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Abstract 

 The closed form solution for Morse oscillator transition probabilities valid for highly 

excited states has been obtained. As an example, we have considered large n∆  transitions in 

vibrationally inelastic scattering of I2 molecules from two isotopic targets H2 and D2. 

1. Introduction 

Despite considerable progress in numerical computations, the use of simple models in 

vibrational relaxation is still effective, since they make it possible to rather easily estimate 

vibrational transition probabilities with knowledge of the interaction potential. Obviously, the 

models are also useful in studies of the sensitivity of results to the potential parameter variations. 

Besides, in such an approach, recommendations can be given concerning the estimates of the 

intermolecular potential parameters. Numerous attempts to develop analytical approaches for 

vibrationally inelastic atom-molecule collisions are available in the literature (see, for example, 

reviews [1-6] and references therein). However, some of the models have serious inherent 

demerits that make them less reliable and accurate as compared to fully quantum calculations, 

quasiclassical, semiclassical, and classical trajectory calculations. Many of the models are based 

on the first-order perturbation theory and therefore cannot be applied for multiquantum 

processes. Exceptions are the forced harmonic oscillator model [1-4, 7] and the Bessel uniform 

approximation [8-11] developed for collinear collisions of an atom with a harmonic oscillator.

 This Letter deals with the analytical approaches to the problem of a Morse oscillator 

interacting with a structureless atom in three-dimensional collisions, and incorporates the effects 

of rotational degrees of freedom in the infinite order sudden (IOS) approximation.  
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2. The forced highly excited oscillator 

Consider an inelastic collision of a diatomic molecule BC in the state >njm|  with an 

atom A that results in the state >′′′ mjn|  where n  is the vibrational quantum number, and mj ,  

are the rotational quantum numbers. The interaction potential is written as usual 
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where R  is the distance from the atom A to the center of mass of BC, r  the distance between B 

and C and γ  the angle between vectors r  and R . The classical path Hamiltonian is given by 

 )(),,()(
2

2
2

tfxRrVBrV
M
pH eM −+++= γJ   ,                                                (2) 

where )(rVM  is the intramolecular potential chosen in the form of Morse oscillator, M  the 

reduced mass of the molecule, 22 2/ eMrB h= the rotational constant, errx −=  the 

displacement and )(tf  the external force 
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The above representation corresponds to the intermolecular potential expansion in powers of 

small vibrational amplitude. The trajectory of the relative motion )(tR  is determined by the 

isotropic part of the potential ),(0 RrV e . 

 To proceed further, we shall suppose that the molecule actually does not rotate during a 

collision. The IOS approximation may be used to consider only the rotational degrees of 

freedom, leaving the vibrational degrees of freedom to be treated in a semiclassical manner. The 

IOSA is ideally suited for heavy molecules with closely spaced rotational levels colliding with 

light atoms. Within the IOS approximation the probability of vibrational transition from the state 

n  to the state n′  is given by a simple formula [12] 
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where the S matrix elements depend on the rotational coordinate as on a parameter. Now turn to 

the exponential approximation for the scattering matrix. Its characteristic feature is that even the 

first-order Magnus approximation gives the exact solution for a harmonic oscillator under the 

action of external force [13] 
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where )(γδ  is the change in action of the active molecule evaluated along a classical trajectory 
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Here eω  is the equilibrium oscillation frequency, )(nω  is some mean transition frequency (see 

below). We would like to emphasize once again that this result is valid in the first order of 

Magnus approximation for a Morse oscillator, and is exact for a harmonic oscillator. 

 In principle, the model of harmonic oscillator does not describe highly excited vibrational 

states, thus problems involving such states do not have exact analytical solutions in collision 

theory. For highly excited states we can apply the correspondence principle, and use action-angle 

variables. With this aim in mind, it is convenient to transform the Cartesian variable x  in action-

angle coordinates α,I  [14] 
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For convenience of notation, we introduce the quantity 
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According to the correspondence principle, the transition frequency nn′ω  is to be equal to 

)()( nnn ω−′  where the mean quantum number n  is related to the classical action variable I  

as h)2/1( += nI . For the Morse oscillator n  is exactly equal to 2/)( nn ′+ . In the above 

equations N  is the number of bound states or, in another notation, exN =+ −1)12(  where ex  

is the anharmonicity constant [15]. Equations (7), (8) give the case of harmonic oscillator [16] in 

the limit ∞→N .  

