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A three-dimensional semiclassical analytical model for cross-sections of vibrational energy
transfer in collisions between an atom and a diatomic molecule has been developed. The model
is based on the Bessel uniform approximation for transition probabilities valid for highly
excited states of a molecule represented by the Morse oscillator. Three fitting parameters of the
model are expressed in terms of the features characterizing the anisotropic intermolecular
potential. The accuracy and validity of this law are tested by comparison with large �n
transitions and isotope effects in the crossed beam inelastic scattering of I2 from He, H2

and D2.

1. Introduction

Vibrationally inelastic atom–molecule collision pro-
cesses have been studied in detail with different degrees
of approximation by solving close-coupled scattering
equations [1–11]. In particular, collisions between an
atom and a diatomic molecule represented by a Morse
oscillator have been analysed using classical [2–4],
semiclassical [5–7], and quantum mechanical treatments
[8–11]. The references cited include both collinear [3, 5,
7, 8] and three-dimensional studies [1, 2, 4, 6, 9–11].
Recently, the closed form solution for Morse oscillator
transition probabilities was proposed [12]. The approach
is based on the strong-coupling correspondence princi-
ple (SCCP) approximation [13] valid for highly excited
states, and involves a semiclassical description of
vibrationally inelastic collisions. The approach also
incorporates the effects of rotational degrees of freedom
in the infinite order sudden (IOS) approximation. In the
framework of this analytical model for probabilities,
cross-sections of vibrational energy transfer have been
calculated numerically. It is possible, however, to
simplify the calculations by considering the transferred
energy as an exponential function of the impact
parameter. The aim of this analysis is twofold. On the
one hand, such a model generalizes previous studies and
gives the cross-sections in a closed form expression that
depends on the interaction potential parameters. On the
other hand, if one considers the parameters appearing in
the theory as free adjustable parameters, one can derive

a new fitting law for cross-sections �n!n0 ðvÞ, which
involves the dependence on the relative transla-
tional velocity v and on the vibrational quantum numbers
n, n0.
Numerous attempts to develop analytical models for

vibrationally inelastic atom–molecule collisions are
available in the literature (see, for example, [14–20]
and references therein). Nevertheless, many of the
models are in one way or another based on the
perturbation theory, that is, the change in action in
adiabatic collisions is considered small, and the transi-
tion probabilities are expressed in terms of the transition
probability from the ground state to the first excited
state. The forced harmonic oscillator model [21] and the
correspondence principle approximation [22] are the
exceptions. Here we examine moderately non-adiabatic
collisions with arbitrary value of the change in action. In
this case, our approach makes it possible to derive an
analytical formula for cross-sections of vibrational
relaxation with three fitting parameters that have a
clear physical meaning and are related to intermolecular
potential parameters. This derivation gives new insight
into mechanisms of energy transfer for highly vibra-
tionally excited molecules, as well as bridging the
gap between theoretical methods and their practical
applications.

2. Derivation of ‘AMBA’ fitting law

Consider, for simplicity, vibrationally inelastic colli-
sions in the atom–diatom case. If the diatom is assumed
to make no rotation during the collision time, a drastic*e-mail: strekalov@ns.kinetics.nsc.ru
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simplification of the expression for the corresponding
cross-sections takes place [1]
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where Pnn0 is the vibrational transition probability
summed over all final rotational states and averaged
over all initial states and which depends on the impact
parameter b and the relative velocity v; � is the rotor
orientation relative to the intermolecular direction.
Recently, the linearly perturbed Morse oscillator prob-
lem has been solved within the SCCP approximation
[12]. The transition probability is
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where �nn is the mean vibrational quantum number, d(�)
the first-order change in action of the active molecule
evaluated along a classical trajectory, �n¼ n0 � n, and

