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Abstract 

Semiclassical scattering of a particle from a three-dimensional ellipsoid with internal 

structure is used to model vibration-rotation-translation (VRT) collisional transfer between 

atoms and diatomic molecules. The result is a very simple analytical expression containing two 

variable parameters that have a clear physical meaning. Predictions of the model for the Li2 + Ne 

system are in reasonably good agreement with experimental results. 

_____________________________________________________________________________ 

1. Introduction 

Over many years numerous scaling theories have been proposed for reducing the problem 

of knowing all the state-to-state transition rates to determining several parameters in a simple 

fitting law [1-6] (and references therein). Considerable progress has been made in the 

development of successful models for rotationally and vibrationally inelastic cross sections and 

rate constants in atom-diatom collisions. A different situation takes place when molecular 

rotation produces significant effect on vibrationally inelastic scattering, i.e., when one has to 

develop simple scaling laws for rovibrationally rate constants. The energy corrected sudden 

(ECS) scaling theory [7, 8] and the angular momentum (AM) theory [9, 10] are the exceptions.  

Classical scattering of a structureless atom from hard-shell molecules has been employed 

in many investigations of rotational and vibrational energy and angular momentum transfer [9-
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13]. Although this model has many limitations, it is yet able to reproduce a surprising number of 

complex scattering phenomena, and provides substantial insight into the fundamental principles 

which govern the collision dynamics. This Letter deals with the analytical approaches to the 

problem of semiclassical scattering of a particle from a three-dimensional hard ellipsoid, and 

incorporates the effects of quantized molecular structure that constrains the dynamics of atom-

diatom VRT collisions. The basic assumption confirmed by comparison with the experiment is 

that VRT probabilities are described more adequately by an exponential angular momentum gap 

(AMG) law. 

2. A three-dimensional smooth ellipsoid model 

Consider a diatomic molecule that undergoes a vibration-rotation transition 

( , ) ( , )i i f fn j n j→  due to a collision with another particle. Its energy levels are given by the 

expression [14] 

21 1 1( 1) ( 1)
2 2 2nj e e e e eE n x n B j j n j jω ω α⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + + + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
  (1) 

Internal state of the molecule is also characterized by the vector of rotational angular momentum, 

j, perpendicular to its axis. The atom-diatom potential energy surface is assumed to be 

represented by a hard ellipsoid [9-13]. For each point of impact on the ellipsoid surface, r , with 

coordinates ( , , )x y z  one can write the equation (in the body-fixed coordinate frame) 

2 2 2

2 2 1x y z
c a
+

+ = ,          (2) 

where a and c  are, respectively, the semimajor and semiminor axes. As is known from 

differential geometry, a unit vector normal to the ellipsoid surface at the point of impact may be 

represented as 
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( )
2 2

1 2 24 2 2 2
n e e ex y z

a cx y z
ac a a c z

⎛ ⎞
= + +⎜ ⎟⎜ ⎟⎡ ⎤ ⎝ ⎠− −⎣ ⎦

     (3) 

Now decompose the relative linear momentum into two components. The first component 

is parallel to the ellipsoid surface at the point of impact, p , and the second one is perpendicular 

to the surface, p⊥ . Since the ellipsoid is assumed to be smooth, the parallel component is not 

changed during the momentum transfer process, and energy transfer is caused solely by the 

component directed along n , namely, p np⊥ =− . According to energy conservation law, we 

have 

( )( )
2 i i f fn j n j

p p p p E E
µ

′ ′+ −
= −  ,       (4) 

where µ  is the reduced mass of the collisional pair. The change in the relative momentum is 

given simply by 

i i f fn j n j ifE E
p

v v
ω−

∆ = =
h

 ,        (5) 

where ( ) / 2v v v′= +  is the arithmetic mean of the initial and final relative velocities. 

