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ABSTRACT The lipopeptaibol trichogin GA IV is a 10 amino acid-long residue and a-aminoisobutyric acid-rich antibiotic pep-
tide of fungal origin. TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) spin-labeled analogs of this mem-
brane active peptide were investigated in hydrated bilayers of dipalmitoylphosphatidylcholine by electron spin echo envelope
modulation (ESEEM) spectroscopy and pulsed electron-electron double resonance (PELDOR). Since, the ESEEM of the spin
label appears to be strongly dependent on the presence of water molecules penetrated into the membrane, this phenomenon
was used to study the location of this peptide in the membrane. This was achieved by comparing the ESEEM spectra for
peptides labeled at different positions along the amino acid sequence with spectra known for lipids with spin labels at different
positions along the hydrocarbon chain. To increase the ESEEM amplitude and to distinguish the hydrogen nuclei of water from
lipid protons, membranes were hydrated with deuterated water. The PELDOR spectroscopy technique was chosen to study
peptide aggregation and to determine the mutual distance distribution of the spin-labeled peptides in the membrane. The loca-
tion of the peptide in the membrane and its aggregation state were found to be dependent on the peptide concentration. At a low
peptide/lipid molar ratio (less than 1:100) the nonaggregated peptide chain of the trichogin molecules lie parallel to the
membrane surface, with TOAC at the 4th residue located near the 9th–11th carbon positions of the sn-2 lipid chain. Increasing
this ratio up to 1:20 leads to a change in peptide orientation, with the N-terminus of the peptide buried deeper into membrane.
Under these conditions peptide aggregates are formed with a mean aggregate number of about N ¼ 2. The aggregates are
further characterized by a broad range of intermolecular distances (1.5–4 nm) between the labels at the N-terminal residues.
The major population exhibits a distance of;2.5 nm, which is of the same order as the length of the helical peptide. We suggest
that the constituting monomers of the dimer are antiparallel oriented.

INTRODUCTION

Trichogin GA IV, isolated from the mold Trichoderma
longibrachiatum (1), belongs to the class of peptaibols char-

acterized by a high percentage of a-aminoisobutyric acid

(Aib) residues and an 1,2-amino alcohol at the C-terminus

(2). The primary structure of this peptaibol is unique due to

its lipophilic n-octanoyl group at the N-terminus instead of

the acetyl group present in most of the other members of this

class. Despite the short length of its main chain (10 amino

acid residues), trichogin GA IV exhibits remarkable membrane-

modifying properties (for recent review articles, see Rebuffat

et al. (3), Toniolo et al. (4), and Peggion et al. (5)).

To elucidate the mechanism by which this short peptide

changes the membrane permeability, detailed information

is needed on where it is located in the membrane. Orienta-

tion and immersion depth of trichogin GA IV were studied

using different experimental methods. Previously, hyperfine

interaction (hfi) constants of 2,2,6,6-tetramethylpiperidine-

1-oxyl-4-amino-4-carboxylic acid (TOAC) spin-labeled tri-

chogin analogs in membranes of phosphatidylcholine

liposomes were analyzed as a function of environmental

polarity (6). Trichogin was found to be oriented parallel to

the membrane surface with the hydrophobic side chains

facing toward the membrane interior. However, this ap-

proach (3) is based on the questionable procedure of deriving

hfi constants, which are not only related to the perpendicular

orientation constant, A?, but also depend on molecular

motion. Another approach to assess the degree of insertion of

the peptide in the membrane was based on the quenching of

fluorescence of 4,4-difluoro-4-bora-3a,4a-diaza-S-indacene

(BODIPY)-labeled lipids by nitroxide spin labels located at

different positions of the peptide chain (7,8). However, as

this bulky fluorophoric group attached to phospholipid has a

clear tendency to migrate from the hydrocarbon core to the

polar headgroup region of the bilayer (8), the validity of this

method is even less reliable.