"ð �nnÞ ¼ �nnþ
1

2
� xe �nnþ
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2

� �2

: ð3Þ

In other words, "ð �nnÞ is given by E �nn=�h!e where En is the
energy level of the Morse oscillator, !e the equilibrium
oscillation frequency, and xe the anharmonicity con-
stant. According to the correspondence principle, the
transition frequency !n0n is to be equal to ðn0 � nÞ!ð �nnÞ
where the mean frequency is given by !ð �nnÞ ¼ !ewð �nnÞ and

wð �nnÞ ¼ 1� 2xe �nnþ
1

2

� �
: ð4Þ

For the Morse oscillator �nn is exactly equal to ðnþ n0Þ=2.
Finally, in equation (2) �ð �nnÞ is defined by

�ð �nnÞ ¼
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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To proceed further, consider more carefully the model
potential energy surface (PES) of the form (usually
l ¼ 1 or 2)

Vðr,R,�Þ ¼ VðrÞ exp �
R

L

� �
1þ qPlðcos�Þ½ �; ð6Þ

where R is the distance from the atom A to the centre of
mass of the molecule BC, r the distance between B and
C, q the anisotropy parameter, and L the range of
interaction. The above PES is, however, sufficient for
investigating the influence of the rotational degrees of
freedom upon vibrational relaxation. Further, the
change in action has been found by the joining of
solutions obtained along a head-on collision trajectory
and a rectilinear one. Since we have already presented
the detailed derivation elsewhere [12], here we shall only
give necessary definitions. The change in action is given
by the expression

dð�Þ ¼ 2Ce
�vL

�h

� �
�bK1ð�bÞ

ð�LÞ2
1þ qPlðcos�Þ½ �, ð7Þ

where the dimensionless parameter Ce is proportional to
a logarithmic derivative at r ¼ re
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�h
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and

�¼
1
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In equations (7) and (8) M is the reduced mass of
the molecule BC, � the reduced mass of the system Aþ

BC and K1ð�bÞ the modified Bessel function of the first
order. Thus formulae (2)–(9) give the analytical repre-
sentation of transition probabilities that depend on
all parameters that define the process of excitation/
deactivation of a Morse oscillator in collisions with
atoms. Then inelastic cross-sections were calculated
numerically by equation (1).
To go further, the dependence dð�Þ with the impact

parameter has to be considered. The main contribution
to cross-sections of transitions with large �n is made by
the trajectories close to a head-on trajectory, thus we
replace the function �bK1ð�bÞ by expð��bÞ at small and
moderate values of �b neglecting its exact behaviour at
large �b. Consequently, the argument of the Bessel
function from equation (2) is conveniently recast as

dð�Þ
ffiffiffiffiffiffiffiffi
"ð �nnÞ

p
¼ A expð��bÞ: ð10Þ

According to (7)

A¼ að0Þf ð �nn, �Þ
ffiffiffiffiffiffiffiffi
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p
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For notational convenience we define

að0Þ ¼ 2jCej
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and
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As is obvious from (12) and (8), the parameter a is
expressed in terms of the range of the model potential
V(r) and the characteristic value of orbital angular
momentum �vL. In (14) the parameter � is the reduced
time of collisions (or adiabaticity parameter); v0 is a
reference relative velocity.

Now evaluate the integral over the impact parameter
in equation (1). Substituting the probabilities from (2)
into (1), we restrict ourselves to the evaluation of this
expression with one of the three Bessel functions only,
since other integrals are calculated by the same
procedure

�ð1Þ
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Inelastic collisions of atoms with highly vibrationally
excited molecules are close to impulsive or sudden
collisions because of the low frequency of strongly
anharmonic vibrations. In addition to that, large values
of the mean vibrational quantum number make the
perturbation theory inapplicable in this case. So we can
simplify (15) with the aid of the approximate expression
of the Bessel function averaged over fast oscillations

J2
j�nj 2Axð Þ

D E
¼

0, 2Ax< j�nj,

1

pð4A2x2 ��n2Þ1=2
, 2Ax> j�nj:

8<
: ð16Þ

This approximation to the Bessel function can be
considered as the classical limit of transition probabil-
ities Pn, nþ�n derived from the same change in action
with x ¼ 1 or b ¼ 0 [23]. Substitution of (16) into (15)
immediately gives

�ð1Þ
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where

FðzÞ ¼
2

p

Zz
0

arcsin t

t
dt: ð18Þ

This function increases monotonically from zero to a
maximum value Fð1Þ ¼ ln 2. Note that the cross-section
is equal to zero at j�nj=2A > 1 according to equation
(16). As we consider multiquantum vibrational transi-
tions for which j�nj=2A << 1, the second term in (17)
may be omitted. This reasonable assumption greatly
simplifies further calculations. In particular, the integral
over � in (1) is taken in the analytical form. Omitting
simple computations, one obtains

�ð1Þ
nn0 ¼

�f ð �nn, �Þ

jn� n0j
ln

aðqÞf ð �nn, �Þ
ffiffiffiffiffiffiffiffi
"ð �nnÞ

p
jn� n0j

" #
; ð19Þ

where � ¼ pL2. The argument of the logarithmic
function is to exceed unity, otherwise �ð1Þ

nn0 ¼ 0, that is
the transition n ! n0 becomes classically forbidden
under such conditions.
The case l ¼ 1 (heteronuclear molecules)

aðqÞ ¼ að0Þ
1þ q

1� q

� �1=2q

1� q2
� �1=2

e�1: ð20Þ

The case l ¼ 2 (homonuclear molecules)

aðqÞ

¼ að0Þð1þ qÞ exp �2þ 2
2� q

3q

� �1=2

arctan
3q

2� q

� �1=2
" #

:
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In either case aðqÞ=að0Þ is a monotonically decreasing
function of the anisotropy parameter that decreases
sharply at q ! 1 (or q ! 2) attaining its limiting value
2=e ¼0.735. . . (or 3=e2 ¼0.406. . . at l ¼ 2). Thus the
influence of the anisotropy of the intermolecular
potential upon vibrational relaxation becomes quite
noticeable for multiquantum transitions such that
aðqÞ f ð �nn, �Þ

ffiffiffiffiffiffiffiffi
"ð �nnÞ

p
� �nj j, that is, in the case of small

cross-sections.
So we have obtained a simple expression for �nn0 with

explicit dependence on all parameters that define
inelastic collisions in the case of exponential potential
(the remaining two expressions necessary in general
formula (29) will be given below). Overall, to develop a
realistic model of vibrational energy exchange, one
should allow for the contribution of long-range attrac-
tion forces and their cancellation with short-range
repulsion forces. Although in a general case evaluation
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of the effects calls for numerical calculations, here we
restrict ourselves to phenomenological consideration
sufficient for the derivation of the desired fitting law.

Let us assume that the long-range interaction of
the form CkðrÞR

�k plays the leading role in vibration-
ally inelastic collisions. Then equation (15) may be
rewritten as

�ð1Þ
nn0 ð�Þ ¼ 2p

Z1
0

J2
j�nj 2A

0b�kþ1
� �

bdb / j�nj�p; ð22Þ

where p ¼ ðkþ 1Þ=ðk� 1Þ. Since the physical meaning
of the quantity A0 is wholly immaterial for further
discussion, this expression is omitted. It is clear that at
very large k we have p � 1, that is the case of short-
range forces. This suggests that equation (19) may be
generalized in such a way as to allow for the long-range
forces ad hoc, namely:

�ð1Þ
nn0 ¼

�f ð �nn, �Þ

jn� n0jp
ln
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ffiffiffiffiffiffiffiffi
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With such a definition p is just a fitting parameter of the
theory. The case where p > 1 and p differs essentially
from unity means that attraction forces are dominant;
p � 1 means that the main contribution is made by
repulsion forces; the case where p is noticeably less than
unity means that the cancellation effect takes place.