 The correspondence principle for strongly coupled states [4] provides an approximate 

expression for S-matrix elements between states n  and n′  of a highly excited bound system 
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where nnn −′=∆ . In general, equation (9) is only true in the limit of high )(nn ′  and low n∆ , 

i.e., the smaller the ratio <∆ nn / , the larger the range of validity of the strong-coupling 

correspondence principle (SCCP) approximation. Now let us evaluate this integral by the 

stationary phase method treating the quantity 12)( +Nγδ  as a large parameter. By 

approximating the ln(...)  function in Eq. (9) by a quadratic term in kαα − , one obtains the 

approximation for nnS ′  valid for two stationary phase points 2/πα ±=k , namely: 
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In Eq. (10) )(nε  is given by 
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In other words, )(nε  is enE ωh/  where nE  is the energy level of the Morse oscillator. 

 In the limit of large impact parameters the change in action is small, and the asymptotic 

expression for S matrix elements becomes invalid, since transition probabilities exceed unity. 

Cross section calculations call for taking into account contributions of all trajectories, thus the 

necessity arises of generalizing Eq. (10) to the case of small )(γδ . The derivation of the Bessel 

uniform approximation may be patterned after the method of Stine and Marcus [9]; however, in 

our case the desired result is conveniently obtained from simple intuitive considerations. For this 

purpose, consider the asymptotic expansions of the Bessel functions for large arguments 
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The analysis of formulae (10)-(14) obviously suggests that 
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Dominant contribution to vibrational energy transfer probabilities near the dissociation limit is 

made by the first two terms, while the last term is the leading one in the limit of harmonic 

oscillator. Note that contributions from all three terms are comparable in magnitude for 

intermediate values of )(nw . Equation (15) is essentially simplified for the case of harmonic 

oscillator 

 ( )2/1)(222 += ∆′ nJS nnn γδ                                                                              (16) 
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The above expression was first derived by Clark and Dickinson [8] for collinear geometry of 

collisions. The quantity >< )(2 γδ  may be interpreted as the total energy (in units of eωh ) 

transferred to a harmonic oscillator initially at rest [17]. 

 In the present derivation we assume that the anisotropic interaction potential is strongly 

dominated by a single term of the Legendre polynomial expansion (usually =λ 1 or 2) 

 [ ])(cos1)/exp()(),,( γγ λPqLRrVRrV +−=   ,                                                 (17) 

where q  is the anisotropy parameter. With this potential, change in action (6) may be written as 

 ( )[ ])(cos1)(,,)( γωγδ λPqnvbA +=   ,                                                                 (18) 

where A  depends on the impact parameter b , the relative velocity v  and the mean transition 

frequency. These dependences are easily found in the case of rectilinear trajectory valid for 

Lb >>  
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Here )(1 bK α  is the modified Bessel function of first order where α  is defined as 

 
2

1
2)(11

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+=

v
Ln

L
ωα                                                                                         (20) 

In another limiting case, an analytical determination of the head-on collision trajectory is also 

possible for the exponentially repulsive potential [1]
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where E  is the initial kinetic energy. In the latter case we get 
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where µ  is the reduced mass for the translational motion and the dimensionless parameter eC  is 

proportional to a logarithmic derivative 
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The modified wave number approximation generalizes equation (22) to the case of 

impact parameters different from zero, and gives the explicit expression for vibrationally 

inelastic cross sections (see, for example, [1]). Unfortunately, this approximation has an essential 

defect. It is easily shown that for sudden collisions the inelastic cross sections have an oscillatory 

dependence on n∆ , except for small A . Consequently, the behavior of the change in action with 

the impact parameter (at Lb << ) should be accurately defined by taking into account distant 

collisions. This is done using the following approximation 

 ( ) 2
1

)(
)(2)(,,

L
bKbvLCnvbA e β

ββµω ⎟
⎠
⎞

⎜
⎝
⎛=
h

  ,                                                             (24) 

 where 

 
2

1

/)(
]/)(sinh[1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

vLn
vLn

L ωπ
ωπβ                                                                                   (25) 

At moderate values of the adiabatic parameter vL /ωπ , the modified expression (25) has the 

same functional dependence on 2)/( vLω  as expression (20) for α  differing by the numerical 

factor 6/2π . Therefore, interpolation formula (24) contains both limiting cases thus providing 

the connection between them. True, the v  dependence of the change in action has a 

discontinuity, but in that region of impact parameters where their contribution to inelastic cross-

sections is not significant. Substituting equations (18) and (24) into (15) results in the analytical 

representation for transition probabilities depending on all parameters that define excitation 

(deactivation) of the Morse oscillator in collisions with atoms. Inelastic cross sections are 
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calculated numerically by integration over the impact parameter transition probabilities (4) as 

usual. 

