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L'he paper describes how the Voronoi-Delaunay approach can be used for investigation
of the structural heterogeneity during the process of liquid crystallization. The basic
geometric structure for the analysis is the Voronoi network (the Voronoi diagram in a
3-dimensional space). Every site of the Voronoi network is associated with a Delaunay
simplex: four neighboring atoms representing the simplest element of the liquid structure.
Ilaving a quantitative measure for the shape of simplexes, we suggest to mark (color)
Voronoi sites according to a given physical criterion. As a result, the structural investi-
gation is reduced to a task of cluster analysis on a network. Evolution of aggregates of
atoms comprised of tetrahedral configurations is studies on an example of Lennard-Jones
liquid crystallization. The experiments show that pseudocrystalline aggregates of pentag-
onal bipyramids spring up along with the genuine crystalline nuclei. The pseudonuclei
can stimulate crystallization at the first stage of the process, but slows it down in the
final stage of fusion of crystal regions. The results obtained are important for in-depth
understanding of the process of the homogeneous crystallization of simple liquids.

Key uords: liquid crystallization, Voronoi diagram, FCC and HCP configurations, simplex
form measures. fivefold svmmetrv

1. Introduction

Structure transformation in liquid, amorphous and crystalline phases is one of
important problems in material sciences. Many questions explaining the process
of homogeneous crystallization of liquids remained unanswered up until present.
Mechanisms of crystalline nuclei initiation, their growth and fusion are not fully
investigated. The process of relaxation and structural reorganization in the amor-
phous phase is a current subject for theoretical and experimental research. Today's
interest in this issue is related to the problem of stability of nanomaterials, and
their aging [11, 14].

One of the distinct features of the atomic substances in these conditions is
their structural heterogeneity. This means that in the sample there can be areas
of various structure, both disordered and crystallized. It is not an easy task to
investigate these structural features. With the help of diffraction experiments it is
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possible to extract only information averaged over a sample, without taking into

account heterogeneity. Computer modeling provides coordinates of all atoms in

a sample, however special approaches are needed to extract physically substantial

information from them.

The traditional statistical analysis of the Voronoi polyhedra, based on study-

ing the nearest environment of an atom [7, 10, 18], is not very helpful in analyzing

the structural heterogeneities. Indeed, the distribution of volumes (for instance)

of the voronoi polyhedra might indicate the presence of porous areas in a system,

but will not reveal their spatial arrangement. Ability to find and analyze regions of

different structure within the model is very important for many physical applica-

tions, including sturCying the process of crystal nucleation. For the purpose of such

analysis, it is possible to use the Voronoi polyhedra. In this case clusters of atoms

having crystalline surroundings represent crystal nuclei. This approach, based on

investigation of clusters of objects bearing intrinsic physical information, and their

spatial distribution, is referred to a general problem of mark correlation [ ]. The

interplay of the objects properties (marks) with the spatial clustering is extensively

used in many applications ranging from studying the structure of the galaxies to

simulating the pores in sandstone [16]'
In our case, in order to study structural heterogeneities in systems of spherical

particles, it is convenient to use the classical Voronoi-Delaunay partitioning of a

space. Then it is possible to proceed from considering atoms with their surroundings

to analy zingDelaunay simplexes, which allows characterizing the structure in more

details. In addition, it is advantageous to use the Voronoi network for studying

spatial correlations. This approach is more productive than to reveal correlations

between objects (atoms) in a continuous space [17].

In the following, w€ use quantitative measures of the Delaunay simplexes to

identify the most typical configurations of densely packed spherical particles. After

that we mark (color) Voronoi network sites (vertices) for the subsequent analysis of

clusters from these vertices. We conducted studies of models with 7000 Lennard-

Jones atoms obtained using Metropolis Monte-Carlo method in NPT ensemble in

boxes with periodic boundary conditions. The sequence of configurations during

crystallization process is considered. The structural heterogeneity which arises

during the process is identified.

2. Preliminaries

The Voronoi diagram is a fundamental structure known for over a hundred

years in mathematics. Presently, it is utilized extensively not only in the computa-

tional geometry area, but in a variety of applied sciences, such as molecular biology,

mechanics, materials studies, physics, climate control, and geography, to name a

few. It is generally defined as a partitioning of the space S into regions associated

with the set of. generators, each of the regions being the location of elements from

S closer to the generator P than to any other generator from S.