Finally, rewrite equation (23) once again to show
explicitly the dependence of cross-sections on the
relative translational velocity

�ð1Þ
nn0 ðvÞ ¼

�wðvÞ
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p
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where

�wðvÞ ¼
�wð �nnÞ�ðv0=vÞ

sinh½wð �nnÞ�ðv0=vÞ�
ð25Þ

and

awðvÞ ¼
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sinh½wð �nnÞ�ðv0=vÞ�
: ð26Þ

The subscript w means that the functions �w and aw
depend on vibrational quantum numbers n, n0 only via
wð �nnÞ; its definition is given in (4). The contributions to
the cross-section �nn0 ðvÞ from two Bessel functions
remaining in equation (2) are found similarly
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Eventually we get
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It should be noted that the cross-sections appearing in
(24), (27) and (28) are positively defined quantities
according to equation (16), thus they are calculated so
that in either case the logarithmic function argument
exceeds unity. Otherwise, we take �ðiÞ

nn0 ¼ 0 where
i ¼1, 2, 3. When all �ðiÞ

nn0 are equal to zero, the transition
n ! n0 is classically forbidden. The dominant contri-
bution to vibrational relaxation cross-sections near the
dissociation limit is made by the first two terms, while
the last term is the leading one in the limit of the
harmonic oscillator.
In a semiclassical approximation, the cross-sections of

upward and downward transitions are equal. This
relation contradicts the detailed balance principle

v2�n!n0 ðvÞ ¼ v02�n0!nðv
0Þ: ð30Þ

To satisfy the detailed balance condition (30), we modify
cross-sections (29)

�n!n0 ðvÞ ¼
v<

v

� �2
�nn0 ð �vvÞ, ð31Þ

where v< is the smaller of v and v0, and �vv is a ‘mean
relative velocity’. This function must be symmetric in v

and v0 such that �vvðv, vÞ ¼ v. These conditions are
sufficient for the explicit form �vvðv, v0Þ to be found up
to the term proportional to �E

�vv¼ �vvðv, vÞ þ
@�vv

@v0

� �
v0¼v

ðv0 � vÞ þ � � �

¼ v 1�
En0 �En

2�v2
þ :::

� �
: ð32Þ

Note that the derivative in (32) is equal to 1/2 from
symmetry considerations. The ratio of speeds factor is
necessary in any semiclassical time-dependent model of
collisions. Intensive calculations performed by us for the
systems I2þHe, H2 and D2 show that the best
agreement with experiments is reached when:
downward transitions (n > n0)

�n!n0 ðvÞ ¼ �nn0 ðvÞ; ð33Þ
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upward transitions (n < n0)

�n!n0 ðvÞ ¼ 1�
2 En0 �Enð Þ

�v2

� 	
�nn0 ðvÞ: ð34Þ

In either case, the mean relative velocity has been taken
as the initial velocity. This is no surprise, since in
molecular beam studies of vibrationally inelastic colli-
sions [24–26] the condition of the transferred energy
smallness in (32) (�E=4E << 1) has always been met.

As is seen from the above formulae, cross-sections of
vibrational relaxation depend functionally on three
parameters a, �, p and the scaling factor �. Assuming
that these parameters can vary independently from each
other, one can consider expression (29) together with
(33) and (34) as a systematization or condensation of
experimental data in which a small amount of measured
data will suffice to determine the entire state-to-state
array. So we have the dynamically based fitting law,
which is called the analytical model within the Bessel
approximation (AMBA).