Recently, Mazzuca et al. (9) employed fluorescence

quenching measurements to investigate the membrane-

bound state of trichogin. It was found to depend on the

peptide concentration. At low peptide/lipid (P/L) ratios the

trichogin molecules are located close to the polar region of

lipid headgroups. By increasing the peptide concentration

until membrane leakage takes place, a cooperative transition

occurs and a significant fraction of the peptide becomes

buried deeper into the bilayer.
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In this work, we have chosen the electron spin echo en-

velope modulation (ESEEM) technique (10) to study the ori-

entation and immersion depth of trichogin GA IV molecules

in the membrane. The phenomenon of this pulsed electron

paramagnetic resonance (EPR) technique originates from the

dependence of anisotropic hfi constants of nitroxide spins

with nearby protons of water molecules. Since water mol-

ecules are capable of penetrating into the hydrophobic core

of the membrane, the amplitude of the ESEEM spectrum of a

spin-labeled peptide would provide information on the depth

of its label position. Comparison of these data obtained for

peptides spin-labeled at different positions will allow us to

determine the peptide orientation. Overall, this approach may

give precise information on the location of the peptide within

themembrane.We used deuteratedwater (D2O) to distinguish

hydrogen atoms of water from those of lipid molecules and to

increase the amplitude of the ESEEM that is known to be

much larger for deuterons at the x-band. An analogous ap-

proachwas employed previously (11), wherein the location of

a doxylstearic acid spin probe in lipid bilayers was studied by

ESEEM induced by its interaction with 31P of phospholipids.

To provide complementary information about the bound

state of trichogin GA IV in the lipid bilayer, the pulsed

electron-electron double resonance (PELDOR, sometimes

called DEER) technique (12,13) was employed. This tech-

nique makes it possible to measure the dipole-dipole inter-

action between spins and to provide information about the

aggregation state of this amphipathic peptide. In previ-

ous attempts we failed to detect aggregates of trichogin in

dipalmitoylphosphatidylcholine (DPPC) membranes at a P/L

molar ratio up to 1:125 (14).

In this work, we describe the peculiarities of trichogin

GA IV analogs spin labeled with TOAC in the presence

of multilamellar DPPC membranes (frozen at 77 K) over

a broader range of P/L ratios. The primary structures of

trichogin GA IV and its analogs are listed below. In all these

peptide analogs, the C-terminal leucinol (Lol) is replaced by

its synthetic precursor L-leucine methyl ester (Leu-OMe). In

three analogs the N-terminal n-octanoyl (nOct) group is

substituted by the 9-fluorenylmethyloxycarbonyl (Fmoc)

group. It is known that these replacements do not alter the

three-dimensional structural properties nor the membrane

activity of trichogin (1,4,5,15,16).

MATERIALS AND METHODS

DPPC and D2O were obtained from Sigma-Aldrich (Zwijndrecht, The

Netherlands). The synthesis and characterization of the spin-labeled trichogin

GA IV analogs FTOAC1, FTOAC4, FTOAC8, nOct-TOAC1, and nOct-
TOAC4 were already described (6). For the preparation of a 10 mM D2O

phosphate buffer solution (PBS) at pH 7.4, reagent grade salts were obtained

from Sigma-Aldrich. All commercial materials were used without further

purification.

Sample preparation

DPPC and the spin-labeled peptide were codissolved in chloroform solution.

The solvent was first evaporated with a nitrogen gas stream. Then, residual

traces of solvent were removed by drying the mixture under vacuum for at

least 3 h. The mixture was dispersed in PBS at a concentration of ;100

mg/ml by vortex mixing with heating to 55�C, i.e., above the phase transition
temperature of DPPC. The hydrated lipid bilayers were finally transferred to a

glass EPR tube and concentrated by pelleting in a benchtop centrifuge. Then,

the excess buffer was removed. The final water concentration was ;30%

w/w. Before measuring, samples were incubated for 24 h at 10�C. All
measurements were performed at the liquid nitrogen temperature. Samples

were cooled optionally by shock freezing at the liquid nitrogen temperature or

slowly at;3�C per min.

Pulsed EPR spectroscopy

ESEEM experiments were performed on a Bruker ESP 380E pulse x-band

EPR spectrometer. A homemade rectangular resonator (H012 mode) was

used, with a quartz Dewar containing liquid nitrogen. The resonator was

overcoupled to obtain a dead time of 100 ns. Three pulse-stimulated echo

(p/2-t-p/2-T-p/2-t-echo) decays were obtained by using microwave pulse

widths of 16 ns, with the microwave power adjusted accordingly. The time

delay T between the second and the third pulses was incremented while

maintaining the separation t between the first and the second pulses constant

at 200 ns to maximize deuterium modulation. A four-step phase-cycling

program was employed to eliminate unwanted echoes.