The above general definition can be specialized to the set of sites in the tru-
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clidean metric according to Okabe et al. [19]:

1 5 3

DEptNIrtoN .l . An Euclidean Voronoi diagram for a set of generat,ors S in

Rd rs the set of generalized Vorono'i regions

EVor(P)  :  { * .  nd  I  a$ ,P)  <  d ( * , ,Q) . ,  VQ €  ,9  -  {p } } ,

where d(x, P) is the Euclidean d'istance between a po'int x and a generator P € S.

The above concept can be used to describe numerous models corresponding
to real-world phenomena, including dynamics of the fluids [20], structure of the
proteins [6, l2], models of lipid bi-layers [1], growth of the corrals [8], study of
pores in the granular-material systems [16], spatial analysis in GIS [5] and planning

a collision-free path for a robot avoiding enemy attacks [13]. The diversity and
extend of the Voronoi diagram applications, that range from investigation of the
structure of the atom to the study of the global phenomena, is indeed astonishing.
It can be contributed to the mathematical properties of this data structure: the
commonly known are the empty-sphere property, the nearest-neighbor property, and
the duality to another remarkable data structure known as the Delaunay tessella-
tion. It can also be contributed to the notable relationship to other well known
geometric concepts: the all-nearest-neighbors, the Steiner tree, the minimum span-
ning trees, and the minimum enclosing circle problems among others. Finally, it also
can be contributed to the versatility of the structure, allowing representation not
only for the mathematical concept, but also for geometrical, topological, algebraic
and attribute-based information associated with the entities being analyzed.

The present research serves as one more example of the enormous potential
of the Voronoi diagram methodology as well as illustrates benefits resulting from
the applications of this methodology to model analysis. The resulting chapters are
organized as follows. Chapter 3 describes the methodology for Voronoi network for
studying atomic systems. Chapter 4 classifies the local configurations of atoms that
are typical in dense packing of spheres and introduces measures for identification of
such configurations. In Chapter 5 we describe an approach for revealing embryos
of a crystalline phase. The results of the application of the methodology to the
Lennard-Jones model of atoms during the process of crystallization are described
in Chapter 6. Chapter 7 presents conclusions and some observations, as well as
outlines future work.

3. The Methodology Based on the Voronoi Network

To represent the liquid structure and to further study its structural hetero-
geneity during the process of liquid crystallization, we define the Voronoi network.
The Voronoi network is a network of edges and vertices of all Voronoi polyhedra
in a given system built on atomic centers (see Fig. 1). Each vertex (site) of the
Voronoi network in 3D is a common vertex of four Voronoi polyhedra, originated
by four atoms (three atoms in 2D). These atoms define a Delaunay simplex. In
other words, each site of the Voronoi network is associated with a Delaunay sim-
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plex, and, hence, any characteristic of a simplex can be attributed to this site.

Each edge (or bond) of the Voronoi network, connecting a pair of sites, is shared

by face-neighboring simplexes, i.e. simplexes that have the three atoms in com-

mon. Thus, the Voronoi network naturally establishes the neighboring relationship

among Delaunay simplexes.
It is not a hard task to compute the Voronoi network for a system of atoms

(see Okabe [1g] for additional details). The information essential for construction

of Voronoi network can be represented by array {D}, containing coordinates of ver-

tices, and the table of their neighborhood {DD}. So, the Voronoi network contains

geometric information about spatial arrangement of the atomic centers. To comple-

ment it with physical information, we attribute each vertex of the Voronoi network

by a numerical measure. This data is stored in an array {C}. Such value may be,

for example, a volume of a simplex, a radius of a sphere enclosing simplex [17], or

a measure of shape of the simplex (see below). Note, that edges of the network

can be also attributed with physical information. This approach can be useful for

studying empty inter-atomic space. This aspect of coloring of the Voronoi network

is also discussed in other works (see [1, 16]).

4. Simplex Form Measures

Tetrahedron and octahedron are the two local configurations of atoms that are

typical in dense packing of spheres. The identification of those configurations (and

clusters formed from them) is at the core of our attention. Difficulties in such

analysis arise from the fact that in computer models (and even in real physical

samples) there are no perfect configurations. Even in a crystal, atoms are always

displaced from the sites of a crystal lattice due to the temperature fluctuations.