3. Results and discussion

Before proceeding to a direct comparison of theoretical
results and experimental evidence, we should like to
make some general remarks. Let us return to equations
(24)–(29), (33) and (34). It is easily seen that vibrational
energy transfer cross-sections increase monotonically
with increasing relative velocity, beginning with zero. The
cross-sections of T–V transitions vanish at the threshold.
However, even for V–T transitions, the adiabatic effects
result in the existence of classical ‘dynamical threshold
velocities’. Such effects depend crucially on the reduced
time of collisions � (¼ p!ð �nnÞL=v). The analysis of
equation (15) together with (11) and (12) shows that,
along with adiabatic effects, a physical limitation on the
maximum angular momentum transfer manifests itself
in a rapid drop-off of cross-sections as a function of
�n beyond some characteristic value �n� such that
�n� � 2A. In our approach, such cross-sections are
merely taken to be equal to zero. Just for this reason, the
threshold behaviour of T–V cross-sections needs refine-
ment. A more careful examination of the case where
v0 ! 0 shows [12]

�n!n0 ðvÞ / 1�
2 En0 �Enð Þ

�v2

� �n0�n

ð35Þ

instead of (34). This is supported by experiments [27].
Nevertheless, taking account of the detailed balance by
approximate equations (33) and (34) makes the agree-
ment with experiment much better even far from the
threshold. Another peculiarity of the above formulae
should be noted. The larger the mean quantum number

�nn ¼ nþ�n=2 for transitions n ! nþ�n, the larger the
corresponding cross-section at small and moderate
values of n. At very large n the cross-sections reach
their maximum, and then decrease slightly with decreas-
ing n near the dissociation limit. Note that the maximum
is shifted towards the dissociation limit with increasing
adiabaticity parameter �. These conclusions are in full
qualitative agreement with exact quantum mechanical
calculations done in the breathing sphere approxima-
tion [9]. It is pertinent to note in this connection that
close to dissociation the Morse potential will give a poor
approximation as the vibrational energy spacings
become controlled by the long-range form of the B–C
potential. In our approach, it is impossible to make
definite inferences about the anisotropy parameter
value. Comparison with experimental data may give
the parameter aðqÞ but the quantity að0Þ remains
unknown. Further, we shall make no distinction
between these quantities denoting aðqÞ as a.
Molecular beam studies of collisions between He, H2,

D2 and I2 in the B 0þu highly excited vibrational states
(abbreviated I2

*) [24–26] provide vibrational relaxation
data as a function of collision energy and vibrational
quantum numbers. For this reason, the results of these
studies were used for comparison and predictions of our
theory. In the framework of the AMBA fitting law, cross-
sections for I2

*
þ He are derived from computer fits to

experimental values in terms of a statistical goodness-of-
fit �2=� solely for the case n¼ 35 and the centre-of-mass
collision energy 89 meV. We used the spectroscopic
parameters !e ¼133.47 cm� 1 and xe!e ¼1.039 cm� 1

found by fitting transition frequencies given in [24]
(see table 1). The resulting parameters of the model are

Table 1. Comparison of experimental 10�nn0=�n;n�1 cross-
sections for I2

*(n¼ 35)þHe inelastic scattering at
Ec:m: ¼ 89 meV with theoretical values obtained by the
AMBA model.

