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Abstract

For a ‘scavenger problem’ known in the literature the exact many-particle solutions obtained by the authors for recombination of
excess electron in solution are compared with the approximations commonly used to interpret experimental data. Distinctions related
to an important role of time correlations are analyzed. The differences are shown to be great enough to lead to qualitatively incorrect
description of the experiment. In particular, it is shown that the superposition approximation can decrease essentially the ultimate prob-
ability of geminate recombination in the presence of scavengers. This, in turn, may give rise to considerable errors in the determination of
geminate pair parameters.
� 2006 Elsevier B.V. All rights reserved.

1. Introduction

After thermalization in a chemically inert solvent, A and
B radicals produced from a ‘parent’ molecule form gemi-
nate (spatially correlated) pairs [1–6]. The subsequent
reaction

Aþ B! P ð1Þ
is divided into two stages: geminate and bulk recombina-
tions. Geminate reaction proceeds between spatially corre-
lated radicals formed from one and the same parent
molecule. As a rule, this takes several nanoseconds [7,8].
Bulk reaction is recombination of radicals that left initial
geminate pairs to find themselves in the bulk. At small con-
centration of such pairs this stage differs essentially from a
geminate one in the time scale, and is commonly observed
on the times from micro to milliseconds. Ignoring this stage
enables one to treat reaction (1) as recombination of iso-
lated geminate pairs [9–11].

Under the above conditions, the simplest bulk reaction
competing with a geminate one is possible on addition of

uniformly distributed C acceptors of one (say B) type of
radicals to the solution. Usually C reactants are in excess
(as compared to Bs), thus their concentration remains
almost unchanged,

Bþ C! CþD: ð2Þ
The problem of calculating the decay kinetics of A or B
reactants (or the formation kinetics of P or D products
of geminate (1) or bulk (2) reactions, respectively), and
the dependence of P product yield on C acceptors concen-
tration in such a two stage reaction is known in the litera-
ture as the ‘scavenger problem’ [12–16].

A conventional phenomenological theory relies on the
incorporation of a constant decay rate on acceptors (a
scavenging term) into the equation for the survival proba-
bility of an isolated geminate pair of radicals [12–16], thus
it gives the results depending solely on a relative mobility of
B and C reactants. Similar situation also takes place in a
more consistent many-particle theory developed later on
and based on the superposition decoupling of three-particle
correlations in hierarchies for the partial distribution
functions [17]. However, even in the binary approach the
use of the superposition decoupling in a many-particle der-
ivation of kinetic equations for some reactions proved to be
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incorrect and was criticized [18–20]. So the goal of this con-
tribution is to study the ‘scavenger problem’ using the
exactly solvable many-particle model [21] with allowance
for the mobility of all reactants.

The exactly solvable many-particle model describes the
processes of recombination and scavenging of excess elec-
tron moving by random walk in solution. The most essen-
tial assumption of the model is the supposition that the
mean step length of randomly walking electron (B reactant)
is infinitely large (the hopping motion). Just this assump-
tion made it possible to obtain exact kinetic equations for
the general case of randomly walking A and C reactants
and with allowance for the Coulomb interaction in a gem-
inate pair. However, in this Letter we deliberately simplify
the microscopic model so as to concentrate attention on the
main demerit of approximate theories. This demerit is of
general physical nature independent of the type of accep-
tors motion, and determined solely by the presence of sta-
tionary rate constant of electron capture. So we ignore
deliberately non-stationarity effects responsible for addi-
tional correlations in the system, and focus our attention
on the simplest case where B reactant decays on acceptors
at a constant rate. When applied to reactions with accep-
tors moving by diffusion, the exponential kinetics is often
employed as a useful approximation neglecting the non-
stationary part of diffusion rate constant. However, strictly
speaking, the bulk reaction developing exponentially in
time corresponds to the microscopic model involving the
hopping motion of B and C reactants and the reacting
‘black’ spheres. Just this model will be the subject of our
investigation. Since the Coulomb interaction in a geminate
pair is not considered, such a model can be used to describe
the photodetachment processes of excess electron genera-
tion in solution.