Thus, it is necessary to introduce a quantitative measure, which will allow to relate

a simplex to a given ideal form.

4.1. Tetrahedron
Tetrahedral configuration (Fig. 2a) is the densest local packing of four spheres.

In addition, this configuration is the most favorable for spherical-symmetric po-

tentials of interatomic interaction. Thus the good tetrahedra (close to the perfect

configuration) are present in all dense systems of spherical particles. For identifica-

tion of such configurations, we proposed to use a measure T, called tetrahedric'ity

[15]

DnnrhrrrroN 2 . Measure T (tetrahedricity) is defi,ned as the uariance of the

lengths of edges of a gi,uen s'impler and computed as'.

T - I(to 
- ei)2 1ts 1e.l2

i#i

where ei and ei as the lengths of the i-th and i-tll edges, and (e) is the mean edge

length for a giuen s'impler.
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Fig. 1. The Voronoi network in 2D: a network of edges and verticcs of
the Voronoi polyhedra (solid lines). The Delaunay srmpler is a
triangle (tetrahedron in 3D) defined by atoms, which are incidcnt
to a given vertex of the Voronoi network (dashed lines).

a)

1 5 5

a-a

b)

c)

Fig. 2. Examplcs of clusters comprised of good adjacent tetrahedra. A singlc
tetratredron (a), a pair of adjacent tetrahedra forming a triagonal
bipyramid (b), f ive tetrahedra forming a pentagonal bipyrarnid (.).

At the right, representation of these clusters on the Voronoi network,

sce the text .



1 5 6 A.V.  ANtxn t tNxo,  N4 'L '  Gnvt t lLovA and N 'N '  N{ t i l l \ / l i l ) l i v

Not. that i. the abovc definition thc cocfficicnt 15 corrcspo'rls t. t,l*r *rnt-

lr.r,f tirrr.s thc cliffcrencc bctwee-n edges lc'gths (.er- er) is cor'puted a'rl aclrltlrl

t,ogcthcr. The good tetraheclral configuratio's of atoms i' a packi'g ca' bc fotttrd

zrs .'c D.la'nay sirnprcxcs with varue of r close to zcro. Fig' 3b ilhrstratcs aI)-

plication '{ thc proposed nreas're. wc a'aryzc a small moclcl of cr\rstal with 261-r

^,t,o'rs, obtai'ccl by the Mo'te-carlo method from thc liq'icl ph.sc. wt: show tltt:

:rrrarrgc'rerrt of atoms insicle the box with periodic bou'dary co'<litiorts (trig' l i 'r)

.'cl t 'e voronoi network vertices with small valucs of r (Fig' 3b)'

b)

+ ..\.

c) d)

Model of crystallized sample of Lennard-Jones atoms (a), and variotrs col-

oring of its voronoi network. T-coloring of the voronoi nctwork, sites cor-

respond to good tetrahedral with T < 0.01 (b)' s-coloring of the voronoi

network, sites corresponding to Delaunay simplexes typical for crvstallinc

structures, S

, 9 > 0 . 0 1 2 ( d ) . t r d g e s o f t } r e n e t w o r k c o n n e c t n e a r e s t c o l o r c c l s i t c s '

a)

Fig.  3.

I )pr tNtuoN 3.

t:alkttl n T-coloring of

The ytrocedure of selecti,ng good" tet'ralt'edrul con'ftqurutzorm zs

thc Voronoi nctwork [16, 171'
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This crystal is not perfect, however rows of isolated sites in Fig. 3b show that

it contains areas with the Face Centered Cub'ic (FCC) structure. Tetrahedral con-

figurations in FCC do not share faces. Pairs of adjacent tetrahedron are identif;ed

by rows of short parallel segments (see Fig. 2b). Such configurations are typical for

another dense structure: a Heragonal Close Packing (HCP).

The presence of these two densest structures in one crystal sample is a known

fact and is related with the stacking faults of crystalline planes in the model. At the

same time there are other defects in our model (see below). More complex config-

urations of adjacent tetrahedra are typical for dense non-crystalline packings (see,

for example, [17]). They form irregular branchy clusters and pentagonal bipyramids

(Fig.  2c) .

