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Abstract

We consider a geminate reaction between A and B reactants affected by the bulk reaction between B and scavengers C. The exact
solution of the problem obtained for randomly walking B reactant (excess electron) and diffusing scavengers C is compared with the
superposition approximation commonly used to interpret experimental data. The difference is shown to be great enough to lead to qual-
itatively incorrect description of the experiment even at small concentration of scavengers. In particular, it is shown that the superpo-
sition approximation can decrease essentially the rate and the ultimate probability of geminate recombination in the presence of
scavengers.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

The problem of recombination kinetics and product
yield investigation in the reaction

Aþ B! P ð1Þ
of isolated geminate (spatially correlated) pairs [1–4] pro-
duced from a ‘parent’ molecule in the presence of the com-
peting bulk reaction, e.g.,

Bþ C! CþD ð2Þ
with acceptor C is known in the literature as a ‘scavenger
problem’ [5–10].

A conventional approach to the problem is based on the
phenomenological theory that relies on the incorporation
of a constant decay rate of a bulk reaction with acceptors
(a scavengers term) into the equation for the survival prob-
ability of an isolated pair of radicals [5–9] or on a more
consistent many-particle theory which uses a superposition
decoupling of three-particle correlation in the reduced dis-
tribution function [10]. However, it has been shown that
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the use of the superposition decoupling in the derivation
of kinetic equations for a wide class of reactions is incor-
rect, it was criticized in a number of works [11–13].

At the same time, recently the exactly solvable many-
particle model for the ‘scavenger problem’ was suggested
to take into account the mobility of all reactants [14]. This
model allows us to obtain exact kinetic equations for a gen-
eral type of mobility of A and C reactants and the Coulomb
interaction in a geminate pair [15]. The most essential
assumption of the model is that B particle of geminate pair
reacting with scavengers C moves by infinitely large jumps
(the hopping mechanism [16–18]). The hopping mechanism
has been used more than once for describing the scavenging
of an excess electron moving by random walks in solutions
[19,20]. In Letter [21] the scavenger problem was reconsid-
ered in terms of the exactly solvable many-particle model
[14]. However, in that Letter we have deliberately simplified
the microscopic model, considering C reactant moving by
infinitely large jumps too, so as to concentrate attention
on the main demerit of approximate theories. This demerit
is of general physical nature and consist in neglecting space
time correlations in the evolution of geminate pair (A + B)
and free pairs (B + C). We have found that taking account
of this correlation can change considerably the rate of
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geminate product accumulation kinetics even at low con-
centration of scavengers. The goal of this Letter is to con-
sider a more realistic situation of diffusion motion of
acceptors in liquid solutions and to compare the results
obtained commonly used approximate theory and exactly
solvable model of the ‘scavenger problem’.

2. Superposition approximation and exactly solvable model

Commonly PBðtÞ (survival probability of B reactant)
and PPðtÞ (accumulation kinetics of geminate reaction
products) are experimentally measured quantities. In addi-
tion, recently, a new method for the determination of the
bulk reaction rate constant has been proposed which is
based on direct experimental measurements of the forma-
tion rate of geminate recombination products in the pres-
ence of bulk scavengers _PPðtÞ [22].

The superposition approximation [10] refines the phe-
nomenological theory in view of the non-stationary stage
of the bulk kinetics. As a result, the accumulation kinetics
of geminate reaction products is obtained by integrating
the product of the bulk reaction kinetics N(t) and a pure
geminate reaction rate Kg(t):

PPðtÞ ’ Psp
P ðtÞ �

Z t

0

dsKgðsÞNðsÞ; ð3Þ

while survival probability of B reactant is expressed as the
product of bulk and geminate kinetics:

PBðtÞ ’ Psp
B ðtÞ � NðtÞXðtÞ; ð4Þ

Note that the superposition approximation actually sub-
stantiates the validity of papers [23,24] wherein formulae
(3) and (4) were introduced intuitively.

The survival probability of geminate pairs in the absence
of a competing bulk reaction is defined by the expression:

XðtÞ ¼ 1�
Z t

0

dsKgðsÞ ð5Þ

In the general case the bulk reaction kinetics may be ex-
pressed as [3,4]:

NðtÞ ¼ exp �½C�
Z t

0

dsKðsÞ
� �

; ð6Þ

where K(t) is a time dependent rate constant of the decay
on acceptors. The stationary rate constant k is determined
from K(t) in the following way:

k ¼ lim
t!1

KðtÞ ð7Þ

Thus in the superposition approximation the experimen-
tally measured quantities are readily expressed in a simple
way in terms of pure geminate and bulk reactions kinetics.
This indicates that, in fact, the superposition approxima-
tion considers these reactions as proceeding independently.