2. Conventional theory and superposition approximation

Commonly, PBðtÞ � B reactant decay kinetics and PPðtÞ
– accumulation kinetics of geminate reaction products are
the experimentally measured quantities. Besides, recently,
a new method for the determination of the bulk reaction
rate constant has been proposed which is based on direct
experimental measurements of the formation rate of gemi-
nate recombination products in the presence of bulk scav-
engers _PPðtÞ [22].

A conventional theory [12–16] introduces a constant
decay rate on acceptors [C]k into microscopic equations
of a geminate pair, therefore, the influence of a competing
bulk reaction is defined only by this parameter that is the
product of the acceptor concentration [C] and stationary
rate constant k of B particles decay on these acceptors.
Thus, we have the recipe for the calculation of the experi-
mentally measured quantities:

PPðtÞ ’ Pct
P ðtÞ �

Z t

0

dsKgðsÞ expð�½C�ksÞ ð3Þ

PBðtÞ ’ Pct
B ðtÞ � XðtÞ expð�½C�ktÞ ð4Þ

As usual, geminate reaction rate in the absence of acceptors
Kg(t) is expressed in terms of the elementary rate wABð~rÞ:

KgðtÞ ¼
Z

d~r0
Z

d~rwABð~rÞGABð~r; tj~r0; 0ÞP ð~r0Þ ð5Þ

where P ð~r0Þ is the initial distribution of reactants in gemi-
nate pairs, and GABð~r; tj~r0; 0Þ is the probability density to
find A and B reactants at the relative distance~r at the in-
stant of time t if at the initial moment t = 0 they were at
the distance~r0 (the Green function). It obeys the equation

otGABð~r; tj~r0; 0Þ ¼ ½cLAB � wABð~rÞ�GABð~r; tj~r0; 0Þ ð6Þ
with the initial condition GABð~r; 0j~r0; 0Þ ¼ dð~r �~r0Þ. In Eq.
(6)cLAB is the integral operator defining Markovian random
walks of A and B in relative coordinates of the pair AB. The
survival probability of geminate pairs in the absence of a
competing bulk reaction is defined by the expression

XðtÞ ¼ 1�
Z t

0

dsKgðsÞ ð7Þ

The superposition approximation [17] adjusts the phenom-
enological theory in view of the non-stationarity of the
bulk kinetics. As a result, the accumulation kinetics of gem-
inate reaction products is obtained by integrating the prod-
uct of the bulk reaction kinetics and a pure geminate
reaction rate:

PPðtÞ ’ Psp
P ðtÞ �

Z t

0

dsKgðsÞNðsÞ; ð8Þ

while B reactant decay kinetics is expressed as the product
of bulk and geminate kinetics:

PBðtÞ ’ Psp
B ðtÞ � NðtÞXðtÞ; ð9Þ

Note that, the superposition approximation actually
substantiates the validity of papers [23,24] wherein formu-
lae (8) and (9) were introduced intuitively.

In the general case the bulk reaction kinetics may be
expressed as [10,11]

NðtÞ ¼ exp �½C�
Z t

0

dsKðsÞ
� �

ð10Þ

In the absence of initial correlations between reactants
the rate constant of the bulk reaction is

KðtÞ ¼
Z

d~r0
Z

d~rwBCð~rÞGBCð~r; tj~r0; 0Þ ð11Þ

The stationary rate constant of the decay on acceptors k

appearing in formulae (3) and (4) is determined from (11)

k ¼ lim
t!1

KðtÞ ð12Þ

The Green function GBCð~r; tj~r0; 0Þ of the pair BC is
defined by the equation

otGBCð~r; tj~r0; 0Þ ¼ ½cLBC � wBCð~rÞ�GBCð~r; tj~r0; 0Þ ð13Þ
with the initial condition GBCð~r; 0j~r0; 0Þ ¼ dð~r �~r0Þ. Just as
in Eq. (6), cLBC is the integral operator describing the
translational motion of reactants in relative coordinates
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of the reaction pair, and the bulk reaction between B and C
reactants is specified by the elementary rate wBCð~rÞ that de-
pends on their relative position.

