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Abstract

The irreversible reaction of a geminate pair A+B → Product in dilute solution of scavengers
is considered. The scavengers react with one of the partners, say B, thus accelerating its decay
and decreasing a geminate reaction yield. The solution of the problem involves certain di0culties
due to initial correlations. A many-particle formulation of the problem has been presented. It is
based on the consideration of the reacting system in the Fock space. The exact expressions for
the kinetics of a geminate pair decay in the presence of scavengers in dilute solutions and for
the kinetics of the geminate product accumulation have been derived for arbitrary type of the
Markovian motion of the scavengers for the case of immobile B particle and for the situation
of in4nite stochastic jumps of B particle.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A many-particle approach to the investigation of chemically reacting systems gives
most powerful and consequent methods for the derivation of the kinetic equations in
liquid solutions. On this way, considerable progress has been achieved in the deriva-
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tion of kinetic equations of a wide class of bulk chemical reactions [1–10], including
multistage ones [11–14]. However, most treatments neglect initial spatial correlations
between the reacting particles. These correlations can be of two types. One of them is
the so-called the same-type correlations [15,16] that correspond to in4nite correlation
radii between reactants in bulk reacting systems. They have been taken into account
in the consideration of simple irreversible reactions [16]. Another type of initial cor-
relations are the correlations with 4nite correlation radii that are inherent in reactions
containing the so-called geminate stages. The irreversible reaction of geminate pairs in
dilute solutions of scavengers is of practical interest.
This situation is often realized in radiation chemistry when radiation pulse results

in an initial geminate (spatially correlated) pair A + B one of the partners of which
(say B) takes part in bulk reactions with C particles from solution. One has to deal
with such reactions, for example, in studies of primary radiation chemical processes in
liquid hydrocarbons doped with charge acceptors [17], in studies of irreversible trapping
reaction of the hydrated electron and its equilibrated optically excited states and various
“precursor states” by diKerent oxidants [18], etc. In these cases the scavengers react
with a partner of a single type thus accelerating its decay and decreasing a geminate
reaction yield. The problem of adequate description of such systems involves certain
di0culties due to spatial correlations and is known as a “scavenger problem” [19,20].
In testing approximate methods of solving the problem commonly used in the lit-

erature and searching for new methods for the derivation of kinetic equations in the
framework of a many-particle approach, the exactly solvable models are of great in-
terest [15]. Consideration of the exactly solvable models of the scavengers problem is
the purpose of this contribution.
The structure of the paper is as follows. In the Section 2 we formulate the problem in

terms of a many-particle approach based on the consideration of the reactive system in
the Fock space. As a result, we obtain formal expressions for the kinetics of a geminate
pair decay in the presence of scavengers, as well as for the kinetics of the geminate
product accumulation. In Section 3 we concretize the expressions for the kinetics to the
model of immobile B particles. We show that both kinetics can be expressed through
the kinetics of the isolated geminate pair decay and the decay kinetics of immobile B
reactant in the course of the irreversible bulk reaction with scavengers. In Section 4
we obtain the expressions for the kinetics for a more complicated model of a hopping
motion of B particle. The Section 5 summarizes the main results.

2. Statement of the problem

Consider the following kinetic scheme describing the competition of geminate and
bulk reactions: at the initial instant of time a geminate pair AB is produced which can
then irreversibly recombine

A+ B → P (2.1)

Here P is the product of a geminate reaction. It can be a molecule originated from
a bimolecular association, or two molecules produced by the exchange reaction. The
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geminate pair is surrounded by bulk C particles (scavengers) able to react with one of
the geminate partners, namely, B, detaching it from a geminate partner

B+ C → C + D (2.2)

so the concentration of C particles is not changed due to reaction (2.2).
As in most many-particle approaches, we consider all reactants as material points.