The results of the exactly solvable model of the ‘scaven-
ger problem’ formulated by the authors in Ref. [14] can be
used for exact description of many-particle problem.
Assuming the hopping motion of B reactant with the mean
residence time sB between the jumps, this model gives the
recipe for calculating the quantities measured:

PPðtÞ ¼
Z t

0

dsKgðsÞeN ðsÞ; ð8Þ

PBðtÞ ¼ eXðtÞeN ðtÞe�t=sB þ 1

sB

Z t

0

dseN ðt � sÞe�ðt�sÞ=sBPBðsÞ;

ð9Þ

where eXðtÞ is the survival probability of a geminate pair in
the case of immobile B particle, and eN ðtÞ is the exact many-
particle survival probability of immobile B reactant sur-
rounded by bulk acceptors (‘target problem’ [25,26]). The
bulk kinetics N(t) (6) goes to it with sB!1.

In this limit of immobile B particle recipes (8) and (9) are
reduced to

PPðtÞ ¼
Z t

0

dseK gðsÞeN ðsÞ; PBðtÞ ¼ eN ðtÞeXðtÞ;
sB !1 ð10Þ

Comparison of (10) with (3) and (4) shows that at sB =1
the superposition approximation coincides with the exact
solution of the problem. Thus, for immobile B there are
no time correlations between geminate and bulk reactions
in the given model at any concentration of acceptors.

3. Microscopic model of the ‘scavenger problem’

In further investigations we use the simplest microscopic
model of the reacting system. Let us take that uncharged A
reactant moves by continual diffusion with the diffusion
coefficient DA, while the motion of B reactant is described
by the model of infinite jumps with the mean frequency s�1

B

(the so-called two-scale migration [27]).
We shall describe a geminate reaction by the model of

isotropic ‘black’ sphere of the radius RAB [28]. The ‘black’
sphere model excludes re-contacts of reactants and, conse-
quently, related time correlations in the system. Starting
with the initial distance r0, we easily obtain that at
r0 > RAB the geminate reaction rate in the absence of bulk
acceptors is of the form:

Kgðt; r0Þ ¼ eK gðt; r0Þe�t=sB ;

eK gðt; r0Þ ¼
RAB

r0

ffiffiffiffiffiffiffiffiffi
~sg

4pt3

r
exp �~sg

4t

� �
ð11Þ

where ~sg ¼ ðr0 � RABÞ2=DA is the characteristic decay time
of the geminate pair, and eK g is the geminate reaction rate
for the case of immobile B reactant. Further, quantities
related to the problem with immobile B particle will be
marked by a wavy line.

By analogy with ~sg we introduce the characteristic decay
time of the geminate pair sg for two-scale migration defin-
ing it as the characteristic decay time of the function
Kg(t, r0). It has been calculated in Letter [21]:

sg ¼
3

2
sB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4~sg=sB

q
� 3

� �
� 3

ffiffiffiffiffiffiffiffiffi
~sgsB

p
; sB � ~sg ð12Þ
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The use of (11) in (5) with the subsequent integration gives
the expression for the survival probability:

Xðt; r0Þ ¼ 1� RAB

2r0

e�
ffiffi
g
p

erfc

ffiffiffiffi
~sg

4t

r
�

ffiffiffiffiffi
t
sB

r !"

þe
ffiffi
g
p

erfc

ffiffiffiffi
~sg

4t

r
þ

ffiffiffiffiffi
t
sB

r !#
ð13Þ

where the parameter g ¼ ~sg=sB is introduced to define the
ratio between ~sg and B reactant residence time in the pair.
Since the geminate reaction is arrested immediately after
the first jump of B reactant, the depth of the reaction
course depends noticeably on the parameter g:

Xð1; r0Þ � X1ðr0Þ ¼ 1� RAB

r0

expð� ffiffiffi
g
p Þ; ð14Þ

Only in the limit g! 0 it is equal to the diffusion escape
probability. In this limiting case of immobile B (sB!1)
expression (13) is easily seen to turn into the well-known
diffusion result [3]:

lim
sB!1

Xðt; r0Þ � eXðt; r0Þ ¼ 1� RAB

r0

erfc

ffiffiffiffi
~sg

4t

r !
ð15Þ

When calculating the bulk reaction kinetics, we assume
that C reactants move by continual diffusion with the diffu-
sion coefficient DC, while B reactant (excess electron)
moves by infinite jumps with the mean time sB between
them. During this interval between jumps the bulk reaction
develops due to acceptors diffusion to the immobile elec-
tron (kinetics eN ðtÞ), while a regular very large electron
jump changes the acceptors surroundings in uncorrelated
way and the process is repeated anew forming after all a
two-scale bulk kinetics N(t).

The model of a ‘black’ ball of radius RBC (a ‘black’
sphere with penetration) where the reaction proceeds
instantaneously is used for further calculations. (We
neglect the intrinsic volume of reactants referring to long-
range reactions). In this case the initial non-stationary
stage of the kinetics turns into a point (‘instantaneous
quenching’ [29]), and eN ðtÞ proceeds as a well-known
Smoluchowski kinetics [28]:

eN ðtÞ ¼ exp �½C� V þ ~kt þ 2

ffiffiffiffiffiffiffiffiffiffiffi
3

p
V ~kt

r !" #
;

~k ¼ 4pRBCDC; ð16Þ

where V ¼ 4p
3

R3
BC is the reaction zone volume. The dimen-

sionless parameter n = [C]V (the density parameter) can
be introduced which is equal to the average number of
acceptors in the reaction zone of the volume V.

Kinetics (16) consists of three co-factors. The first co-
factor, e�n, defines the depth of the initial non-stationary
stage, and is the probability that no acceptors can be found
in the reaction volume at the initial instant of time. The
second co-factor describes the exponential decay with a
diffusion rate constant ~k and the last is the diffusion non-
stationary correction. In this Letter we will use the binary
approximation of the bulk kinetics [30], which allows us
to expand the non-stationary part of kinetics over acceptor
concentration [C] with the accuracy of linear term:

eN ðtÞ � e�½C�
~kt 1� n� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
n½C�~kt

r" #
ð17Þ

The validity condition of formula (17) defines the binary
time interval ½C�~kt� n�1 where time dependent observable
values will be considered.

The exact many-particle bulk kinetics is described by
integral equation (9) for eXðtÞ � 1. A regular method of
binary approximation obtaining for the solution of this
equation is described in [15]. Using the result of this work
we get

NðtÞ � e�½C�kt 1� n� 2f ðt=sBÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
n½C�~kt

r" #
ð18Þ

In contrast to the case of diffusion mobilities of both reac-
tants, the stationary rate constant of the bulk two-scale
reaction is

k ¼ ~k þ V
sB

þ
ffiffiffiffiffiffiffiffiffiffi
3~k

V
sB

r
; ð19Þ

and f(s) is a function decreasing from unity to zero:

f ðsÞ ¼ 1

2
e�s þ

ffiffiffiffiffi
p
4s

r
þ

ffiffiffiffiffi
ps
p� �

erfð
ffiffiffi
s
p
Þ �

ffiffiffiffiffi
ps
p	 


ð20Þ

At t� sB it goes to asymptotic f ðsÞ �
ffiffiffiffiffiffiffiffiffiffiffi
ðp=sÞ

p
=4, and the

non-stationary part of bulk kinetics becomes time
independent.

The stationary rate constant (19) is equal to the sum of
diffusion rate constant ~k (16), the hopping rate constant
V/sB [16–18] and the interference term which results from
the intricate character of the reactants approach. The exis-
tence of this term is the distinguishing feature of stationary
rate constant (19) of the two-scale bulk reaction. It has
been obtained already in [27]. The second feature as follows
from our result (18) is a decrease of the non-stationary part
of kinetics in compare with (17) due to a fast decreasing
function f(t/sB).