Thus in both theories the experimentally measured
quantities are expressed in a simple way in terms of pure
geminate and bulk reactions kinetics. This indicates that,
in fact, both a conventional theory and the superposition
approximation consider these reactions proceed
independently.

3. Microscopic model of the ‘scavenger problem’

For further investigation we choose the simplest micro-
scopic model of the reacting system. Let us take that A
reactant moves by continual diffusion, while the motion
of B reactant is described by the model of infinite jumps
with the mean frequency s�1

B (the so-called two-scale migra-
tion [25])cLAB ¼ DAr2

~r � s�1
B
bI ð14Þ

Here bI is a unit operator.
We shall describe a geminate reaction by the model of

isotropic ‘black’ sphere of the radius RAB [26]. The ‘black’
sphere model excludes re-contacts of reactants and, conse-
quently, related time correlations in the system. Starting
with the initial distance r0ðPð~rÞ ¼ dð~r � ~r0ÞÞ, we easily
obtain that at r0 > RAB the geminate reaction rate in the
absence of bulk acceptors is defined as

Kgðt; r0Þ ¼ eK gðt; r0Þe�t=sB ; eK gðt; r0Þ

¼ RAB

r0

ffiffiffiffiffiffiffiffiffi
~sg

4pt3

r
exp �~sg

4t

� �
ð15Þ

where ~sg ¼ ðr0 � RABÞ2=DA is the characteristic decay time
of the geminate pair, and eK g is the geminate reaction rate
for the case of immobile B reactant. Further, quantities re-
lated to the problem with immobile B particle will be
marked by a wavy line.

By analogy with ~sg we introduce the characteristic decay
time of the geminate pair sg for the case of the two-scale
migration defining it as the characteristic decay time of
the function Kg(t, r0). Obviously, it is proportional to the
maximum of this function sg = ktm. The proportionality
coefficient k is determined from the coincidence condition
of sg and ~sg at sB!1. It is easily seen that k = 6. So
for sg

sg ¼
3

2
sB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4~sg=sB

q
� 3

� �
� 3

ffiffiffiffiffiffiffiffiffi
~sgsB

p
; sB � ~sg ð16Þ

The use of (15) in (7) with the subsequent integration
gives the expression for the survival probability:

Xðt; r0Þ ¼ 1� RAB

2r0

e�
ffiffi
g
p

erfc

ffiffiffiffi
~sg

4t

r
�

ffiffiffiffiffi
t
sB

r !"

þe
ffiffi
g
p

erfc

ffiffiffiffi
~sg

4t

r
þ

ffiffiffiffiffi
t
sB

r !#
ð17Þ

Here the parameter g ¼ ~sg=sB is introduced which defines
the ratio between ~sg and B reactant residence time in the
pair. Since the geminate reaction is arrested immediately
after the first jump of B reactant, the depth of the reaction
course depends noticeably on the parameter g

Xð1; r0Þ � X1ðr0Þ ¼ 1� RAB

r0

exp � ffiffiffi
g
p	 


; ð18Þ

Only in the limit g! 0 it is equal to the diffusion escape
probability. In this limiting case of immobile B (sB!1)
expression (17) is easily seen to turn into the well-known
diffusion result [10]

lim
sB!1

Xðt; r0Þ � eXðt; r0Þ ¼ 1� RAB

r0

erfc

ffiffiffiffi
~sg

4t

r !
ð19Þ

When calculating the bulk reaction kinetics, we shall take
that C reactants (just as B) move by jumps of infinite
length:cLBC ¼ �ðs�1

B þ s�1
C ÞbI ð20Þ

The choice of this model of motion excludes re-contacts
determined by the kinematics of reactants approach thus
reducing the value of time correlations in the system.