�n �Evibðcm
�1Þ Experimenta Theory

7 367 0.43±0.10 0.404

6 321 0.66±0.13 0.643

5 272 0.99±0.15 1.005

4 222 1.61±0.32 1.581

3 170 2.60±0.26 2.561

2 115 4.56±0.36 4.48

1 58.6 9.09±0.45 9.635

� 1 � 60.8 10 10

� 2 � 124 4.76±0.38 4.757

� 3 � 189 2.43±0.36 2.737

� 4 � 256 1.84±0.28 1.655

� 5 � 325 0.93±0.20 0.983

� 6 � 396 0.49±0.25 0.555

� 7 � 469 0.29±0.15 0.305

aData from [24].
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a¼ 2.22, �¼ 3.8 and p¼ 0.53. The flexibility and
accuracy of this fitting law are illustrated in table 1.
Further, the parameters found were employed to test the
predicting abilities of the model. Figure 1 shows the
calculated and measured relative cross-sections for two
kinetic energies differing from the reference energy [25].
Good agreement is observed even for Ec:m: ¼ 43 meV,
when collisions are almost adiabatic (wð �nnÞ�v ¼2–3).
Along with experimental cross-sections [24], we plot in
figure 2 the relative cross-sections (from both V–T and
T–V processes) for other initial vibrational quantum
numbers and the same reference energy. In this case the
calculated values are in agreement with the measured
ones (except �n¼ � 3 at n¼ 15; �15!12 � 0), although
cross-sections of T–V transitions are represented better
than those of V–T transitions. Therefore, we find that
the AMBA model gives a very good description of both
vibrational and relative velocity dependences of inelastic
cross-sections.

Finally, we tested the ability of the theory to predict
isotope effects in the crossed beam inelastic scattering of
I2

*(n¼ 35) from H2 and D2 [26]. The isotopic targets are
treated as structureless in our approach. The fitting
procedure gave the following results for the system
I2

*
þ D2 at Ec:m: ¼ 103meV: a¼ 1.98, �¼ 3.5 and

p¼ 0.525. Everything needed for the evaluation of
parameters a and � for collisions I2

*
þ H2 at 89 meV

is given by equations (12) and (14)

a1

a2
¼
�1v1

�2v2
¼

�1E1

�2E2

� �1=2

and
�1
�2

¼
v2

v1
¼

�1E2

�2E1

� �1=2

: ð36Þ

The resulting values are a¼ 1.3, �¼ 2.67 and the value
of p must be the same for two isotopic targets.
Comparison with experimental data is shown in figure 3.
As is seen from the foregoing, the difference in angular
momentum together with the difference in relative
velocity affects the efficiency of vibrational transitions
of I2 molecules from two isotopic targets. Note that for
adiabatic collisions the difference in relative velocity will
play the leading role, since under such conditions the
influence of the adiabatic factor becomes decisive.
Several interesting observations may be made about

the magnitudes of some of the parameters appearing in
the foregoing. The first observation concerns the reduced
collision time. Equation (14) allows one to determine the
range of interaction L. For the system I2

*
þ He we have

1.0 Å. Although this value seems to be too high, the
resulting value of the scaling factor 3 Å2 is such that it
represents adequately absolute values of cross-sections
obtained in n¼ 43 bulb studies [28]. On the other hand,
if we take that VðrÞ decreases exponentially at the length
LV , then equations (8) and (12) give a reasonable value
0.37 Å for the range LV of the B–C potential. It is
pertinent to note that the parameter p differs essentially
from unity. If only short-range repulsion forces are taken
into account (p¼ 1), the goodness of fit is characterized
by �2=�¼ 1.6 instead of 0.3 in a general case. As is seen,
inelastic cross-sections for I2

*
þ D2 collisions coincide

closely with those for I2
*
þ He collisions, thus the fitting

parameters of these systems also differ slightly, primarily
because of the difference in range parameters (see [29]
for detailed discussion).
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Figure 1. Experimental cross-sections (symbols) for inelastic vibrational transitions of I2
*(n ¼ 35) þ He measured at Ec:m: ¼ 43

and 186meV. The solid and dashed curves indicate predictions of the AMBA fitting law.
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4. Conclusion

For vibrationally inelastic collisions such that I2
*
þ

He, the so-called exponential energy gap law (EGL) has
often been used to represent the experimental data [4,
25, 26]. The EGL model gave a statistical goodness-of-fit
to the data �2=�¼ 1.2 indicating that agreement with
the data is within the reported experimental standard
deviation. For comparison, the AMBA model gave the
essentially better fit to the data with �2=�¼ 0.30. On the

other hand, with such a simplified approach one cannot
predict the dependence of the model parameters on
relative velocity and the reduced mass, as well as on
other parameters characterizing the interaction poten-
tial. Thus, the AMBA fitting law derived from a
dynamical theory is superior to the EGL for represent-
ing these data in a compact form. However, the
principal advantage of the AMBA model is that we
are able to provide a general physical interpretation of
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Figure 3. Comparison of experimental cross-sections (symbols) for vibrational energy transfer of I2
*(n ¼ 35) by H2 and D2 with

theory and predictions based on the AMBA fitting law.