A 4nite “size” of the particles can then be taken into account by introducing repulsive
force potentials. In the general case, we can consider arbitrary force potentials between
particles. However, in the exactly solvable models examined below we neglect the
force interaction of any C particle with A particle as well as with the products P and
D of geminate and bulk reactions, respectively.
The most general description of a many-particle system can be performed in the

Fock space [7,15,21]. In this space the state of the system considered is determined
by the set of distribution functions (DF):

{FAB(̃rA; r̃B; rNC ; t); FA(rNC ; t); FP(rNC ; t)} : (2.3)

Each of them corresponds to the so-called box in the Fock space. The distribution
function FAB(̃rA; r̃B; rNC ; t) is the probability that at time t A and B particles of the
initial geminate pair and N C’s will be found in the macroscopic volume � at the
points r̃A; r̃B; rNC ≡ {̃rC1 ; : : : ; r̃CN}, respectively. The distribution function FA(rNC ; t) is the
probability that at time t A particle originated from the initial geminate pair as a result
of irreversible bulk reaction (2.2) will be found anywhere in the macroscopic volume
�, and N C particles will be at the points rNC . The distribution function FP(rNC ; t) is
the probability that at time t the product P of the geminate reaction appears, and N C
particles will be found in the macroscopic volume � at the points rNC .

Each function of the set is normalized to the probabilities PAB(t), PA(t), and PP(t)
to 4nd the system in (AB), (A), and (P)-boxes of the Fock space, respectively,

PAB(t) =
∫

d̃rA d̃rB drNC FAB(̃rA; r̃B; rNC ; t) ;

PA(t) =
∫

drNC FA(rNC ; t); PP(t) =
∫

drNC FP(rNC ; t) : (2.4)

Thus the probability PAB(t) is the kinetics of the geminate pair decay in the presence
of N scavengers. Since PA(t) is the probability of producing a single A reactant from
the initial geminate pair (as a result of bulk reaction (2.2)), it can be considered
as the kinetics of the bulk reaction product A accumulation. The probability PP(t)
is the kinetics of the geminate reaction product accumulation. At any time t¿ 0 the
normalization condition is ful4lled

PAB(t) + PA(t) + PP(t) = 1 : (2.5)

The survival probabilities by time t, PA and PB, of A and B particles surrounded by
N bulk C particles in the macroscopic volume � and the probability of the geminate
product accumulation are

PA(t) = PAB(t) + PA(t); PB(t) = PAB(t); PP(t) = PP(t) (2.6)
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From Eqs. (2.5) and (2.6) it follows that

PA(t) +PP(t) = 1 : (2.7)

For convenience, further we shall use the following shorthand symbols for reactant
coordinates as arguments of the functions

r̃A ≡ A; r̃B ≡ B; r̃Ci ≡ Ci rNC ≡ CN = {C1; : : : ; CN} : (2.8)

Besides, we shall use an extended time interval −∞¡t¡∞. Then the time evolution
of the system considered is described by the set of coupled Liouville-type equations
for the distribution functions which obey the balance relations between the Fock boxes(

9t − L̂A − L̂B −
N∑
i=1

L̂Ci

)
FAB(A; B; CN ; t) = V̂ ABFAB(A; B; CN ; t)

+
N∑
i=1

V̂ (i)
BCFAB(A; B; CN ; t) + �(t)F0

AB(A; B; C
N ) ; (2.9)

(
9t −

N∑
i=1

L̂0
Ci

)
FA(CN ; t) =−

∫
dA dB

N∑
i=1

V̂ (i)
BCFAB(A; B; CN ; t) ;

+ �(t)F0
A(C

N ) (2.10)(
9t −

N∑
i=1

L̂0
Ci

)
FP(CN ; t) =−

∫
dA dBV̂ ABFAB(A; B; CN ; t)

+ �(t)F0
P(C

N ) : (2.11)

All operators in Eqs. (2.9)–(2.11) are the integral operators that act on the functions
in the in4nite (extended time+spatial coordinates) space, i.e., all variables are equal
in rights. For this reason, the Dirac delta-function peculiarities reveal themselves in
Eqs. (2.9)–(2.11) and in the kernels of the operators. The integral operators L̂A, L̂B,
and L̂Ci are the operators specifying the random walks process of A, B and Ci reactants
in the (AB)-box, respectively. The integral operator L̂0