The model involving jumps of infinite length describes
the so-called hopping mechanism of reactions. Physically,
it is realized when a reactant reaches the reaction zone in
a single jump. In this case the rate constant is equal to
the product of the frequency of jumps and the reaction vol-
ume. Being an obvious alternative to the diffusion mecha-
nism, the hopping mechanism was first proposed in
papers [27,28] to describe luminescence impurity quenching
experiments in solid solutions. For the liquid phase reac-
tion it is developed in papers [29,30], and was first found
experimentally in excess electron capture reactions in
non-polar liquids [31].

The model of a ‘black’ ball of the radius RBC where the
reaction proceeds instantaneously is the analog of a ‘black’
sphere for the hopping mechanism. (Here we neglect the
intrinsic volume of reactants and refer to long-range reac-
tions.) In this case the non-stationary stage of the kinetics
turns into a point (‘instantaneous quenching’ [32]), and the
bulk reaction proceeds exponentially. Calculations withcLBC in form of (20) yield

NðtÞ ¼ exp �n� n s�1
B þ s�1

C

	 

t

� �
; ð21Þ

where the dimensionless parameter n = [C]V (the density
parameter) appears that is equal to the average number
of acceptors in the reaction zone of the volume
V ¼ 4p

3
R3

BC. Kinetics (21) consists of two co-factors. The
first co-factor, e�n, defines the depth of a non-stationary
stage and is the probability that no acceptors can be found
in the reaction volume at the initial instant of time. The sec-
ond co-factor describes the exponential decay with a con-
stant rate equal to the product of the total frequency of
jumps s�1

B þ s�1
C and the average number n of acceptors

entering the reaction zone.
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Passing to experimentally measured quantities of the
‘scavenger problem’, note that for both approximate theo-
ries we can easily derive

Psp
P ðtÞ ¼ e�nPct

P ðtÞ; Psp
B ðtÞ ¼ e�nPct

B ðtÞ; ð22Þ
The above relations show that in the microscopic model
chosen a phenomenological theory (3) and (4) becomes
kinetically identical to the result of the superposition
approximation (8) and (9).

The explicit expression for the accumulation kinetics of
geminate reaction product in the superposition approxima-
tion is deduced by substitution of (15), (21) in Eq. (8) and
integration

Psp
P ðt; r0Þ ¼

RAB

r0

e�nuðg; cþ 1; sÞ; ð23Þ

where c = n(sB/sC + 1) and s = t/sB are the bulk reaction
rate and time in sB units, respectively. Formula (23) in-
volves the function u(g,x,s)

uðg; x; sÞ ¼ 1

2
e�
ffiffiffi
gx
p

erfc

ffiffiffiffiffi
g
4s

r
�

ffiffiffiffiffi
xs
p� ��

þe
ffiffiffi
gx
p

erfc

ffiffiffiffiffi
g
4s

r
þ

ffiffiffiffiffi
xs
p� ��

; ð24Þ

which, in accordance with the physical meaning of the
product accumulation kinetics, is a monotonically increas-
ing function that attains its steady-state value at rather
long times

uðg; x; s!1Þ ¼ u1ðg; xÞ ¼ expð� ffiffiffiffiffi
gx
p Þ; ð25Þ

this gives the expression for the ultimate probability of
geminate reaction in the presence of bulk acceptors

Psp
P ðt!1; r0Þ ¼

RAB

r0

e�n expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðcþ 1Þ

p
Þ ð26Þ

Comparison between (26) and (18) shows that the pres-
ence of bulk acceptors leads to an additive increase in gem-
inate pair decay rate. This agrees completely with the
independence of geminate and bulk reactions mentioned
above.