3. Results and discussion 

 The magnitude of the transition probability depends almost entirely on the parameter 

vL /ωπ . High values of this parameter indicate that collisions are adiabatic. This is a typical 

case for many molecules occupying low vibrational states. In this limit the change in action is 

exponentially small even for the trajectory with 0=b , so for small values of the Bessel function 

arguments we directly find 

 ⎥
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Symmetrization of the trajectory parameters, i.e., replacement of v  by the mean velocity 

2/)( vv ′+  results in the transition probability being proportional to ( )||2exp kkL ′−− π  

where k  is the wave vector. Thus we relate our approach to the well-known result of Landau for 

exponentially repulsive potential [18]. 

 Low values of vL /ωπ  are typical for sudden collisions, and this situation is particularly 

accurate for systems like He + I2 in which a light atom interacts with a heavy molecule. In this 

case one can readily derive the energy dependence of vibrational excitation cross sections near 

the threshold where the relative velocity (v′ ) after collision is small. This process is time-

reversed relative to that where the initial velocity (v ) is small. Using the principle of 

microscopic reversibility, we immediately find from Eqs. (15), (24) 
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The excitation cross-sections )(0 En→σ , which Hall et al. [19] measured in the region of the 

excitation threshold, demonstrate precisely such a behavior with energy. 

 The deviation from complete up-down symmetry can also be explained from Eq. (15). At 

fixed initial n  and given n∆  the mean quantum number n  is greater for upward transitions 
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than for downward ones. As a consequence, the difference arises between the probabilities of T-

V and V-T transitions due to the difference in adiabatic factors (see Eq. (8)). This is supported by 

experiments [20, 21]. 

 As is seen from Eq. (24), the change in action is proportional to the reduced mass of 

colliding particles; moreover, it depends on the characteristic value of orbital angular momentum 

vLµ . This dependence naturally accounts for isotopic effects in the crossed beams inelastic 

scattering of I2 from H2 and D2 [20], as well as the difference in the behavior of cross sections 

with energy near the threshold for two targets He and D2 [22]. 

 Further conclusions are a trivial consequence of the Bessel function properties. First, a 

physical limitation on the maximum angular momentum transfer manifests itself in a rapid drop 

off of transition probabilities as a function of n∆  beyond some characteristic value ∗∆n  such 

that )()(2 nn εγδ≥∆ ∗ . Second, adiabatic effects result in the existence of classical 

dynamical threshold velocities for these large n∆  collisions. Such effects depend crucially on 

the potential parameter L . So we conclude that dynamical rather than energetic constraints 

govern the collision process, a feature noted in the experiments by Krajnovich et al. [20,21]. 

 Numerical calculations of inelastic cross sections show the following peculiarities. 

Transition probabilities averaged over all rotor orientations show an oscillatory dependence on 

n∆  that is absent in cross sections calculated for fixed value of γ , i.e., integration over the 

impact parameter produces a monotonic dependence of σ  on n∆  for any orientation. The IOS 

approximation for the rotational degrees of freedom results in a weak dependence of cross 

sections on anisotropy parameters, though; in general, cross sections increase with increasing q . 

Calculations reported in this paper employ the potential parameters for I2 + H2 and D2: =eC 0.1, 

=L 0.34 Å and =q 0. These data were found by fitting experimental dependence of σ  on  

n∆  for I2 + H2 at the center-of-mass collision energy 89 meV [20]. With such an approach the 

anisotropy parameter was difficult to determine, thus we restricted ourselves to the contribution 
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from the isotropic part of the potential to vibrational energy transfer cross sections. Then, cross 

sections for the I2 + D2 system calculated at =E 103 meV were compared with experimental 

values [20] to test predictions of the theory. We used the spectroscopic parameters =eω 133.47 

cm-1 and =ex 0.0078 found by fitting transition frequencies given in [20]. The results are shown 

in Fig.1. Note that at ≈..mcE 220 meV inelastic cross sections for I2 + H2 become equal in 

magnitude to the I2 + D2 cross sections at 103 meV, since the energy ratio 21 : EE  is 

approximately equal to the ratio 12 :µµ  of reduced masses for isotopic targets in collisions with 

I2. The reasons are as follows. Collisions are moderately non-adiabatic due to the low frequency 

of strongly anharmonic vibrations. Large values of the mean vibrational quantum number make 

the perturbation theory inapplicable in this case. 
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Figure captions 

Fig. 1. Comparison of cross sections for vibrational relaxation of I2
* (n = 35) by H2 and D2 from 

Ref. 20 with a theory and predictions based on the semiclassical model (Eqs. (15), (24)). 
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