Due to collisions the initial orbital angular momentum is converted into rotational angular 

momentum at the repulsive wall of the ellipsoidal intermolecular potential. For an initially non-

rotating ellipsoid, the transferred angular momentum 0j∆  must obey the equation 

0j [r p] [r n]p∆ = − ×∆ = ∆ ×         (6) 

To proceed further, one rewrites Eq. (6) in more detail  

( )
( )

2 2

0 1 24 2 2 2
j e eif

x y
z a c y x

v c a a c z

ω⎛ ⎞ −
∆ = − +⎜ ⎟

⎝ ⎠ ⎡ ⎤− −⎣ ⎦

     (7) 
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Note that 0j∆  is written in units of h . Now take into consideration that by definition 

2 2[r n] nb× =  where nb  is the effective impact parameter [13]. Then 

0 2 2

e e
j if n x yb y x

v x y

ω − +⎛ ⎞
∆ = ⎜ ⎟

⎝ ⎠ +
        (8) 

It only remains for us to estimate the total transferred angular momentum, J . For this purpose, 

add the change in the angular momentum of rotating ellipsoid, 1j∆ , to 0j∆  by way of [15] (p. 

163) 

0 1J j [r [ j r]]
I
µ

= ∆ − × ∆ ×  ,         (9) 

where I  is the moment of inertia of the ellipsoid. Assume that vectors 1j∆  and 0j∆  have the 

same preferential direction[r n]× . Only in this case the z -component of the vector 

1[r [ j r]]× ∆ ×  that has no physical meaning disappears. Obviously, the magnitude of 1j∆  is to 

be proportional to the change in the angular momentum of the molecule, f ij j j∆ = − , however, 

the coefficient of proportionality remains arbitrary. For the second term in Eq. (9) to be finite at a 

head-on collision, it is convenient to use a dimensionless quantity of the inertia moment, 

2/I rµ . The above heuristic reasoning gives 

1 2 2 2

e e
j x yy xI j

r x yµ

− +⎛ ⎞∆
∆ = ⎜ ⎟

+⎝ ⎠
          (10) 

So we can simplify (9) by Eq. (10) to give 

if nb
J j

v
ω

= ∆ −           (11) 

The transferred angular momentum depends on the trajectory of the relative motion via the 

‘mean’ velocity and the effective impact parameter. This parameter varies from zero to the 
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maximum value max
nb . The appearance of the torque-arm max

nb  in the theory means that instead 

of two parameters a  and c , actually, only one parameter is used. This circumstance enhances 

significantly the ability of the model to predict and to fit experimental data.  

3. Derivation of ‘AMG’ fitting law 

Collision-iduced RT and VRT inelastic processes are most easily described by the 

mechanism of the interconversion of linear and angular momenta under constraints imposed by 

conservation of total energy and of total angular momentum. The AM theory predicts the 

exponential-like falloff of RT probabilities with the increase in the transferred angular 

momentum [9, 11]. Calculations based on this theory accurately reproduce results obtained from 

state-resolved experiments. This idea will serve as a basis for the derivation of simple analytical 

expressions for inelastic VRT cross sections and rate constants. Accordingly, we assume that the 

probability of VRT transition for a given trajectory can be represented as 

( )2 1 exp
2i i f fn j n j f
JP j α

→
⎛ ⎞∝ + −⎜ ⎟
⎝ ⎠

 ,       (12) 

where α  is the freely adjustable parameter of the model. With such a definition, the quantity 

1/α  is proportional to some upper limit on the number of angular momentum quanta which can 

be transferred in VRT collisions, and defines the width of the fj  distribution. The 

proportionality sign in (12) means that the probabilities are not normalized to unity in this 

expression. This demerit will be eliminated in the expressions for cross sections and rate 

constants by introducing an appropriate scaling factor. 

 Cross section of vibration-rotation transition induced by collisions is given by 

( )
max

0

2 1 exp
2

n

i i f f

b
if n

n j n j f n n
b

j j b db
v

ωασ →
⎡ ⎤

∝ + − ∆ −⎢ ⎥
⎣ ⎦∫     (13) 
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Though this integral is given by an analytical expression, it is reasonable to use a simple estimate 

that simplifies noticeably further derivation of the working equation 

1 max

0

2 exp exp
2 2

if n ifb L
j t tdt j

v v
ω ωα α⎡ ⎤ ⎡ ⎤

⎢ ⎥− ∆ − = − ∆ −⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

∫     (14) 

The characteristic length L  is a new fitting parameter of the model used instead of max
nb . Eq. 