4. The exactly solvable model

The simplicity of the above microscopic description of a
reacting system makes it possible to exactly solve a many-
particle problem using the results of the exactly solvable
model of the ‘scavenger problem’ formulated by the
authors in Ref. [21]. Assuming the hopping motion of B
reactant, this model gives the recipe for the calculation of
the quantities measured:

PPðtÞ ¼
Z t

0

dsKgðsÞeN ðsÞ; ð27Þ

PBðtÞ ¼ eXðtÞeN ðtÞe�t=sB

þ 1

sB

Z t

0

dseN ðt � sÞe�ðt�sÞ=sBPBðsÞ; ð28Þ

where Kg(t) is the pure geminate reaction rate defined in
(5), (15), eXðtÞ is defined in (19), eN ðtÞ is the exact many-par-
ticle survival probability of immobile B reactant sur-
rounded by bulk acceptors. The kinetics N(t) (21) goes to
it with sB!1.

In this limit of immobile B particle recipes (27) and (28)
are reduced to:

PPðtÞ ¼
Z t

0

dseK gðsÞeN ðsÞ; PBðtÞ ¼ eN ðtÞeXðtÞ ð29Þ

Comparison of (29) with (8) and (9) shows that at sB =1
the superposition approximation coincides with the exact
solution of the problem. Thus for immobile B time correla-
tions between geminate and bulk reactions are absent in the
given model at any concentration of acceptors.

We begin the examination of the time correlation influ-
ence with the accumulation kinetics analysis of geminate
recombination products. Comparison between (27) and
(8) shows that in the general case of mobile B the rate of
geminate reaction products formation _PPðtÞ ¼ KgðtÞeN ðtÞ
cannot be expressed only in terms of the kinetics of gemi-
nate and bulk reactions. It is the product of geminate reac-
tion rate Kg(t) and the above probability eN ðtÞ formed
solely during the residence time of B particle in a geminate
pair before it jumps into the bulk. Thus here the use of pure
bulk reaction kinetics N(t) is physically unjustified.

To analyze errors brought about by the superposition
approximation at arbitrary mobility of B reactants, we
make calculations for the microscopic model chosen. The
many-particle kinetics eN ðtÞ is

eN ðtÞ ¼ exp �n� n
t
sC

� �
ð30Þ

Comparison with a binary formula (21) shows that the
bulk reaction kinetics N(t) differs from eN ðtÞ by the expo-
nential multiplier:

NðtÞ ¼ exp �n
t
sB

� �eN ðtÞ ð31Þ

Accordingly, the accumulation rate _Psp
P ðtÞ of geminate

reaction products predicted by the superposition approxi-
mation differs from the exact result in the same way. So
the superposition approximation can reduce essentially
the accumulation rate of geminate reaction products.

To find the explicit form of the exact many-particle
accumulation kinetics PPðtÞ of geminate reaction products,
use formulae (27), (15) and (30). We have

PPðt; r0Þ ¼
RAB

r0

e�nuðg; mþ 1; sÞ; ð32Þ

The introduced dimensionless parameter m = nsB/sC has
the meaning of the bulk reaction rate with immobile B
reactant in units of sB. It follows from its definition that
the parameter c from (23) tends to m with sB tending to
1. The function u(g,x,s) is defined by formula (24). As
expression (23) for Psp

P coincides with (32) up to the substi-
tution of m for c, the ultimate probability of geminate reac-
tion can be obtained from Eq. (26)
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PPðt!1; r0Þ ¼
RAB

r0

e�n expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðmþ 1Þ

p
Þ ð33Þ

The ratio of (26) and (33) at small n is recast as

Psp
P ðt!1; r0Þ

PPðt!1; r0Þ
¼ exp � n

2

ffiffiffiffiffiffiffiffiffiffiffi
g

mþ 1

r� �
; n� 1 ð34Þ

From this it follows that even at small n the result of the
superposition approximation differs considerably from
the exact solution if g is rather large.