Ci speci4es random walks in (A)
and (P)-boxes. For the general type of the Markovian stochastic process they are
de4ned by the kernels

LA(A; t|A0; t0) = −�−1
A [�(A − A0) − fA(A|A0=B)] �(t − t0) ;

LB(B; t|B0; t0) = −�−1
B [�(B − B0) − fB(B|B0=A; CN )]�(t − t0) ;

LCi(Ci; t|C0i ; t0) = −�−1
C [�(Ci − C0i) − fC(Ci|C0i=B; CN (i))]�(t − t0) ;

L0
Ci(Ci; t|C0i ; t0) = −�−1

C [�(Ci − C0i) − fC(Ci|C0i=CN (i))]�(t − t0) ; (2.12)

where CN (i) ≡ {C1; : : : ; Ci−1; ; Ci+1; : : : ; CN}, and the variables after the sloping line
denote a parametric dependence of the functions. The function fA(A|A0=B) is a condi-
tional probability to 4nd A reactant at the point A after a stochastic jump on condition
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that before the jump it was at the point A0, and B reactant was at the point B. The
parametric dependence of the functions on the coordinate B is due to the force inter-
action between A and B particles. Other functions in Eqs. (2.12) have the same sense
for moving B or C particles in diKerent boxes of the Fock space. The parameter �n
(n= A; B; C) is the mean time between the jumps of particles of n type.
The integral operators V̂ AB and V̂ (i)

BC are the reactivity operators of geminate and
bulk reactions, respectively. As usual, we assume their kernels to be local in space and
time

VAB(A; B; t |A0; B0; t0) = −wAB(A − B)�(A − A0)�(B − B0)�(t − t0) + O(�−1) ;

V (i)
BC (B; Ci; t |B0; C0i ; t0) =−wBC(B − Ci)�(B − B0)�(C − C0i)�(t − t0)

+O(�−1) ; (2.13)

where wAB(A − B) and wBC(B − C) are the elementary event rates of irreversible
reactions (2.1)–(2.2) between reactants in in4nite volume.
The initial conditions for the DF are taken in the following form:

F0
AB = P0

ABP(A; B)
N∏
i=1

�C(Ci) [1 + O(�−1)] ;

F0
A = P0

A

N∏
i=1

�C(Ci)[1 + O(�−1)]; F0
P = P0

P

N∏
i=1

�C(Ci) [1 + O(�−1)] ; (2.14)

where P0
AB =PAB(t=0); P0

A =PA(t=0), and P0
P =PP(t=0). Note that C particles are

distributed in the macroscopic volume � without any correlation, and are described by
the normalized single-particle distribution �C(Ci). The geminate pair is correlated, and
is described by the two-particle probability distribution function P(A; B). The integration
of this function over the coordinates of one particle gives the normalized single-particle
distribution of another geminate partner. Both functions are normalized as∫

dA dBP(A; B) =
∫

dCi�C(Ci) = 1 : (2.15)

Since all quantities are considered in a macroscopic but 4nite volume (taking into
account the inPuence of the walls), the terms of the order �−1 appear on the right-hand
side of Eqs. (2.14) and (2.13). To solve Eqs. (2.9)–(2.11), let us introduce the many-
particle propagators ĜAB and Ĝ. The propagator ĜAB describes the evolution of the
system in (AB)-box of the Fock space initially containing the geminate pair AB and
N C particles, and is the density of the probability of 4nding the particles at points
A; B; CN at time t, provided that at t = t0 the particles were at points A0; B0; CN

0 ,
respectively. The propagator Ĝ describes the evolution of N C particles from the
points CN

0 to the points CN in (A) or (P) boxes of the Fock space. Their kernels obey
the following equations:(

9t − L̂A − L̂B − V̂ AB −
N∑
i=1

L̂Ci −
N∑
i=1

V̂ (i)
BC

)
GAB(A; B; CN ; t|A0; B0; CN

0 ; t0)

= �(t − t0)�(A − A0)�(B − B0)�(CN − CN
0 ) ; (2.16)
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(
9t −