-6 -4 -2 0 2 4 6

0,1

1

10

∆n

n=25

Theory

n=15

TheoryR
e
la

ti
v
e
 c

ro
s
s

 s
e

c
ti

o
n

-

Figure 2. Experimental cross-sections (symbols) for inelastic vibrational transitions of I2
*(n) þ He measured at Ec:m: ¼ 89meV.

The curves are corresponding calculations using the AMBA fitting law.
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the log-power law for vibrational energy transfer in
highly excited states, for example the behaviour of
rotational energy transfer in sudden collisions [30].
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[7] RÉCAMIER, J., and BERRONDO, M., 1991, Molec. Phys.,

73, 831.
[8] CLARK, A. P., and DICKINSON, A. S., 1973, J. Phys. B,

6, 164.
[9] VERTER, M. R., and RABITZ, H., 1976, J. chem. Phys., 64,

2939.
[10] SCHWENKE, D. W., and TRUHLAR, D. G., 1984, J. chem.

Phys., 81, 5586.
[11] NOVAK, M. M., BALINT-KURTI, G. G., and CLARY, D. C.,

1985, Chem. Phys. Lett., 114, 205.
[12] STREKALOV, M. L., 2002, Chem. Phys. Lett., 365, 216.
[13] CLARK, A. P., DICKINSON, A. S., and RICHARDS, D.,

1977, Adv. chem. Phys., 36, 63.
[14] RAPP, D., and KASSAL, T., 1969, Chem. Rev., 69, 61.

[15] LEVINE, R. D., and WULFMAN, C. E., 1979, Chem. Phys.
Lett., 60, 372.

[16] POULSEN, L. L., and BILLING, G. D., 1980, Chem. Phys.,
46, 287.

[17] DMITRIEVA, I. K., POGREBNYA, S. K., and PORSHNEV, P. I.,
1990, Chem. Phys., 142, 25.

[18] SKREBKOV, O. V., and SMIRNOV, A. L., 1995, Chem. Phys.
198, 297.

[19] ADAMOVICH, I. V., and RICH, J. W., 1998, J. chem. Phys.,
109, 7711.

[20] MCCAFFERY, A. J., and MARSH, R. J., 2001, Phys. Chem.
Commun., 4, 112.

[21] TREANOR, C. E., 1965, J. chem. Phys., 43, 532.
[22] CLARK, A. P., and DICKINSON, A. S., 1971, J. Phys. B, 4,

L112.
[23] NIKITIN, E. E., and SMIRNOV, B. M., 1988, Atom–

Molecule Processes (Moscow: Nauka).
[24] KRAJNOVICH, D. J., BUTZ, K. W., DU, H., and

PARMENTER, C. S., 1989, J. chem. Phys., 91, 7705.
[25] DU, H., KRAJNOVICH, D. J., and PARMENTER, C. S., 1991,

J. phys. Chem., 95, 2104.
[26] KRAJNOVICH, D. J., BUTZ, K. W., DU, H., and

PARMENTER, C. S., 1988, J. phys. Chem., 92, 1388.
[27] HALL, G., LIU, K., MCAULIFFE, M. J., GIESE, C. F., and

GENTRY, W. R., 1984, J. chem. Phys., 81, 5577.
[28] KURZEL, R. B., and STEINFELD, J. I., 1970, J. chem. Phys.,

53, 3293.
[29] HALL, G., LIU, K., MCAULIFFE, M. J., GIESE, C. F., and

GENTRY, W. R., 1986, J. chem. Phys., 84, 1402.
[30] SMITH, N., and PRITCHARD, D. E., 1981, J. chem. Phys.,

74, 3939.

3408 Cross-sections of vibrational energy transfer