4. Comparison of results

We begin the examination of the time correlation influ-
ence with the kinetics of geminate reaction product accu-
mulation analysis. Comparison between (3) and (8) shows
that in the general case of mobile B the exact rate of gem-
inate reaction products formation _PPðtÞ ¼ KgðtÞeN ðtÞ can-
not be expressed only in terms of the kinetics of geminate
and bulk reactions. It is the product of geminate reaction
rate Kg(t) and the above mentioned probability eN ðtÞ
formed solely during the residence time of B particle in a
geminate pair before it jumps into the bulk. Thus here
the use of pure bulk reaction kinetics N(t) is physically
unjustified.
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To analyze errors brought about by the superposition
approximation at arbitrary mobility of B reactants, we
use our calculations for the microscopic model chosen.
Comparison with binary formulae (17) and (18) shows that
the bulk reaction kinetics N(t) differs from eN ðtÞ by the
exponential multiplier over the difference between k and
~k, while the second power factor appears due to non-sta-
tionary parts of kinetics (17) and (18):

NðtÞeN ðtÞ ¼ exp �ðnþ
ffiffiffiffiffiffiffiffi
3nb

p
Þs

h i 1� n� f ðsÞ~nðsÞ
1� n� ~nðsÞ

	 

ð21Þ

Here b ¼ ½C�~ksB and s ¼ t=sB are the rate of the diffusion
reaction with immobile B reactant and time in sB units,
respectively. We introduce the notation for diffusion
non-stationary part of kinetics (16) and (17): ~nðsÞ ¼
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3nbs=p

p
. Accordingly, the accumulation rate _Psp

P ðtÞ of
geminate reaction products predicted by superposition
approximation (3) differs from the exact result in the same
way. So the superposition approximation can essentially
reduce the accumulation rate of geminate reaction
products.

The behaviour of relative deviation DPdot ¼ 1� _Psp
P =

_PP ¼
1� NðtÞ=eN ðtÞ of geminate reaction rate _PPðt; r0Þ as com-
pared to the results of the superposition approximation
_Psp

P ðt; r0Þ is shown in Fig. 1. It is easy to see that the devi-
ation is very large even at the very beginning of the binary
time interval equal s� (nb)�1 � 300. The second power
factor of (21) slightly decreases the deviation as compared
to the Markovian exponential part of kinetics designated
in Fig. 1 by line 1. Nevertheless the deviation remains
greater than that for the corresponding value for the model
of hopping motion of acceptors DPdot ¼ 1� expð�nsÞ [21]
denoted here by line 3.

To find the accumulation kinetics PPðtÞ of geminate
reaction products, use formulae (8), (11) and (18). We have
Δ

τ= τ
Β

Fig. 1. The relative deviation DPdot ¼ 1� _Psp
P =

_PP (line 2), and for the
Markovian parts of kinetics DðmÞPdot ¼ 1� _P

ðmÞsp
P = _P

ðmÞ
P (line 1). Line 3 is

DPdot for the model of the hopping motion of acceptors [21]. Parameters:
n = 0.1, DCsB=R2

BC ¼ 0:1.
PPðt; r0Þ ¼ ð1� nÞPðmÞP ðt; r0Þ �P
ðnÞ
P ðt; r0Þ; ð22Þ

where P
ðmÞ
P is the contribution of the Markovian (exponen-

tial) term of (17) calculated in the previous Letter [21]:

P
ðmÞ
P ðt; r0Þ ¼

RAB

r0

uðg; bþ 1; sÞ; ð23Þ

The function u(g,x,s) is defined by the following
expression:

uðg; x; sÞ ¼ 1

2
e�
ffiffiffi
gx
p

erfc

ffiffiffiffiffi
g
4s

r
�

ffiffiffiffiffi
xs
p� ��

þe
ffiffiffi
gx
p

erfc

ffiffiffiffiffi
g
4s

r
þ

ffiffiffiffiffi
xs
p� ��

; ð24Þ

which, in accordance with the physical meaning of the
product accumulation kinetics, is a monotonically increas-
ing function that attains its steady-state value at rather
long times:

uðg; x;1Þ ¼ exp � ffiffiffiffiffi
gx
p� �

; ð25Þ
The value P

ðnÞ
P ðt; r0Þ is determined by diffusion non-Mar-

kovian part of kinetics (18) and equals:

P
ðnÞ
P ðt; r0Þ ¼

RAB

r0

ffiffiffi
3
p

p

ffiffiffiffiffiffiffiffi
ngb

p Z ðbþ1Þs

0

dx
x

� exp �x� gðbþ 1Þ
4x

� �
; ð26Þ

This integral comes to the Bessel function in the limit
t!1. In this limit we can rewrite (22) in the analytical
form using Eq. (25):