The behaviour of the accumulation kinetics PPðt; r0Þ
and the rate _PPðt; r0Þ of the geminate reaction products
accumulation as compared to the results of the superposi-
tion approximation Psp

P ðt; r0Þ and _Psp
P ðt; r0Þ is given in Figs.

1 and 2. The superposition approximation decreases
noticeably the ultimate probability of the geminate reac-
tion in the presence of scavengers, and, according to (31),
overestimates the decay of _Psp

P ðt; r0Þ as compared to the
exact solution denoted by lines with circles.

Before passing to the decay kinetics PBðtÞ of B reactant,
note that no radical distinctions should be expected, at
least, at low concentrations of acceptors. This is because
for the rather fast motion of B, when correlations are
essential, the contribution of geminate reaction into com-
plete kinetics is insignificant. To calculate the explicit form
of the exact many-particle kinetics of B reactant, we solve
(28) by a conventional method of the Laplace transforma-
tion using expressions (19) and (30) for eXðt; r0Þ and eN ðtÞ.
This gives

PBðt; r0Þ ¼ N BðtÞ 1� RAB

r0

uðg; e�n; sÞ
 �

ð35Þ

Here NB(t) is the many-particle kinetics of the bulk reac-
tion representable as:

NBðtÞ ¼ exp �n� n
t
sC

� ð1� e�nÞ t
sB

� �
� eN ðtÞN 0ðtÞ ð36Þ

The bulk reaction kinetics is defined by two independent
processes. The first process described by eN ðtÞ (30) is the
reaction between mobile acceptors and immobile B parti-
cle, while the second one, N0(t), defines the reaction of
mobile B particle with the ensemble of immobile acceptors.
A regular very large jump of B reactant changes the envi-
ronment of acceptors in an uncorrelated way, thus the rate
of the second process is equal to the product of the fre-
quency of jumps 1/sB and the many-particle probability
of acceptors entering the reaction zone, 1 � e�n. At small
parameters n expansion (36) gives the formula of a binary
kinetics (21) depending on a relative mobility of B and C
reactants.

It is easy to see that the structure of expression (35) coin-
cides with the structure defined by superposition approxi-
mation recipe (8). Following the superposition
approximation logic, the second co-factor may be consid-
ered to be the survival probability Xeff(t, r0) of some effec-
tive geminate pair making allowance for correlations with
the bulk reaction. However, it is readily seen that the pres-
ence of acceptors results in the acceleration of the kinetics
Xeff(t, r0) as compared to pure geminate kinetics X(t, r0).
This means that in a hypothetical effective pair geminate
recombination proceeds at a higher rate. Unlike (15), in
such a pair the reaction rate may be represented as
Keff

g ðt; r0Þ ¼ Kgðt; r0Þ=N 0ðtÞ.
This is paradoxical: taking account of time correlations

with the competing bulk reaction accelerates the reaction
in the effective geminate pair, though it seems obvious
that this reaction must be retarded due to the additional
decay channel in the effective acceptor surroundings.
However, the paradox arises from the superposition
approximation logic. The attempt to treat the exact kinet-

τ

Fig. 1. The accumulation kinetics PPðtÞ, Psp
P ðtÞ – (1, 2) and accumulation

rate _PPðtÞ, _Psp
P ðtÞ – (3, 4) of geminate reaction products in the presence of

scavengers. n = 0.1, g = 5, RAB/r0 = 0.95, sB/sC = 0.1.

τ

Fig. 2. The exact product accumulation rate _PPðtÞ – 1, and superposition
approximation _Psp

P ðtÞ – 2. Parameters are the same as in Fig. 1.
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ics PBðt; r0Þ as the product of the bulk kinetics and some
independent effective geminate kinetics is physically unjus-
tified. The dependence of Keff

g ðt; r0Þ on the reaction kinet-
ics N0(t) suggests that geminate and bulk reactions are
correlated in time. That is why the attempt to represent
them as two independent processes leads to a physical
contradiction. Note that adequate description follows
from the derivation of kinetic equations of the ‘scavenger
problem’ based on the application of the concepts of a
general kinetic theory to the exactly solvable many-parti-
cle problem [33].