The data were treated as follows (11,17): 1), the experimental echo decay

was approximated with a biexponential function (see Fig. 1, a and c); 2), the

data were then divided by this function, so that only oscillations around

the unity remained (Fig. 1, b and d); 3), the unit level was subtracted from the

signal; 4), the array of ESEEM data was zero filled to increase the total

number of points up to 4096; and 5), a numerical Fourier transformation was

performed. Note that when different samples are compared, such a procedure

allows one to obtain the relative contribution of the modulated electron spin

echo signal (the unity in step (2) represents a nonmodulated contribution)

from which quantitative information about the relative positions of nearby

nuclei can be provided.

PELDOR studies were carried out using a PELDOR spectrometer with a

bimodal cavity and two independent pulse sources as described in Milov

et al. (12) and Milov et al. (13). The position of the pumping pulse
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corresponded to the maximum amplitude in the electron spin resonance

(ESR) spectrum. The frequency difference between two microwave sources

was 65 MHz (so that the echo was formed by spins corresponding to the

low-field shoulder of the nitroxide EPR spectrum). The pumping pulse is

switched on between the first and second pulses and is delayed by time T

after the first pulse. The PELDOR signal is the signal of the spin echo, V(T).
Durations of the first and second pulses forming the spin echo signal were 40

and 70 ns, respectively. The duration of the pumping pulse was 30 ns. Its

amplitude was selected to provide the probability to induce a flip of the

spins, pb near 0.1, which is suitable for measurements of aggregation (see

below). For a model biradical system the experimental value of pb was found

to be 0.09 6 0.01.

The molecular model shown (see Fig. 8) was constructed by using the

program WebLab Viewer Pro 4.0 (Molecular Simulations, Cambridge,

MA). The three-dimensional structure of the peptide backbone of trichogin

GA IV, taken from its x-ray diffraction analysis (18), is similar to the crystal

structure of double spin-labeled nOct-TOAC4,8 (19,20).

RESULTS

ESEEM data

An example of the experimental time-domain ESEEM data

is shown in Fig. 1 for FTOAC1 bound to DPPC bilayers

hydrated in D2O, at two different peptide concentrations.

Fig. 1, a and c, presents original data which were approx-

imated by exponential decays. Fig. 1, b and d, shows the

result of their division by these decay functions. It is evident

that at high concentration the decay is remarkably faster

(compare Fig. 1, a and c), which may be readily explained by

the concentration dependence of transverse relaxation.

Because of the fast decay at high concentration and the

consequential increase of noise at large T, data in Fig. 1 d
were truncated at T . 3.5 ms. Within the experimental

accuracy, the results were found to be independent on how

the sample was cooled (see Materials and Methods).

Fig. 2 shows the modulus Fourier transform spectra for

three samples (FTOAC1, FTOAC4, and FTOAC8) at a P/L

molar ratio of 1:250. One can see a narrow doublet at

frequency 2.2 MHz, overlapped by a broader line. Since 2.2

MHz is the Larmor frequency of the deuterium nuclei in the

magnetic field employed, both of these lines may be readily

attributed to the anisotropic hfi between the unpaired

electron of the nitroxide label and the deuterium nuclei of

water molecules. The narrow doublet, according to the

comprehensive analysis performed in Erilov et al. (17), may

be assigned to free water present at the hydrocarbon chain

region of the membrane, whereas the broad line indicates

water molecules bound to the N-O group of the spin label.

The doublet is caused by the quadrupolar splitting for the

deuterium spin with I ¼ 1.

The highest amplitude of the deuterium line is observed for

the sample containing the membrane-bound trichogin analog

labeled at the N-terminus (FTOAC1). Compared to FTOAC1,

the sample with the analog labeled near the C-terminus

(FTOAC8) shows a decreased amplitude (by ;20%) for the

deuterium line, whereas in the case of the peptide labeled in

the middle of the peptide chain (FTOAC4) the amplitude of

the deuterium line is most strongly decreased by ;60%.