PPð1; r0Þ ¼
RAB

r0

"
ð1� nÞe�

ffiffiffiffiffiffiffiffiffiffi
gðbþ1Þ
p

� 2
ffiffiffi
3
p

p

ffiffiffiffiffiffiffiffi
ngb

p
K0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðbþ 1Þ

p� �#
; ð27Þ

where K0(x) is a modified Bessel function of zero order.
The expression for the accumulation kinetics of gemi-

nate reaction products in the superposition approximation
is deduced by substituting (11) and (18) into Eq. (3) and
integrating

Psp
P ðt; r0Þ ¼ ð1� nÞPðmÞsp

P ðt; r0Þ �P
ðnÞsp
P ðt; r0Þ; ð28Þ

where the Markovian part of the kinetics equals:

P
ðmÞsp
P ðt; r0Þ ¼

RAB

r0

uðg; cþ 1; sÞ ð29Þ

The introduced parameter c ¼ ½C�ksB is the bulk reaction
rate in sB units. Using (19), it can be rewritten as
c ¼ bþ nþ

ffiffiffiffiffiffiffiffi
3nb
p

.
The non-Markovian part of the kinetics is defined by the

integral:

P
ðnÞsp
P ðt; r0Þ ¼

RAB

r0

ffiffiffi
3
p

p

ffiffiffiffiffiffiffiffi
ngb

p Z ðcþ1Þs

0

dx
x

� exp �x� gðcþ 1Þ
4x

� �
f

x
cþ 1

� �
; ð30Þ
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In contrast to (26), this integral is not taken analytically
even in a stationary limit s!1.

The behaviour of the relative deviation DP ¼ 1�Psp
P =PP

of accumulation kinetics (22) as compared to the results of
the superposition approximation (28) is presented in Fig. 2.
As follows from the figure DP (line 2) and its Markovian ver-
sion DðmÞP ¼ 1�P

ðmÞsp
P =P

ðmÞ
P (line 1) grow up with s and tend

rapidly to stationary values. The non-Markovian part of
the kinetics decreases the relative deviation, however, as
in Fig. 1, it remains larger than that for the model of the
hopping motion of scavengers (line 3).

The ratio between (28) and (22) at large s and small n is
recast as

Psp
P ð1; r0Þ

PPð1; r0Þ
¼ exp � n

2

ffiffiffiffiffiffiffiffiffiffiffi
g

bþ 1

r
1þ

ffiffiffiffiffiffi
3b
n

s !" #
H; n� 1

ð31Þ
The first exponential factor in Eq. (31) is defined by the ra-
tio between Markovian contributions (29) and (23), while
H specifies the relation of the non-Markovian parts of
the geminate product:

H ¼ 1� n�P
ðnÞsp
P ð1; r0Þ=PðmÞsp

P ð1; r0Þ
1� n�P

ðnÞ
P ð1; r0Þ=PðmÞP ð1; r0Þ

ð32Þ

From (31) it follows that even at small n the result of the
superposition approximation can decrease essentially the
ultimate probability of geminate recombination in the pres-
ence of scavengers in comparison with the exact solution if
g is large enough.

The relative deviation Ds
P ¼ 1�Psp

P ð1; r0Þ=PPð1; r0Þ as
a function of the parameter g is shown in Fig. 3. It is easy
to see that taking in account the non-Markovian part of
the deviation defined by the factor H in Eq. (31) decreases
noticeably the values of Ds

P (line 2) in comparison with the
Δ

τ= τ
Β

Fig. 2. The relative deviation DP ¼ 1�Psp
P ðt; r0Þ=PPðt; r0Þ (line 2), and

for the Markovian parts of kinetics DðmÞP (line 1). Line 3 is DP for the model
of the hopping motion of acceptors [21]. Parameters: n = 0.1, g = 10,
RAB/r0 = 0.95, DCsB=R2

BC ¼ 0:1.
pure Markovian part (line 1) including only the first expo-
nential part of relation. The corresponding deviation for
the hopping acceptors motion (line 3) lies everywhere
below.