(14) is a double-valued representation for L . Two essentially different values of the length 

satisfy this equation. One such value is roughly equal to 0.7 max
nb in all cases; the other may be 

less or greater than max
nb  or even has a negative value. It is apparent that these large and 

negative values of L  are of no physical significance, and must be rejected. To gain a better 

understanding of this derivation, the transition frequency is expressible in terms of vibrational 

and rotational frequencies of the molecule 

fi V Rn jω ω ω= ∆ + ∆ ,         (15) 

where f in n n∆ = − . According to Eq. (1), we have the following expressions for the ‘mean’ 

vibrational and rotational frequencies, respectively 

( )1 1 ( 1) ( 1)
2

e
V e e i f i i f f

e
x n n j j j jαω ω

ω
⎡ ⎤

⎡ ⎤= − + + − + + +⎢ ⎥⎣ ⎦
⎣ ⎦

 ,   (16) 

( ) ( )1 1 1
2

e
R e i f i f

e
B j j n n

B
αω

⎡ ⎤
= + + − + +⎢ ⎥

⎣ ⎦
      (17) 

Using the above expressions, one has the resulting equation 

( ) ( )2 1 exp
2i i f fn j n j f V R cj j n jασ σ ω ω τ→

⎛ ⎞= + − ∆ + ∆ + ∆⎜ ⎟
⎝ ⎠

,    (18) 

where /c L vτ =  is the collision duration and σ  is the amplitude factor which, generally 

speaking, depends on the relative velocity; more specifically, on v . Energy dependence of 



 7

rovibrationally inelastic cross sections enters into this equation via the mean velocity. For 

convenience, this dependence is given below in an explicit form 

( )1 21 21
2 i i f fn j n jv E E E E
µ
⎡ ⎤= + + −⎢ ⎥⎣ ⎦

      (19) 

Remember that in this formula 2 / 2E vµ=  where /v p µ⊥= . 

 Rate constants are obtained from (18) after averaging of the quantity i fvσ →  over kinetic 

energy before collision. Taking into account that the component of velocity v  is directed solely 

towards the ellipsoid, we immediately get 

( )
0

1 2
1 8
2i i f f i i f f

x
n j n j n j n j

x

kTK e kTx dxσ
πµ

∞
−

→ →
⎛ ⎞

= ⎜ ⎟
⎝ ⎠ ∫       (20) 

Here ( )0 /
i in jx E E kT>= −  where E>  is the larger of iE  and fE . Averaging over kinetic 

energy made in (20) produces no considerable changes, so one can take the cross section as a 

function of energy outside the integral sign and take it at some point x xθ= . Then Eq. (20) 

becomes simply 

( ) ( )2 1 exp
2

i i
i i f f

n j
n j n j f V R c

E E
K A j j n j

kT
α ω ω τ >

→
−⎡ ⎤

= + − ∆ + ∆ + ∆ −⎢ ⎥
⎣ ⎦

  (21) 

In the above expression A  is the temperature-dependent scaling factor which expresses both the 

overall magnitude of the rate constant and the units in which it is expressed. At 1α <<  

numerical computations by formulae (20), (21) give almost the same results, at least, near the 

maximum of fj  distribution if the characteristic collision time in this equation is defined as 

1 222c L
kT
µτ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
          (22) 
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 So we have the dynamically based fitting law, which is called the angular momentum gap 

(AMG) law. 

Let us examine the behavior of rate constants near the maximum of fj  distribution. The 

necessary estimate of the peak shift peakj∆  can be made using Eq. (21). The position of the 

maximum is determined by the minimum of the expression in the exponent. The situation is 

complicated by the fact that vibrational and rotational frequencies depend both on the initial and 

final rotational quantum numbers. However, taking these quantities at f ij j=  we obtain an 

ordinary equation instead of transcendental one. Solving it, we get the desired estimate 

( ) ( )
1

f i

V c
f i peak f i

R c j j

j j n nω τ
ω τ =

⎛ ⎞
− = − −⎜ ⎟+⎝ ⎠

,      (23) 