N∑
i=1

L̂0
Ci

)
G(CN ; t|CN

0 ; t0) = �(t − t0)�(CN − CN
0 ) : (2.17)

The solution of Eqs. (2.9)–(2.11) can be represented as

FAB(A; B; CN ; t) = ĜAB | �(t)F0
AB(A; B; C

N )〉 ; (2.18)

FA(CN ; t) = Ĝ

(
| �(t)F0

A(C
N )〉 −

∫
dA dB

N∑
i=1

V̂ (i)
BCFAB(A; B; CN ; t)

)
; (2.19)

FP(CN ; t) = Ĝ
(

| �(t)F0
P(C

N )〉 −
∫

dA dB; V̂ ABFAB(A; B; CN ; t)
)

: (2.20)

These solutions will be used for the kinetics calculation in Eq. (2.6). Finally, we shall
be interested in the kinetics in the thermodynamic limit

PT
A (t) = T − limPA(t); PT

B (t) = T − limPB(t);

PT
P (t) = T − limPP(t) ; (2.21)

where the operator T − lim denotes the well-known procedure of the thermodynamic
limit [22–24]: T − lim ≡ lim(N → ∞; � → ∞; N=� = [C] = const).
Using Eqs. (2.16)–(2.20), one can obtain the 4nal formulae for the kinetics

calculation

PT
B (t) = T − lim

∫
dA dB dCNĜAB| �(t)F0

AB(A; B; C
N )〉 ; (2.22)

PT
P (t) =  (t)P0T

P −
(
T − lim

∫
dA dB dCN

×
∫ t

−0
d�V̂ ABĜAB | �(�)F0

AB(A; B; C
N )〉
)

; (2.23)

where P0T
P = T − lim P0

P . Further, all quantities in the thermodynamic limit will be
designated by additional upper index T . In the derivation of Eq. (2.23) the condition
for the normalization of the function G has been used∫

dCNG(CN ; t|CN
0 ; t0) =  (t − t0) ; (2.24)

where  (t) is the Heaviside step function. For the calculation of PT
A (t) it is convenient

to use the formula following from Eq. (2.7):

PT
A (t) =  (t) −PT

P (t) : (2.25)

Note that for the calculation of kinetics (2.22)–(2.23) the propagator Ĝ (i.e., the
information about the motion operator L̂0

Ci) is not needed.
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3. The model with immobile B particle

In this section we shall 4nd the kinetics (Eqs. (2.22), (2.23), and (2.25)) in the case
of immobile B reactant. Also we assume that there is no force interaction between C
particles. Correspondingly, the operators of the particles motion take the following
form:

LA(A; t|A0; t0) = −�−1
A [�(A − A0) − fA(A|A0=B)]�(t − t0) ;

LB = 0 ;

LCi(Ci; t|C0i ; t0) = −�−1
C [�(Ci − C0i) − fC(Ci|C0i=B)]�(t − t0) : (3.1)

In the case of immobile B particle, the Green function GAB obeys Eq. (2.16) where
one has to assume L̂B ≡ 0. It is easily seen that this function takes the form

GAB(A; B; CN ; t|A0; B0; CN
0 ; t0)

=GA(A; t|A0; t0=B)�(B − B0)
N∏
i=1

GC(Ci; t|C0i ; t0=B) (3.2)

with GA and GC obeying the equations

(9t − L̂A − V̂ AB)GA(A; t|A0; t0=B) = �(t − t0)�(A − A0) ;

(9t − L̂C − V̂ BC) GC(C; t|C0; t0=B) = �(t − t0)�(C − C0) : (3.3)

Here we omitted index i (the number of C particle). It follows from Eq. (3.3) that
the function GA is the Green function describing the decay of immobile B particle
localized at point B in the reaction with moving A particle. Correspondingly, GC are
the Green functions describing the decay of immobile B particle localized at point
B in the reaction with moving C particle. Using Eq. (3.2) and the distribution from
Eqs. (2.14) in Eq. (2.22), we get

PT
B (t) = T − lim

∫
dA dBP0

ABĜA |P(A; B)�(t)〉
(∫

dCĜC |�C(C)�(t)〉
)N

:

(3.4)

Let us pass to the thermodynamic limit in Eq. (3.4). To do this, we assume that the
following expansion takes place:

P(A; B) ∼
�→∞

�−1!h(A)!h(B)PT (A; B); �C(C) ∼
�→∞

�−1!h(C)�T
C(C) ; (3.5)

where !h(̃r) is the characteristic function of the volume �:

!h(̃r) =
∫
�
d̃r0�(̃r − r̃0) =

{
1; r̃ ∈� ;

0; r̃ �∈ � :
(3.6)

The functions PT (A; B) and �T
C(C) are not equal to zero in the whole in4nite space, and

have no dependence on the boundary of the volume �. They are called a two-particle
local probability of A and B reactants and one-particle local probability of C reactants,
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respectively. A one-particle local probability of A and B reactants can be obtained
from a two-particle local probability by the integration over the coordinates, i.e., as in
a usual probability theory

�T
A(A) =

∫
dBPT (A; B); �T

B(A) =
∫

dAPT (A; B) : (3.7)

A two-particle probability PT (A; B) depends not only on relative coordinates of A and
B reactants, since, generally speaking, nonuniform reacting systems are considered.
One-particle local probabilities under standard procedure of averaging over the volume
give

lim
v→∞

∫
v

dA
v

�T
A(A) = lim

v→∞

∫
v

dB
v

�T
B(B) = lim

v→∞

∫
v

dC
v

�T
C(C) = 1 : (3.8)

Here v under the integral sign denotes that integration is performed solely within the
limits of the volume v.
Substituting Eq. (3.5) in Eq. (3.4), passing to the thermodynamic limit and using

the method from our previous works [15,21], we obtain

PT
B(t) = P0T

AB lim
v→∞

∫
v

dB
v

�(t=B)NB(t=B) ; (3.9)

where the survival probability �(t=B) of a geminate pair without scavengers on 4xed
coordinates of B particle is de4ned in the following way:

�(t=B) =
∫

dAĜT
A | �(t)PT (A; B)〉 : (3.10)

The survival probability NB(t=B) of immobile B particle in a bulk reaction with scav-
engers is

NB(t=B) =  (t) exp
{

−[C]
∫

dC(�T
C(C) − ĜT

C | �(t)�T
C(C)〉)

}
: (3.11)

In the literature it is known as the exact solution of the “target problem” [15,21,25–27].
The propagators ĜT

A and ĜT
C in Eqs. (3.10), and (3.11) obey the equations following

from Eqs. (3.3) after the thermodynamic limit:

(9t − L̂T
A − V̂ T

AB) GT
A (A; t|A0; t0=B) = �(t − t0)�(A − A0) ;

(9t − L̂T
C − V̂ T

BC) GT
C(C; t|C0; t0=B) = �(t − t0)�(C − C0) : (3.12)

The operators L̂T
A , V̂

T
AB, L̂

T
C , and V̂ T

BC describe the evolution of reactants in the in4nite
space, and do not depend on the boundary of the volume �. In particular, the kernels
of the operators V̂ T

AB and V̂ T
BC coincide with the 4rst terms in Eq. (2.13).

Eqs. (3.9)–(3.11) become simpler for homogeneous distribution of scavengers C:
�T

C(C) = 1(C). Using the shift symmetry

GT
C(C; t|C0; t0=B) = GT

C(C − B; t|C0 − B; t0=0) (3.13)
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we obtain

NB(t=B) ≡ NB(t) =  (t) exp{−[C]
∫

dC(�T
C(C) − ĜT

C | �(t)1(C)〉)} (3.14)

i.e., it does not depend on B coordinates. Thus introducing the volume-averaged survival
probability of a geminate pair without scavengers

Q�(t) = lim
v→∞

∫
v

dB
v

�(t=B) (3.15)

we have

PT
B(t) = P0T

AB
Q�(t)NB(t); (�T

C(C) = 1(C)) : (3.16)

For the calculation of PT
P (t) we substitute Eq. (3.2) into Eq. (2.23), and obtain the

following expression:

PT
P (t) =  (t)P0T

P − P0T
AB

(
T − lim

∫
dA dB

∫ t

−0
d�V̂ ABĜA | �(�)P(A; B)〉

×
(∫

dCĜC | �(�)�C(C)〉
)N )

: (3.17)

Passing to the thermodynamic limit, we get

PT
P (t) =  (t)P0T

P + P0T
AB

∫ t

−0
d� lim

v→∞

∫
v

dB
v

Kg(�=B)NB(�=B) : (3.18)

As usual, the geminate reaction Kg(t=B) rate depending on the 4xed position of B
particle is determined here by the formula [28,29]

Kg(t=B) = −
∫

dAV̂ T
ABĜ

T
A | �(t)PT (A; B)〉 : (3.19)

For initially uniform distribution of C reactants Eq. (3.17) reduces to

PT
P (t) =  (t)P0T

P + P0T
AB

∫ t

−0
d � QKg(�)NB(�); (�T

C(C) = 1(C)) : (3.20)

Here we introduce the volume-averaged geminate reaction rate

QKg(t) = lim
v→∞

∫
v

dB
v

Kg(t=B) : (3.21)

The well-known relation connects the survival probability of the geminate pair Q�(t)
and QKg(t) [30,31]:

9t Q�(t) = �(t) − QKg(t) (3.22)

that follows from Eqs. (3.12), (3.10), (3.15), (3.19) and (3.21).
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4. The model with the hopping motion of B particle

In exactly solvable model with mobile B particle we, as in Ref. [15], have to restrict
ourselves to three additional assumptions.
First, we shall consider the reacting systems with the uniform distribution of bulk

C reactants

�T
C(C) = 1(C) : (4.1)

Second, we additionally (compared to the above Section) neglect the force interaction
between B and C particles. Then, instead of Eqs. (3.1), we have from general equations
(2.12)

LA(A; t|A0; t0) = −�−1
A [�(A − A0) − fA(A|A0=B)]�(t − t0) ;

LB(B; t|B0; t0) = −�−1
B [�(B − B0) − fB(B|B0=A)]�(t − t0) ;

LC(C; t|C0; t0) = −�−1
C [�(C − C0) − fC(C|C0)]�(t − t0) : (4.2)

The third necessary assumption is that random walks of B reactants can be considered
as an uncorrelated Markovian process

fB(B|B0=A) =  B(B=A);
∫

dB B(B=A) = 1 ; (4.3)

where  B(B=A) is the equilibrium distribution of B reactants at 4xed A particle coordi-
nate. Physically this means that, as result of a jump, B particle will be far away from
its initial point [32]. This assumption considering in4nite jumps of B reactant in the
thermodynamic limit corresponds to the so-called hopping mechanism of a chemical
reaction [32] in liquid solutions. It has been established in experimental investigation of
a chemical reaction of an excess electron with scavengers in nonpolar liquid solutions
[33].
As in Ref. [15], the many-particle Green function GAB can be represented as a sum

of all possible realizations of the stochastic trajectories of B particle

GAB(A; B; CN ; t |A0; B0; CN
0 ; t0) =

∞∑
k=0

G(k)
AB (A; B; C

N ; t |A0; B0; CN
0 ; t0) : (4.4)

Here the index k denotes the number of the stochastic jumps in a time interval t − t0.
The 4rst term in Eq. (4.4) describes the part of the trajectories in which B particle
remains at the point of the start B0 at time t0:

G(0)
AB (A; B; C

N ; t |A0; B0; CN
0 ; t0)

= �(B − B0)GA(A; t|A0; t0=B)e−(t−t0)=�B
N∏
i=1

GC(Ci; t|C0i ; t0=B) : (4.5)

It is the product of the Green functions of A and C particles on condition of a 4xed
B particle and the Poisson waiting time distribution with the mean time �B between
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sequential jumps. Other terms can be represented in the following form:

Ĝ(1)
AB = Ĝ(0)

AB(�
−1
B f̂B)Ĝ

(0)
AB ; Ĝ(k)