Fig. 3, a and b, shows the modulus Fourier transform

spectra for membrane-bound samples of nOct-TOAC1 and

FTOAC1 at a P/L molar ratio of 1:250 (note that the

spectrum shown in Fig. 3 a coincides with that of Fig. 2 a). It
is clear that both spectra are nearly the same. Fig. 3 c shows
data adapted from Erilov et al. (17) presenting ESEEM

FIGURE 1 Experimental ESEEM traces

obtained for the spin-labeled peptide

FTOAC1 in a DPPC membrane, hydrated

in D2O, for P/L molar ratios of 1:250 (a, b)
and 1:20 (c, d). Original data, given in (a)

and (c), are approximated by a biexponen-

tial decay (dashed lines). Data in (b) and (d)

are the result of dividing the original data

by these decay functions. The arrow marks

the point of data truncation to reduce the

level of noise.
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amplitudes of nitroxide labels at different positions of the

sn-2 fatty acyl side chain of DPPC lipid molecules which

are incorporated into unlabeled DPPC membranes. As the

membrane was obtained under the same experimental

conditions as those employed in this work, the data in

Fig. 3 c may serve as a calibration curve for determining the

membrane insertion of nitroxide-labeled trichogin mole-

cules. Fig. 4 shows the modulus Fourier transform spectra

for three samples, with FTOAC1, FTOAC4, and FTOAC8

analogs at a P/L molar ratio of 1:20. In comparison with

the data obtained at lower peptide concentration (Fig. 2),

a remarkable decreased line amplitude is observed for

FTOAC1, whereas those for FTOAC4 and FTOAC8 de-

crease only slightly. The unresolved doublet at frequency

2.2 MHz may be explained by a broadening due to fast

relaxation induced by electron-electron spin-spin interac-

tions at a high spin-label concentration. Note that this

broadening may result also in a slight decrease of intensity,

which should be taken into account when comparing with

samples of low spin concentration.

PELDOR data

In Fig. 5 the PELDOR signal V(T) is plotted for DPPC

bilayers containing FTOAC1 at P/L molar ratios of 1:20 and

1:30, respectively. These traces are normalized by dividing

the signal value V0 in the absence of the pumping pulse. In

cases where peptides form aggregates, the contributions

from intra- and interaggregate interactions are assumed to be

independent, and V(T) may be written as a multiplication,

V(T) ¼ VINTRA(T)VINTER(T), where VINTRA(T) and VINTER(T)
are the PELDOR signals arising from intra- and intermolec-

ular interactions between spin labels, respectively (13,14).

According to Milov et al. (14), it can be assumed that

VINTER(T) depends on concentration C as follows:

VINTERðTÞ ¼ expð�pbCf ðTÞÞ; (1)

where f(T) is a function of time, T. Then, using two exper-

imental dependencies, V1(T) and V2(T), for two different spin
label concentrations, C1 and C2,

lnðV2Þ � lnðV1Þ ¼ pbðC1 � C2Þf ðTÞ: (2)

The set of data points 3 in Fig. 5 is obtained by subtracting

the data of sets 1 and 2. The solid line drawn through this set

of points is an approximation by a third-order polynomial

function, which is referred to below as function G(T). Since
the concentrations C1 and C2, as well as pb, are known with a
limited accuracy, we used the relation Eq. 3 to obtain

VINTRA(T).

FIGURE 2 Modulus Fourier-transform

ESEEM spectra obtained for a P/L molar ratio

of 1:250. (a) FTOAC1, (b) FTOAC4, and (c)

FTOAC8.

FIGURE 3 Modulus Fourier-transform

ESEEM spectra recorded by using a

sample at a P/L molar ratio of 1:250 for

(a) FTOAC1 (the spectrum is the same as

shown in Fig. 2 a) and (b) nOct-TOAC1.
(c) Calibration curve representing ESEEM

amplitudes for lipids spin-labeled at dif-

ferent positions along the hydrocarbon side

chain (adapted from Erilov et al. (17)).
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lnVINTRA ¼ lnV1 1 k
C1

C2 � C1

GðtÞ: (3)

The coefficient k (which is close to unity) was taken to

make the values d(ln(V))/dT and d(kln(VINTER))/dT coincide

with each other in the region of large T values. This method,

which allows one to determine VINTRA(T) more accurately, is

applicable if it tends to a limit value at large T. The results

obtained are presented in Fig. 6 (the oscillations of the data

points shown at T . 200 ns are noise).