To calculate the survival probability of PBðtÞ of B reac-
tant, we solve Eq. (9) by a conventional method of the
Laplace transformation using expressions (15) and (17)
for eXðt; r0Þ and eN ðtÞ. This equation has a many-particle
character. The right binary approximation in the limit of
ultrafast geminate reaction has to turn into the product
of the escape probability and the bulk kinetics:
PBðt; r0Þ ¼ X1ðr0ÞNðtÞ [15]. Taking into account this
requirement, we obtain the representation:

PBðt; r0Þ ¼ ð1� nÞPðmÞB ðt; r0Þ �P
ðnÞ
B ðt; r0Þ; ð33Þ

where the Markovian part of the kinetics can be repre-
sented as

P
ðmÞ
B ðt; r0Þ ¼ e�½C�kt 1� RAB

r0

uðg; k; sÞ
	 


ð34Þ

This result coincides with the corresponding result of [21]
except the parameter k ¼ 1� n�

ffiffiffiffiffiffiffiffi
3nb
p

. At large t the last
expression tends to the following:

P
ðmÞ
B ðt; r0Þ ’ e�½C�kt 1� RAB

r0

e�
ffiffiffiffi
kg
p	 


¼ e�½C�ktXeff
1 ðr0Þ; t� sB ð35Þ

It should be noted that, as shown in [21], Xeff
1 ðr0Þ cannot be

interpreted as the escape probability of some effective gem-
inate reaction which is independent of the bulk reaction.
This value contains the correlation corrections that make
it smaller than the escape probability of the pure geminate
reaction X1(r0) (13). Therefore the attempt to interpret
(35) in terms of the logic of superposition approximation
(4) is not justified.
Δ

η

Fig. 3. The relative deviation Ds
P ¼ 1�Psp

P ð1; r0Þ=PPð1; r0Þ defined by
Eqs. (31) and (32) (line 2) and their Markovian part (line 1) versus
g ¼ ~sg=sB. Line 3 is the Ds

P for the model of the hopping motion of
acceptors [21]. Parameters: n = 0.1, DCsB=R2

BC ¼ 0:1.
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The non-Markovian part of the kinetics can be repre-
sented as

P
ðnÞ
B ðt; r0Þ ¼ e�½C�kt /ðg; k; sÞ þ Kðg; k; sÞ þ Bðg; k; sÞ½ � ð36Þ

The introduced functions are:

/¼RAB

2r0

ffiffiffiffiffiffiffiffi
3nb
k

r
e�

ffiffiffiffi
gk
p

erfc

ffiffiffiffiffi
g
4s

r
�

ffiffiffiffiffi
ks
p� �

� e
ffiffiffiffi
gk
p

erfc

ffiffiffiffiffi
g
4s

r
þ

ffiffiffiffiffi
ks
p� �	 

ð37Þ

K¼
Z s

0

ds0e�ks0 d

ds0
eXðs0;r0Þ�1
h i

~nðs0Þ
� �

ð38Þ

B¼
Z s

0

ds0e�ks0 dðs0Þ� eK gðs0;r0Þ
h i

f ðs� s0Þ~nðs�s0Þ; ð39Þ

where d(s) – is the Dirac delta-function.
The corresponding result of superposition approxima-

tion Psp
B ðt; r0Þ is described by Eqs. (4), (13) and (18). It is

interesting to compare PB and Psp
B at large times when B

reactant leaves a geminate pair for the bulk. In this case
the expressions for these kinetics are simplified:

Psp
B ðt; r0Þ

PBðt; r0Þ
’ X1

Xeff
1

1� RAB

r0

e�
ffiffiffiffi
kg
p
� JðkgÞ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
3nb=k

p
ð1� n�

ffiffiffiffiffiffiffiffi
3nb
p

=2ÞXeff
1

0@ 1A�1

;

t� sB ð40Þ

where X1 is the escape probability defined by Eq. (14) and
J(x) is the following quadrature:

JðxÞ ¼ 2ffiffiffi
p
p

Z 1

0

dy
ffiffiffi
y
p

expð�yÞerfc

ffiffiffiffiffi
x

4y

r� �
ð41Þ

It is easy to see that in Eq. (40) the factor X1=X
eff
1 is defined

by the ratio between the Markovian parts of Psp
B and PB,

while the multiplier between the brackets is the relation
of the non-Markovian parts of the kinetics.

Fig. 4 shows the dependence of the relative deviation
Ds

B ¼ 1�Psp
B ð1; r0Þ=PBð1; r0Þ vs parameter g. It is read-

ily observed that Ds
B is always negative. Underestimating
η

Fig. 4. The relative deviation Ds
B ¼ 1�Psp

B ð1; r0Þ=PBð1; r0Þ defined by
Eqs. (33) and (40) (line 2) and their Markovian part (line 1) versus
g ¼ ~sg=sB. Line 3 is Ds

B for the model of the hopping motion of acceptors
[21]. Parameters: n = 0.1, DCsB=R2

BC ¼ 0:1.
the rate of geminate reaction, the superposition approxi-
mation thus overestimates the probability of reactant B
to survive and escape into the bulk. The largest relative
deviations are observed for small g when the contribution
of geminate reaction to the total kinetics PBðtÞ is the most
substantial.