AB = [Ĝ(0)
AB(�

−1
B f̂B)]k Ĝ

(0)
AB ; (4.6)

where Ĝ0
AB is the integral operator de4ned by kernel (4.5), and f̂B is the integral

operator de4ned by the kernel fB(B|B0=A)�(A − A0)�(CN − CN
0 )�(t − t0). Substituting

Eqs. (4.3) and (4.5) into Eq. (2.22), we obtain

PT
B (t) = T − lim

∫
dCN P̂ | �(t)F0

AB(A; B; C
N )〉 ; (4.7)

where the kinetics operator is introduced [15,21]

P̂=
∫

dA dB
∞∑
k=0

Ĝ(k)
AB =

∫
dA dB

∞∑
k=0

[Ĝ(0)
AB(�

−1
B f̂B)]k Ĝ

(0)
AB ≡

∞∑
k=0

P̂(k) : (4.8)

The calculation of P̂(k) with fB(B|B0=A) from Eq. (4.3) gives the following results
for the 4rst two terms of the sum in Eq. (4.8):

P(0)(CN ; t |A0; B0; CN
0 ; t0)

=
∫

dAGA(A; t|A0; t0=B0)e−(t−t0)=�B
N∏
i=1

GC(Ci; t|C0i ; t0=B0) ; (4.9)

P(1)(CN ; t |A0; B0; CN
0 ; t0) = �−1

B

∫
dA dB dA1 dCN

1 dt1

×GA(A; t|A1; t1=B)e−(t−t1)=�B B(B=A1)
N∏
i=1

GC(Ci; t|C1i ; t1=B)

×GA(A1; t1|A0; t0=B0)e−(t1−t0)=�B
N∏
i=1

GC(C1i ; t1|C0i ; t0=B0) : (4.10)

At the thermodynamic limit � → ∞ the region of a large B gives the main contribution
to the integral over dB. Then one can use the following asymptotic estimation in this
region:

GA(A; t|A1; t1=B) ∼
B→∞

G∞
A (A; t|A1; t1);  B(B=A) ∼

A→∞
 ∞
B (B) ; (4.11)

where Ĝ∞
A is the propagator of a free stochastic motion of A reactant far from B reac-

tant, and  ∞
B (B) is the equilibrium distribution (static contour) for the free propagator

[31] of B reactants far away from A reactants. Using the normalization condition∫
dAG∞

A (A; t|A0; t0) =  (t − t0) (4.12)

in Eq. (4.10), we obtain

P(1)(CN ; t |A0; B0; CN
0 ; t0) = �−1

B P̂∞ |P(0)(CN ; t |A0; B0; CN
0 ; t0)〉 ; (4.13)
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where the operator P̂∞ is de4ned by the kernel

P∞(CN ; t |CN
0 ; t0) = e−(t−t0)=�B

∫
dB  ∞

B (B)
N∏
i=1

GC(Ci; t|C0i ; t0=B) : (4.14)

Accordingly, one can get for the k-term

P(k)(CN ; t |A0; B0; CN
0 ; t0) = [�−1

B P̂∞]k |P(0)(CN ; t |A0; B0; CN
0 ; t0)〉 : (4.15)

Thus the structure of the kinetics operator (4.8) coincides with the structure of the
kinetics operator from paper [15]. So, as in paper [15], we can derive the closed
integral equation for the kinetics PT

B(t):

PT
B(t) = P0T

AB
Q�(t)NB(t)e−t=�B +

1
�B

∫ t

−0
d�NB(t − �)e−(t−�)=�BPT

B(�) : (4.16)

Thus the determination of the survival probability of B particle moving by in4nite jumps
in our many-particle system is reduced to solving the closed integral equation for this
value. The kernel of the equation e−t=�BNB(t) is the product of the Poisson waiting
time distribution of B particle with the mean time �B between sequential jumps and
the survival probability of B particle in a “target problem” (immobile B reacts with
the ensemble of C particles moving in an arbitrary way by Markovian random walks).
The inhomogeneous part of Eq. (4.16) is the product of the kernel and the survival
probability Q�(t) (de4ned in Eq. (3.15)) of immobile B particle in a geminate pair with
mobile A particle. It is remarkable that initial geminate correlations reveal themselves
only in the inhomogeneous part of Eq. (4.16) that describes the process before the 4rst
jump of the B particle. After the 4rst jump B particle leaves the geminate pair forever
and reacts with bulk C-particles only. The last processes are described by the integral
term of Eq. (4.16). Note that at �B → ∞ Eq. (4.16) is transformed to Eq. (3.16).
The derivation of the kinetic equations for PT