DISCUSSION

Trichogin orientation and location in the
membrane from ESEEM data

Water concentration profiles obtained for the same model

membranes as those used in this work were previously

reported in Erilov et al. (17), using phospholipids system-

atically labeled at different locations of the sn-2 hydrocarbon
chain of the lipid fatty acyl group. Also the experimental

ESEEM data were treated in the same way. In this early work

the line shapes of the frequency peaks were found similar to

those obtained in this study (Figs. 2–4). Therefore, one may

directly compare the peak amplitudes found for the same

frequency domain in these two different studies. If it is

assumed that trichogin doesn’t alter the water concentration

profile in the membrane, then the comparison with data

from Erilov et al. (17) (see Fig. 3 c) will readily provide

information on the depth of peptide immersion. Fig. 3 c
shows that the peak amplitude is nearly independent on the

label positions of the hydrocarbon chain between the fourth

and ninth carbon atoms, thereby forming a plateau with a

mean amplitude of ;5 (the value, given in units, scatters

between 4 and 6 due to the experimental uncertainty). The

amplitude sharply decreases for higher numbers of spin-label

positions. Taking that into account, one may readily

conclude from the data shown in Fig. 2 that at a P/L molar

ratio of 1:250 both spin labels in FTOAC1 and FTOAC8 lie

above the 9th–11th positions (closer to the membrane

surface), whereas that in FTOAC4 is located below the 11th

position (closer to the hydrocarbon core of the membrane).

FIGURE 4 Modulus Fourier-transform

ESEEM spectra for a P/L molar ratio of 1:20

for (a) FTOAC1, (b) FTOAC4, and (c)

FTOAC8.

FIGURE 5 PELDOR signal decays for FTOAC1 at P/L molar ratios of

1:20 (data set 1) and 1:30 (set 2). The points of data set 3 are calculated by

subtracting those of set 2 from 1. The solid line is an approximation

calculated by a third-order polynomial function.

FIGURE 6 Dependence of VINTRA(T) as obtained from data set 3 in Fig. 5

using relation Eq. 3. The solid line is calculated from relation Eq. 8 (see text).
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Interestingly, the ESEEM spectra for FTOAC1 and nOct-
TOAC1 are nearly the same (Fig. 3). An analogous result

was obtained for FTOAC4 and nOct-TOAC4 (data not

shown). Therefore, we conclude that replacement of the

nOct-group by Fmoc does not have any effect on the peptide

orientation nor on the location in the membrane (at a small

P/L molar ratio).

We conclude that at low concentration the peptide chains

are located parallel to the membrane surface. Note that in

Erilov et al. (17) it was concluded that the density of the lipid

chain packing increases below the level of the 11th carbon.

Thus, trichogin GA IV is located above this high-density base.

Increasing the relative molar peptide concentration up to a

P/L molar ratio of 1:20 leads to a dramatic decrease in the

peak intensity of FTOAC1, whereas the spectra of FTOAC4

and FTOAC8 exhibit only a slight decrease of intensities

(compare Fig. 2 and Fig. 4). This result suggests that the

N-terminus of trichogin is buried at increased concentration.

Note that we have no information about a possible change of

the peptide secondary structure upon changing the peptide

concentration.

Distance distribution function between spin
labels from PELDOR data

We define the distance distribution function between spin

labels in aggregates as F(r) ¼ dn(r)/dr, where dn(r) is the

portion of spin labels in the aggregate with a distance in the

range between r and r1 dr. For a pair of two spins separated
by a defined distance, r, the PELDOR signal is

Uðr; TÞ ¼ 1� pbf1� f ðr; TÞg; (4)

where

f ðr; TÞ ¼
*
cos

g
2
Z

r
3 ð1� 3 cos

2ðuÞÞT
� �+

u

:

Here, r is the distance between labels, u is the angle between
the vector r and the external direction of themagnetic field, and

Æ. . .æu indicates the u angle average. We assume below that

the spin label pairs are randomly oriented in the aggregates.