4.2. Quartoctahedron
The analysis of octahedral configurations is more complex since we need to

consider six atoms. This configuration is not simplicial, moreover, it is degener-

ated, i.e. all six atoms belong to same circumsphere. However, as a result of even a

slightest distortion, the configuration is divided into simplexes that can be analyzed

in a usual manner. The resulting simplexes represent quarters of octahedron (see

Fig.  ) and we refer to this configuration as quartoctahedron. A perfect quartocta-

hedron has one edge which is J2 times longer than the others. Value of measure

T for such simplex is equal to 0.057, however, this measure cannot be used for

identification of quartoctahedra due to the fact that many other simplexes may

also correspond to this measure. For unique identification of quartoctahedra a new

measure Q was proposed [15].

DBntNrtIoN 4 . Measure Q (quartoctaherdisity) zs defined as

e - I (", - ei)' lrc k)' + I ("n - ",.|fr)' ls (")'
i<  j  i * rn

i , i * rn

This measure is very similar to measure T, only now the computation of vari-
ance of edge lengths is taken into account that one edge is tD times longer than the
others. Thus, the coefficients in the above formula correspond to computing the
difference between shorter edges ten times and the difference between a short and
the longest edge ern frve times. To compute Q, the longest edge ern of a simplex
needs to be found first, and then the calculation is carried out according to the
above. It is obvious, that for almost perfect quartoctahedron, the value of measure

Q approaches zero. The inverse is also true.

4.3. Simplex Kizhe
It is necessary to note that at the certain displacement of vertices the octa-

hedron can be subdivided not on four, but on five simplexes [16,21]. The four
atoms located on a plane form the fifth simplex. Such subdivision occurs seldom
and is caused by u configuration where two atoms on each ends of a diagonal of a
square are elevated above a plane. Such simplex was found in [21] and was named
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s,impler Kizhe. To take into account occurrence of such simplexes, nteasure K was

introduced. It is based on the same principle as measure Q, taking into account

that in the simplex which resembles a flat square, two opposite edges have lengths

J2 ti^es longer than the other four edges.

DnrtNtuoN 5 . Measure K (Kizhe) is defined as

K - (",n - e,)2 lk) '  + t  ("0 - " i  lJ i) ' lo (") '

u,,oi*,-

+ t (ko - ",,1fr) '  + (", - ",1fr) ' \  l+k)''  
L  \ . - '  

t ' r t '  /  \  t  /  
/ ,

i f r n ,n

For a simplex that degenerated into a square, the value of measure K is equal

to zero. At small distortions value K remains small. In order to compute the

measure, edges e* and. en are selected as a pair of the longest opposite edges of a

simplex.

When an octahedral configuration is divided on four quartoctahedra, it is rep-

resented on the Voronoi network by a small quadrangle (Fig.au). This quadrangle,

as octahedral configuration approaches the perfect form, degenerates into a point.

As experiments show, the probability of occurrence of Kizhe simplex in computer

models of the densest crystals is less than a fraction of a percent. However when

it arises, instead of a closed quadrangle two short segments result (pairs of quar-

toSedra are separated by Kizhe simplex). If in this case we also color the network

sites whose value K is small, the octahedral configuration will be represented by a

cluster resembling a bow, also shown in Fig. 4a.

b. Determination of Simplexes Typical for FCC and HCP Lattices

We now describe a novel approach for revealing embryos of a crystalline phase.

We need to solve the problem of simultaneous identification of all simplex forms

typical for a crystal. To assist with this task, a special measure S is introduced.

DonlNtrloN 6 . Measure S (suitability measure) is defined as

S -  m in (T ,  Q ,  K) ,

wlr,ere T, Q andK are the tetrahedricity, the quartoctaherdi'sity and Kizhe measures.

It is obvious that value of S is small if one of the specified measures is small.

Thus Delaunay simplexes, typical for the most dense crystal structures, can be

identified using this measure.

Fig. 3c illustrates S-coloring of the Voronoi network for our model. Coloring of

the vertices with values,S < 0.008 allows to identity 75% of "crystalline" simplexes.