P(t) can be done in a similar manner.
Using Eqs. (2.23) and (4.4), it is easy to see that the terms with k ¿ 0 vanish since
even the 4rst jump of B reactant interrupts the geminate reaction. The mathematical
proof of the last statement is based on the following: as a result of the operator V̂ AB

action (for example, V̂ ABP
(1)), the region of the integration over dB is restricted to the

reaction volume of a geminate reaction. So in the thermodynamic limit the contribution
of these terms will tend to zero. Thus the equation for PT

P(t) takes the form

PT
P(t) = P0T

P  (t) + P0T
AB

∫ t

−0
d� QKg(�)NB(�)e−�=�B : (4.17)

At �B → ∞ Eq. (4.17) reduces to Eq. (3.20), just as it should be.

5. Summary

Let us summarize the main results. For the scavengers problem two many-particle
exactly solvable models are considered, and expressions for the kinetics of a geminate
pair decay in the presence of scavengers in dilute solutions and for the kinetics of the
geminate product accumulation are obtained.
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In the 4rst model one of the geminate pair particles (say B) is immobile, and the
force and chemical interactions of scavengers between each other and with A particle
of the geminate pair are neglected. Then we derive for the kinetics of the geminate
pair decay

PT
B(t) = P0T

AB lim
v→∞

∫
v

dB
v

�(t=B)NB(t=B) ; (5.1)

where the survival probability �(t=B) of the geminate pair without scavengers on 4xed
coordinates of B particle is de4ned in the following way:

�(t=B) =
∫

dA ĜT
A | �(t)PT (A; B)〉 (5.2)

and the survival probability NB(t=B) of immobile B particle in a bulk reaction with
scavengers is

NB(t=B) =  (t) exp
{

−[C]
∫

dC(�T
C(C) − ĜT

C | �(t)�T
C(C)〉)

}
: (5.3)

For the kinetics of the geminate reaction product accumulation we have

PT
P (t) =  (t)P0T

P + P0T
AB

∫ t

−0
d� lim

v→∞

∫
v

dB
v

Kg(�=B)NB(�=B) : (5.4)

As usual, the geminate reaction rate Kg(t=B) depending on 4xed position of B particle
is determined by the formula [28,29]

Kg(t=B) = −
∫

dA V̂ T
ABĜ

T
A | �(t)PT (A; B)〉 : (5.5)

For initial uniform distribution of C reactants Eq. (5.4) reduces to

PT
P (t) =  (t)P0T

P + P0T
AB

∫ t

−0
d� QKg(�)NB(�); (�T

C(C) = 1(C)) : (5.6)

Here we introduce the volume-averaged geminate reaction rate QKg(t):

QKg(t) = lim
v→∞

∫
v

dB
v

Kg(t=B) : (5.7)

In the model of a mobile B particle moving by in4nite stochastic jumps we also took
that in the reacting system the distribution of bulk reactants was uniform. Besides, we
neglected the force interactions of B particle with bulk reactants. So we have for the
kinetics of the geminate pair decay and the geminate reaction product accumulation

PT
B(t) = P0T

AB
Q�(t)NB(t)e−t=�B +

1
�B

∫ t

−0
d� NB(t − �)e−(t−�)=�BPT

B(�) (5.8)

and

PT
P(t) = P0T

P  (t) + P0T
AB

∫ t

−0
d� QKg(�)NB(�)e−�=�B ; (5.9)

respectively.
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Note that the internal degree of freedom can immediately be taken into account in
the case of the absence of the interaction between these degrees in geminate and bulk
reactions.
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