This is a useful relation that makes it possible to find approximately the length L  if the value of 

peakj∆  is known from experiment. For rapidly rotating molecules expression (23) is merely the 

criterion for intramolecular energy conservation. Thus, the systematic shift of the peak away 

from ij  for a given n∆  depends solely on the reduced time of collisions both for vibrations and 

for rotations. These effects are enhanced with decreasing temperature. The dependence on a 

buffer gas is characterized by the reduced mass of the system only, since the length L  is the 

characteristic of an isolated molecule rather than a collisional pair. Adiabatic effects have a 

pronounced effect on VRT rate constants. Such effects depend crucially on the reduced time of 

collisions. As is seen from Eqs. (15) - (17), at high ij , the parameter if cω τ  decreases with the 

increase in the final fj  and goes through zero where /V Rω ω  is equal to /j n−∆ ∆ . Rate 

constants rise steeply for transitions with such quantum numbers; in other words, the VRT rate 

constant rises dramatically as ij  increases, and becomes increasingly sharply peaked at a 
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specific fj  . This effect is known as the quasiresonant vibration-rotation transfer in atom-diatom 

scattering [16]. The above conclusions are confirmed by experiments [16-19]. 

4. Results and discussion 

To compare theory and experiment, we have taken the detailed absolute state-resolved rate 

constants from [19] 

( ) ( )1 1
2 22, 30 ,u i i u f fLi A n j Ne Li A n j Ne+ +Σ = = + → Σ +  

Measurements were made at 690.8 K including0 4fn≤ ≤  and 0 84fj≤ ≤ . Comparison with 

the experiment for transitions with n∆ = -1, -2 shows that the peak position is determined by the 

relation -6.0 n∆  corresponding to the length L = 1.42 Å found by Eq. (23). The position of the 

peak depends on this length only, and is independent of the maximum transferred angular 

momentum the value of which specifies the width of fj  distribution. Thus, as the starting point, 

α  and L  may be fitted separately. Note that the peak shift decreases with decreasing L  and 

disappears in the limit 0L → . As a result of the fitting procedure, parameters α  and A  were 

found in the AMG fitting law. The results are as follows: n∆ = -1, α = 0.00664 and A=0. 00364 

10-11 cm3 s-1; n∆ = -2, α = 0.004 and A = 0.00046 10-11 cm3 s-1. The quality of the fit is 

demonstrated in Fig.1. Remember that the measured rate constants span nearly three orders of 

magnitude in size. The peak shift is essentially absent in the n∆ = 1, 2 case. Accordingly, 

experimental data were fitted by the exponential distribution (21) with cτ = 0. Such an 

approximation leads to n∆ = 1, α = 0.071 and A= 0.005 10-11 cm3 s-1; n∆ = 2, α = 0.05 and 

A= 0.00094 10-11 cm3 s-1. Comparison with the experiment is shown in Fig. 2. Special attention 

is required to the case n∆ = 1. Vibration-rotation level n = 2, j = 30 is almost coincident with 

the level n = 3, j = 20 ( ifω = 3.1 cm-1), however, the rate constant of this transition is 
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approximately twice less than that of the transition with j∆ =0 and ifω = -241 cm-1. This is a 

vivid example showing that the processes of vibration-rotation scattering are defined by angular 

momentum transfer rather than the energy one; therefore, energy gap relations are not adequate 

for the description of VRT rates. 

Now return to Eq. (18). Semiclassical cross sections of inelastic collisions do not satisfy 

the detailed balance principle. There exist various receptions for the correction of a semiclassical 

approximation [5]. In particular, inelastic cross sections 2( / ) ( )ifv v vσ<  will satisfy the 

detailed balance condition [6]. The scaling factor dependence on relative velocity cannot be 

established in the framework of our approach, so the choice is arbitrary. The same is true for the 

scaling factor of temperature-dependent rate constants. 

 In conclusion we hope that the developed AMG fitting law will find application in the 

relaxation of gases containing light, rotationally hot molecules. 
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Figure captions 

Fig. 1. Comparison of measured rovibrationally inelastic rate constants with predictions based on 

the AMG fitting law for transitions in =2, ij =30 in n→ +∆ , fj . 

Fig. 2. Same as Fig. 1 except cτ  = 0. 
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