Fig. 3c shows connected compositions of rhombuses and trapezes. The former are

typical for FCC structure, the later are common in HCP structure. It is worth

noticing that these rhombuses and trapezes are in fact faces of Voronoi polyhedra

of ttre corresponding structures. Fig. 5 shows local configurations of atoms, con-

I
a'

t
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lr ig. 4. Octahedral configuration (a) and comprising simplexcs: qrrartoctalrcrlrorr

(b), and simplex Kizhe (dcgenerate square) (c). Thc corrcsporrdirrg clus-

tcrs of Voronoi network are shown on the right.

b)

Fig. 5. Characteristic configurations from tetrahcdra and quartoctahcdra

for FCC (a) and HCP (b) structures, and corrcsponding clust,crs

of thc Voronoi network (right).

a)
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sistilg of tct,rahcclra a,rrcl qua,rtoctahedra in the crystals. Notc t,hal, soltro o{' l,lrtlstr

c1u:lclranglcs rniglrt have thcir vertices "cut off", i.c. thcy catt in fact bc ltcttt,:rgotts

e1 lrcxlgons. 'I 'he Voronoi rrctwork sitcs corrcsponding to octahcdral configttt'atitttts

r:zr,rr llc showrr as small quadrangles or bows. ffigurc 4 does rtot clcarly shows it, sittcttt

gr;tzrlrstlral corrfigurations in the given rnodcl arc closc to perfcct. Ncvct'tltclcss, trP-

pl.ying S-ccllouring, arezrs with crystallinc structrtres becotne visill lc as clustcrs of

rlrorrrllrses atrcl trtrpczcs.

Exccpt frrr sirnplexes with close to perfect fornr, tltere catt ltc otltcr strorrgly

rft:fclrrned sirnplcxes in the rnodel. Such sirnplexes can be used for thc attalvsis

of rlef'ects in models of crystalline phase. Fig. 3d sltows clusters of suclt "atypic:rl"

sirnplexes, having the largest valuc of measures S (S > 0.012). Note that "defectivc"

sirrrplexes can have regular form, which is rather different from regular crystallinc

sirrrlrlexes. A regular behavior of some clusters in Fig. 3d confirms it.

6. Experimental Results

We now apply the above methodology to the Lennard-Jones modcl of atotrts

clrrrirrg the process of crystallizatron, obtained by Monte-Carlo rnethod. The rnodcl

contains 7000 atoms in a cube with periodic boutrdary conditiotts. First, wc cottsider

the bchavior of the pair correlation functions g(r) for three configurations of thcr

rnodcl. This function shows the probability to find an atorn at distalrce r frottt

0

1 0

8

6

4

2

0

c 1
o)

2

t R  3  4

Fig. 6. Pair correlation functions g(r) at diffcrent stages of crystall ization:

a) a non-crystall ine (l iquid) phase, b) an amorpirous pltasc, an

init ial stage of crystall ization, c) significant crystall ization.

h_
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attothcr trtotn of thc model. To conrpute the pair corrclatiorr frurctiorr, trll rrurt,rral

distances between pair of atoms are computed arrd plottecl.

Thc rcsults arc shown in Fig. 6. First ollservatiorr that r::nr bc rn:rrlc is that

thc stnrctural transformation of the model corrcsponding to thc proccss of <:rys-

talliz:rtiori takc place. The first sarnple belongs to a rron-crystallinc (liquicl) phzrst:,

g(r) irr this case has srnooth fading oscillations. The second sample corrcsponrls to

an arrrorphous phase which is characterized by splitting of thc sccorrcl rnaxirnunr of

fl\). Ilowever, appearance of a maximunr (shouldcr) orr g(r) at r' - 1.4 iclcrrtifies

thc bcginrring of crystallization: the occurrence of a significant nunrber of octahe-

dral configurations. The third configuration corresponds to a crystallizecl samplc.

Thc sharp peaks that appeared on g(r) show orderliness of atorns outsicle thc {irst

coordination sphere. However the structure of this sample is stil l far from pcrfect.

Now, let us consider clusters on the Voronoi network, identified by T- zrncl S-

coloring (see Figure 7). For simplification of the resulting images, we used an idca

from the percolation theory. Percolation theory deals with fluid flow (or any othcr

sirrrilar process) in random media. We restricted the represemtatiorr to only cyclcs

of clusters for easy analysis. As can be scen from the figures, T-coloring iderrtifies

irregularly located five-membered rings in a liquid phase (Fig. 7o). Thcsc rings

are typical for all dense non-crystalline systems of spherical atorns (such as sirnplc

liquicls). S-coloring confirms the non-crystallinc structure of thc givun sanrplc, sirrcrcr

thc clustcrs of rhombuses or trapezes are not prescnt in it. Dots on thc riglrt irnagc

in Fig. 7a correspond to octahedral configurations.

