6; this leads to simple multiplication of the modu-
lation amplitude and the spectral density by the constant, e.g., c D 4I(I ! 1)c/3
(this is eq. (25) from ref. 7, see also ref. 8 for details) in Eq. (5) of this paper.
More general description may be based on results of ref. 9, presented also in
chapter 2, section IV of ref. 2).

3 Stimulated ESE

In the case of the stimulated echo signal, of interest is the use of the two-dimen-
sional (2-D) Fourier spectroscopy [10] by times t between the first and second
pulses (conjugated frequency nT) and T between the second and third pulses (con-
jugated frequency nT). In this case, we restrict ourselves to the analysis of the
terms of the type cos(At)cos(BT ). Contribution of this type to the stimulated echo
signal in a given approximation obeys the expression readily derived by trans-
forming eq. (37) (chapter 2) in ref. 2
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Applying the cosine Fourier transformation with respect to times t and T to
Eq. (16), for the 2-D spectrum of disordered system we get
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Equation (18) and (19) contain the product of d-functions which simplifies
integration resulting in
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The frequencies of modulation in times t and T depend on the paramagnetic
center orientation which, in this case of axial symmetry, is determined by the
only parameter, angle Q between the axis of hfi tensor axial symmetry and the
direction of external magnetic field (Eq. (3)). This functional dependence of fre-
quencies leads to the fact that the 2-D spectral density at the nt ,nT -plane differs



86 A. G. Maryasov

from zero only in a few linear and curvilinear segments whose equations can be
derived by equating the arguments of d -function to zero in the right-hand sides
in Eqs. (20) and (21). See also the definition of function j given in Eq. (12).
Note that integrating Eq. (17) over nt , we get the modulation doublet in the vi-
cinity of the nuclear Zeeman frequency as a function of nT . A similar integra-
tion over nT gives the modulation doublet near zero frequency and the singlet
Eq. (11) near the doubled nuclear Zeeman frequency by coordinate nt.

Let us note that the more important for experimentalists case of the 2-D
HYSCORE spectra was the object of the in depth analysis (see, e.g., [11] and
references therein). It will be considered in a separate paper.

Conclusions

Applying the Fourier transformation before the averaging of the ESE signal over
all orientations we get the analytical expressions for the ESEEM spectral densi-
ties of disordered systems for the simplest case, i.e., nuclei with spin 1/2 and
weak axially-symmetric hfi. It is shown for the primary ESE signal that the
spectral densities near zero frequency and near nuclear Zeeman frequency are
modulation doublets which are continuous functions of frequency. The spectral
density near the doubled nuclear Zeeman frequency is the singlet having the sin-
gularity point of the inverse square root type. The 2-D spectral densities of the
stimulated echo signal differ from zero in several linear and curvilinear segments,
the analytical expressions for the spectral amplitudes along these segments are
obtained.
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