For an aggregate consisting of N spin labels while the ith

label is participating in the formation of a spin echo, the

PELDOR signal is given by the product

UiðTÞ ¼
YN
j51
j 6¼1

Uðri;j; TÞ � UiðTÞ

¼ 1� pb ðN � 1Þ �+
N

j51
j 6¼1

f ðri;j; TÞ

8<
:

9=
;: (5)

If, as in our case, pb is small enough, i.e., (N � 1)pb � 1,

reasonable N values might be provided. In the case of a

continuous distribution of distances between labels in the

aggregates, averaging Eq. 6 over all pairs can be presented as

UðTÞ ¼ VP 1 ð1� VPÞpb

Z r2

r1

FðrÞf ðr; TÞdr; (6)

where VP¼ 1� (N� 1)pb. The integration limits r1 and r2 in
Eq. 7 restrict a physically reasonable range of distances

between the spin labels. By division of the interval from r1 to
r2 into a set of discrete values, rk, with the difference drk and
by replacing the integral in Eq. 7 by a sum, we obtain the

expression for U(T) for an experimental set of Ts values,

UðTsÞ ¼ VP 1 ð1� VPÞ +
m

k¼1

FðrkÞ
Z rk1drk

rk

f ðr; TsÞdrdrk
� �

;

(7)

where m is the number of points in the interval between r1
and r2. Eq. 8 enables us to obtain the distribution function

F(rk), by comparison of the experimental T-dependencies
VINTRA(T) with the calculated U(T). From the mathematical

point of view the problem is ill posed. We applied the

Tikhonov regularization method (21) for analysis of the

PELDOR data by using a homemade program, employing a

gradient descendingmethod. For the additional condition F(rk)
$ 0 (k ¼ 1, . . ., m) the function was numerically minimized:

M ¼ R� lV; (8)

where

R ¼ +
n

s¼1

ðUðTsÞ � VINTRAðTsÞÞ2; V ¼ +
m

k¼1

ðFðrkÞdrkÞ2;

and n is the number of experimental points on T. l is the

Tikhonov regularization parameter (21).

The smoothness of the obtained dependence, F(r),
depends on the regularity parameter, l. For small l values

the solution is unstable to little deviations of the experi-

mental VINTRA values, i.e., F(r) may chaotically vary with

a large amplitude. At large l values the solution becomes

too smoothed, and consequently characteristic details of

the distribution may be lost. Furthermore, it describes the

experimental data worse. The optimum was chosen for a

value of l at which a sharp growth of the R value begins.

We employed a range of distances between 1 and 5 nm

which was split into equal intervals of 0.25 nm. The obtained

distribution function F(r) is illustrated in Fig. 7. The function
U(T), obtained from F(r), is shown in Fig. 6.

The distribution function depicted in Fig. 7 exhibits a

maximum near 2.5 nm and a half-width of ;1.4 nm. This

latter parameter indicates a broad distance distribution. Such

a wide distance spectrum could indicate the presence of

aggregates of different types.

Effective number of spin labels in aggregates
from PELDOR data

According to relationship Eq. 7, the asymptotic value, VP, is

related to the effective number of labels in the aggregates.
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From the data in Fig. 6 we obtained VP ¼ 0.895 6 0.002.

Using this VP value and the experimental value pb ¼ 0.09 6

0.01, we calculate N ¼ 2.1 6 0.1. Thus, at a (local) peptide

concentration of 5 mol % in DPPC membranes, aggregates

are mostly formed by pairs of trichogin molecules. It is worth

noting that in one of the previous PELDOR studies of spin-

labeled trichogin in different membrane-mimicking solvent

systems, aggregate numbers were found to vary between

N ¼ 1 (polar ethanol) and N ¼ 4.3 (apolar dichloroethane/

toluene) (22). At much lower total concentrations, experi-

ments with fluorescent-labeled trichogin and large unilamel-

lar vesicles (LUVs) of egg phosphatidyl choline (ePC) in the

presence of cholesterol showed a lower limit of the number

of molecules per aggregate N ¼ 2.3 (23). At about the same

total concentration, an ion conduction experiment with

unlabeled trichogin bound to ePC LUVs in the absence of

cholesterol showed that three to four molecules are involved

in the rate-limiting step (24). On the other hand, a recent EPR

study of trichogin in ePC vesicles showed that at peptide

concentrations over the range of 0.5–2.2 mol % monomeric

trichogin molecules are homogeneously distributed at the

inner and outer membranes (25), whereas upon addition of

cholesterol the distribution was found inhomogeneous.