5. Conclusion

Thus, the present Letter indicates that the role of time
correlations in the course of reactions (1) and (2) can be
rather significant. The influence of correlations increases
with increasing mobility of particle B and results in the fact
that the reaction rate in geminate channel _PPðtÞ stops to be
proportional to the bulk kinetics N(t). According to (8) the
rate is equal to the product of the geminate reaction rate
Kg(t) and the kinetics eN ðtÞ forming during the lifetime of
B reactant in a geminate pair: _PPðtÞ ¼ KgðtÞeN ðtÞ. As a
result, according to (21), the reaction rate in the geminate
channel differs strongly from the prediction following from
the superposition approximation: _Psp

P ðtÞ ¼ KgðtÞNðtÞ. This,
in turn, leads to the fact that the superposition approxima-
tion substantially underestimates the yield of geminate
reaction products in the cases where the bulk reaction
courses deeply during the lifetime of geminate pair. These
distinctions are more pronounced in the case of diffusion
motion of acceptors rather than for the hopping model
examined in [21].

Such pronounced distinctions in a theoretical descrip-
tion of the values observed should have a strong effect on
the interpretation of experimental data. Indeed, a charac-
teristic time of geminate reaction sg can be determined by
a standard method from the experimental dependence of
the scavenging yield on the concentration of scavengers
[3]. The superposition approximation provides a recipe
for calculating sg in terms of the ratio between the linear
slope a of the experimental curve and the rate constant k

of the bulk reaction of excess electron with the scavengers
(ssp

g 	 a=k) whereas the result of the exact solution is k=~k
times greater: sg 	 a=~k. As follows from (19), the value of
rate constant ratio can be large enough: k=~k ¼
1þ aþ

ffiffiffiffiffi
3a
p

where a ¼ R2
BC=ð3DCsBÞ. Thus, in liquid

hydrocarbons where the mobility of the excess electron
substantially exceeds that of the acceptors, the constant k

is determined mainly by electron mobility. Indeed, using
both the lifetime of the excess electron in the localized state
in cyclohexane sB 	 10�10 s [19] and the typical values
RBC = 10 Å and DC = 10�5 cm2/s we get k=~k � 7:5. Note
that this value is almost twice greater than the correspond-
ing ratio k=~k for the hopping motion of acceptors.

For the same reason one should be rather careful in
performing experiments in which an attempt is made to
determine the bulk kinetics N(t) from the measured fluores-
cence rate in the presence of scavengers _PPðtÞ and of the
pure geminate reaction Kg(t) [22]. Indeed, according to
the recipe of the superposition approximation (3)
_Psp

P ðtÞ=KgðtÞ ¼ NðtÞ, whereas in reality the rate constant ~k
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of the determinate resulting kinetics eN ðtÞ can be by order
of magnitude lower than that of the bulk reaction. Actu-
ally, the jump of the excess electron is finite and can be sub-
stantially smaller than the size of the geminate pair. In
these cases the difference in theoretical description will be
smaller too. Nevertheless the influence of correlations can
be considerable, particularly, on the formation of such a
sensitive value as _PPðtÞ.

Finally, it is worth noting that our microscopic model
neglects the Coulomb interaction in a geminate pair and
considers the case of the photodetachment process of
excess electron generation in solution. However, our results
can be readily applied to the description of charged gemi-
nate pairs in water-like solutions for which the Onzager
radius |rc| 6 10. As follows from [31,32], in this case it will
suffice to perform the following substitution:

~sg ! ~sc
g ¼

r2
c

4DA

coth
rc

2r0

� �
� coth

rc

2RAB

� �	 
2

; ð42Þ

RAB

r0

! reffðRABÞ
reffðr0Þ

; reffðrÞ ¼
jrcj

1� expð�jrcj=rÞ ; ð43Þ

because in highly polar solvents the survival probability of
charged geminate pairs eXcðt; r0Þ is kinetically identical to
the corresponding value eXðt; r0Þ (15) without Coulomb
interaction.
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