The behaviour of the kinetics PBðt; r0Þ and Psp
B ðt; r0Þ is

given in Fig. 3 for two values of the density parameter n.
Note that relative deviations at small values of n (curves
1 and 2) are not as great as for geminate reaction product
accumulation. However, they are proportional to the den-
sity parameter, and thus can be measured in the framework
of the binary approach. The increased distinctions beyond
the limits of the binary interval (curves 3 and 4) are due to
the many-particle nature of the kinetics NB(t) (36).

5. Conclusion

Evidently, considerable distinctions in the theoretical
treatment of the measured quantities are to affect the exper-
imental data interpretation. In a classical variant [10] the
experiment is run as follows: the dependence of the scav-
enging yield F ¼ 1�PPðt!1Þ on the concentration [C]
of bulk acceptors is measured with the subsequent determi-
nation of the geminate pair kinetics X(t) from the measured
concentration dependence F(a[C]). Here a is the experimen-
tally measured constant depending on the properties of the
solvent and acceptors. Commonly, the formula (3) of the
conventional theory is employed assuming that the scav-
enging yield is the Laplace transform of geminate reaction
kinetics:

1�Pct
P ðt!1Þ ¼ ½C�k

Z 1

0

dtXðtÞe�½C�kt � F ða½C�Þ ð37Þ

The inverse Laplace transformation of (37) with [C]k as
a transformation variable gives the geminate kinetics
X k

a t
	 


. Its characteristic decay time is determined from
the ratio sg � a/k, with the bulk reaction rate constant
value k taken from independent experiments on a pure
bulk reaction. However, it follows from the exact solution
(27) that even if the ‘instantaneous quenching’ effect is
neglected, formula (37) can still be reproduced but with
an essential distinction: instead of the bulk reaction rate
[C]k = n(1/sC + 1/sB) the role of the Laplace variable will
be played by the bulk reaction rate with immobile B reac-
tant: ½C�~k ¼ n=sC that can be essentially less than [C]k.
Thus the value sg found by formula (37) is k=~k times less
than it actually is. Since for our model, according to (16),
sg � 3

ffiffiffiffiffiffiffiffiffi
~sgsB

p
¼ 3ðr0 � RABÞ=

ffiffiffiffiffiffiffiffiffiffiffi
DAsB

p
, the value of the initial

distance in the geminate pair decreases similarly.
Another part of experimental works is concerned with

the rate constant of the bulk reaction of a geminate partner
decay on acceptors. In particular, Letter [22] suggests an
ingenious method of excluding a pure geminate kinetics
from the geminate reaction channel based on formula (8)
of the superposition decoupling: _Psp

P ðtÞ ¼ KgðtÞNðtÞ. It is
seen from this formula that the bulk kinetics N(t) may be
obtained by dividing the experimentally measured fluores-
cence rate _Psp

P ðtÞ of geminate reaction products in the pres-
ence of acceptors by the fluorescence rate Kg(t) of pure
geminate reaction products. However, as follows from
the exact solution (27), the kinetics eNðtÞ thus obtained is
not the bulk kinetics and can differ considerably from it.
For example, for equally mobile B and C reactants in our
model, such an experiment will give the rate constant twice
less than the bulk reaction rate constant found.

In conclusion, it should be noted that a rather simple
microscopic model considered in this contribution does
not pretend to the detailed description of actual experimen-
tal situations involving more realistic organization of
mobility, reactivity and force interaction of reactants. So
it gives no detailed answers but just poses an actual prob-
lem of a consistent many-particle derivation of the ‘scaven-
ger problem’ equations valid for reactants mobility of
arbitrary type. This will be the subject of the subsequent
publications.
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