Thus, the presence of cholesterol is clearly promoting the

formation of thermodynamically stable aggregates. In this

EPR study of spin-labeled trichogin in DPPC membranes,

however, dimers are formed despite the absence of choles-

terol. Since dimers are preferentially formed in rather polar

environments (22), it might be plausible that the aggregates

observed in DPPC are located at the border between the polar

and apolar regions of the membrane. However, we cannot

exclude the possibility that, under the conditions used for ion

conduction experiments, larger oligomeric species are pen-

etrating the hydrophobic core of the lipid bilayer.

Note also that curve 3 in Fig. 5 has a convex character.

Such a behavior significantly differs from the concave depen-

dence ln(V) ; T0.75, obtained in Milov et al. (14) for similar

systems containing a spin-labeled trichogin analog at low

concentrations. The convex character of curve 3 in Fig. 5

corresponds to a reduction of the dipole-dipole interactions

between the labels responsible for the behavior of VINTER at

small T. As these interactions are relatively strong, their

reduction suggests a more difficult access to each of the other

spin labels from different aggregates due to their relatively

large size.

CONCLUSIONS

This ESEEM study of trichogin molecules spin labeled at

different positions shows that at low peptide concentration

they have an ‘‘in-plane’’ orientation with the TOAC4 label

near the 9th–11th carbon positions of the sn-2 side chain of

DPPC. Fig. 8 shows the orientation and penetration depth of

the peptide with respect to the headgroup and the hydrocar-

bon core region of the membrane. This model was built by

positioning the helical peptide molecule with the amphi-

pathic plane (26) oriented parallel to the surface of the

membrane and with the hydrophobic amino acid side chains

facing the membrane interior. The thicknesses of headgroup

and hydrophobic layers (the levels at 1.1 nm and 3.6 nm are

indicated by dotted and solid lines, respectively) as well as
the values of the tilting angles of the fatty acyl chains of the

DPPC gel-state were adopted from the literature (27–29).

The tilting angle of the n-octanoyl side chain of the peptide is
assumed to be similar to those of the lipid chains, i.e., 33�
away from the bilayer normal. Covalent bond distances of

the arbitrarily drawn conformation of the DPPC lipid are the

same as those of the peptide. The TOAC4 label is positioned

at the same level as that of the 10th carbon atom of the sn-2

FIGURE 7 Distance distribution function F(r) between spin labels in

FTOAC1 aggregates obtained from the data shown in Fig. 6 using the

Tikhonov regularization (see text).

FIGURE 8 Model of the in-plane-bound trichogin GA IV molecule

showing its immersion depth in the DPPC gel-state membrane. The 4th

TOAC label is located at the same level as that of the 10th carbon atom of

the sn-2 fatty acyl chain of the lipid (broken line). The solid line indicates

the amphipathic plane of the peptide molecule separating the opposite

hydrophilic and hydrophobic faces of the helix. This plane coincides with

the border between the polar interface and the hydrocarbon interior of the

membrane. Nitroxide-labeled positions (residues 1, 4, and 8) are depicted by

asterisks.
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lipid side chain. From this model it appears that the order of

the immersion depths shown for different labeled positions of

trichogin GA IV is TOAC4. TOAC8. TOAC1. The polar

face of the amphipathic helix is located at the border sepa-

rating the interior and interfacial regions of the membrane.