Irr thc second sample (FiS.7b),,  we can notice essential charlgcs. Ir irst,  o{ al l ,

S-coloring reveals clear clusters of rhombuses and trapezes, that uniqucly itlcntifics

the presence of areas of crystallinc structure. T-coloring idcntifies rnuch rnorc fivc-

elernent rings, than in the previous case. This is related to increased density of the

sarnple and lower tcmperature.

Now, let us note the pairs of parallel five-element rings (shown by arrows irr

Fig. 7). They represent pentagonal prism configuration of atoms also known as

tut'isted'icosah,edron [18]. It is an association of two pentagonal bipyrarnids (scc

Fig. 8). The existence of pentagonal prisms seems quite natural sincc pentagorral

bipyramids (F ig . 2") are typical for all disordered packings of slrherical particles.

Note, that in a simple liquid they are also possible, but, apparently, are less prob:rltle

then in amorphous phase (see an arrow on Fig. 7a). The distinctive fcaturc of this

stnrcture is that there are square configurations of atoms (serni-octahcrdzr) at its

side, which can initiate occurrence of crystal nucleus.

Notice that such pair of five-membered rings is an embryo of a Bagley structure.

In 1965 Bagley shown how to fill all the space by hard spheres which onc axis of

fivefold symmetry [3]. The central axis of this structure is t]re pile of perrtagonal

bipvramids, and in every of its five sectors is realized a crystallinc structure close

to  F  CC.
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The central part of the Bagley structure can be identified by T-coloring of
the Voronoi network as a stack of parallel five-membered rings. In Fig. 7c (left)

they are rnarked by arrows. Thus, our computer expcriments show that Bagley
structures arise during the crystallization of simple liquids. However they can be
found only when crystallization process has significantly progressed. S-coloring of
the same sample reveals that specified piles are found at the existence of power

areas of crystalline structure, Fig. 7c (right).

Structures with fivefold symmetry are known experimentally in physics of small
particles and thin films [9]. Crystallographers explain this phenornenon as a multi-
ple twinning. (Term "twinning" means an aggregation of crystalline units breaking

the translational symmetry). The mechanism of appearance of such structures is
not fully known. Studying this mechanism will help to understand the process of
homogeneous nucleation. From Bagley's point of view, an origin of the fivefold sym-
metry structures is the growth of pentagonal bipyramids that initially present in
liquids: configurations shown on Fig. 8 easily arise as liquid is cooling (see Fig. 7a,
b), then they start "to acquire" atoms, generating around themselves sector with
a crystalline structure. However, crystallographer suggests that the origin is at the
crystal nuclei, which randomly merges under specified angles are achieved [9]. A
more detailed analysis of molecular-dynamic models is necessary in order to fully
understand these mechanisms.

7. Conclusion

Each site of the Voronoi network is associated with the Delaunay simplex,
i.e. four atoms, representing the simplest element of the structure. We introduced
quantitative measures T, Q, K and S for identification of a simplex form. They al-
low to uniquely recognize simplicial configurations typical for the densest crystalline
structures. For studying spatial distribution of such configurations we proposed to
colour vertices of the Voronoi network according to a specifically selected measure.
The approach is successfully applied to investigation of structural characteristics of
system of Lennard-Jones atoms during the crystallization process. The sequence of
configurations during crystallization process was analyzed. The structural hetero-
geneity which arises during the process was also identified.

The proposed model allows to note an important phenomenon, an occurrence
of structures with fivefold symmetry (twisted icosahedra), which can act as pseudo-

nucleus promoting crystallization. These structures can be formed in a liquid
through pentagonal bipyramid association. They contain square configurations

of atoms, which are typical for crystalline structures, thus these pseudo-nuclei can
serve as initiators of growth of actual crystal nuclei at an initial stage of crystall\za-

tion. On the other hand, such pseudo-nuclei promote the growth of structures with
fivefold symmetry (Bagley structures, pentagonal twinning). They, in turn, can
prevent merging of crystalline regions into a uniform crystalline structure. This
leads us to an important observation, that together with crystalline nuclei, it is
necessary to take into account the abovementioned pseudo-nuclei which can play a
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twofold role during crystallization. The question of an origin of the fivefold sym-
metry structures however needs further investigation and represents a challenging
question that we hope to address in the near future.
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