A previous PELDOR study showed that at low concen-

tration, peptide aggregation does not take place (14). How-

ever, here we found that upon increasing the peptide

concentration, aggregates tend to appear, with amean number

of molecules in the aggregates close to two. The intermolec-

ular distances between the N-terminal residues of their

constituent monomers are widely distributed, ranging from

1.5 to 4 nm, suggesting some heterogeneity of the membrane-

bound dimer structures. The most abundant dimers exhibit a

distance of 2.5 nm, which is of the same order as the length

(2.0 nm) of their constituting helical monomers (14). This

observation implies the presence of an antiparallel orientation

of the two different peptide chains. Assuming that association

of the amphipathic molecules leads to dimers with all

hydrophobic amino acid side chains oriented to the outside,

it is of interest that these ESEEM results showed that the

N-terminal residues of the aggregate are located deeper (as

compared to the monomer) in the membrane.

The conclusions of this work are in general agreement

with those reported by Mazzuca et al. (9). For an ePC bilayer

containing 50 mol % of cholesterol and studied at room

temperature, these authors found at low P/L ratios, trichogin

binds close to the region of polar headgroups. By increasing

the concentration up to the level of membrane leakage, a

strong correlation was found between the fraction of more

deeply buried peptide and the fraction of aggregates (23).

Thus, the monomeric and surface-bound peptide molecules

are likely biologically inactive, whereas the buried, aggre-

gated peptides are responsible for membrane leakage. The

presence of cholesterol in vesicular membranes, however, is

questionable if one aims at studying the detailed antibiotic

activity of this lipopeptaibol against cholesterol lacking

Gram-positive microorganisms. From a previous PELDOR

study of trichogin GA IV bound to the cell membrane of

Micrococcus luteus, it was demonstrated that the peptide

molecules are indeed distributed in the cytoplasmic mem-

brane, but aggregates of peptide molecules were not detected

(30). As at present no conclusion can be drawn about a

possible correlation between membrane leakage and antibi-

otic activity, we are motivated to continue this research.

Nevertheless, for the first time to our knowledge, we have

detected formation of dimers upon increasing the concen-

tration of trichogin GA IV in membranes despite the absence

of cholesterol.
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Formaggio, C. Toniolo, and B. Pispisa. 2004. Aggregation and water

membrane partition as major determinants of the activity of the

antibiotic peptide trichogin GA IV. Biophys. J. 86:936–945.

24. Kropacheva, T. N., and J. Raap. 2002. Ion transport across a

phospholipid membrane mediated by the peptide trichogin GA IV.

Biochim. Biophys. Acta. 1567:193–203.

25. Milov, A. D., R. I. Samoilova, Yu. D. Tsvetkov, F. Formaggio,
C. Toniolo, and J. Raap. 2005. Membrane-peptide interaction studied
by PELDOR and cwEPR. Peptide conformations and cholesterol effect
on the spatial peptide distribution in the membrane. Appl. Magn.
Reson. 29:703–716.

26. Kropacheva, T. N., E. S. Salnikov, H.-H. Nguyen, S. Reissmann, Z. A.
Yakimenko, A. A. Tagaev, T. V. Ovchinnikova, and J. Raap. 2005.
Membrane association and activity of 15/16 peptide antibiotics:
zervamicin IIB, ampullosporin A and antiamoebin I. Biochim. Biophys.
Acta. 1715:6–18.

27. Marsh, D. 1990. Handbook of Lipid Bilayers. CRC Press, Boca Raton, FL.

28. Lewis, B. A., and D. M. Engelman. 1983. Lipid bilayer thickness
varies linearly with acyl chain length in fluid phosphatididylcholine
vesicles. J. Mol. Biol. 166:211–217.

29. Rinia, H. A., R. A. Kik, R. A. Demel, M. M. E. Snel, J. A. Killian,
J. P. J. M. van der Eerden, and B. de Kruijff. 2000. Visualization of
highly ordered striated domains induced by transmembrane peptides in
supported phosphatidylcholine bilayers. Biochemistry. 39:5852–5858.

30. Milov, A. D., R. I. Samoilova, Yu. D. Tsvetkov, V. A. Gusev,
F. Formaggio, M. Crisma, C. Toniolo, and J. Raap. 2002. Spatial
distribution of spin-labeled trichogin GA IV in the Gram-positive
bacterial cell membrane determined from PELDOR data. Appl. Magn.
Reson. 23:81–95.

1540 Salnikov et al.

Biophysical Journal 91(4) 1532–1540


