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A complete thermodynamically consistent elementary reaction kinetic model of particle nucleation
and growth from supersaturated vapor was developed and numerically evaluated to determine the
conditions for the steady-state regime. The model treats all processes recognized in the aerosol
science �such as nucleation, condensation, evaporation, agglomeration/coagulation, etc.� as
reversible elementary reactions. It includes all possible forward reactions �i.e., of monomers,
dimers, trimers, etc.� together with the thermodynamically consistent reverse processes. The model
is built based on the Kelvin approximation, and has two dimensionless parameters: S0—the initial
supersaturation and �—the dimensionless surface tension. The time evolution of the size
distribution function was obtained over the ranges of parameters S0 and �. At low initial
supersaturations, S0, the steady state is established after a delay, and the steady-state distribution
function corresponds to the predictions of the classical nucleation theory. At high initial
supersaturations, the depletion of monomers due to condensation on large clusters starts before the
establishing of the steady state. The steady state is never reached, and the classical nucleation theory
is not applicable. The boundary that separates these two regimes in the two dimensionless parameter
space, S0 and �, was determined. The model was applied to several experiments on water nucleation
in an expansion chamber �J. Wolk and R. Strey, J. Phys. Chem. B 105, 11683 �2001�� and in Laval
nozzle �Y. J. Kim et al., J. Phys. Chem. A 108, 4365 �2004��. The conditions of the experiments
performed using Laval nozzle �S0=40–120� were found to be close to the boundary of the
non-steady-state regime. Additional calculations have shown that in the non-steady-state regime the
nucleation rate is sensitive to the rate constants of the initial steps of the nucleation process, such as
the monomer-monomer, monomer-dimer, etc., reactions. This conclusion is particularly important
for nucleation from supersaturated water vapor, since these processes for water molecules at and
below the atmospheric pressure are in the low pressure limit, and the rate constants can be several
orders of magnitude lower than the gas kinetic. In addition, the impact of the thermodynamic
inconsistency of the previously developed partially reversible kinetic numerical models was
assessed. At typical experimental conditions for water nucleation, S0=10 and �=10 �T=250 K�, the
error in the particle nucleation rate introduced by the thermodynamic inconsistency exceeds one
order of magnitude. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2672647�

INTRODUCTION

Numerical modeling is widely used in studies of particle
nucleation and growth from supersaturated solutions �such as
in aerosol formation, phase transitions, etc.�. For a period of
time, an analytical approach known as the classical nucle-
ation theory was used to describe the nucleation dynamics.1–4

Later, numerical models of the kinetics of particle nucleation
and growth have been developed.5–8 Courtney applied a ki-
netic model to a non-steady-state nucleation of water vapor.5

Mazlovsky used numerical approach to address the problem
of ferric oxide aerosol formation.6 McMurry and Friedlander
employed a numerical model to study the formation of pho-

tochemical smog,7 and Gelbard and Seinfeld for the forma-
tion and growth of a sulfuric acid/water aerosol in a smog
chamber.8 In the pioneering work Courtney numerically
solved 100 ordinary differential equations that correspond to
each particle size to describe the earlier stages of nucleation.5

In the further studies to incorporate larger particle sizes, a
technique based on the division of the particle size domain
into sections was used.6,8–10 Subsequently the numerical
modeling was used to interpret the nucleation of magnesium
oxide particles,11,12 silicon dioxide,13 and formation of aero-
sol particles in photochemical decomposition of tungsten
hexacarbonyl and halobenzenes.14

The kinetic models used in these studies could be di-
vided into two groups.15 In the first group are the coagulation
models, which contain only irreversible monomer-cluster
and cluster-cluster addition reactions. Such models are used
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for very large supersaturations �such as for substances with
very low vapor pressures�, when the reverse processes
�evaporation of large particles as well as dissociation of
small clusters down to the trimers and dimers� can be ne-
glected. The nucleation models that contain both condensa-
tion and evaporation of monomers belong to the second
group. The rate constants of the forward processes are calcu-
lated either based on the kinetic theory of gases in the free
molecular regime, or on the Brownian motion when reac-
tions are diffusion controlled. The rate constants for the
monomer evaporation are calculated using the Kelvin for-
mula for the vapor pressure above a spherical surface.

In several studies, the coagulation and nucleation models
were combined.11,16–19 In these combined models, in addition
to the monomer-cluster and cluster-cluster association reac-
tions, evaporation of monomers from clusters is also taken
into account. In Friedlander’s book10 this model is tagged as
the “general dynamic equation.” The model was applied to
sulfuric acid and water aerosol formation,16 particle forma-
tion in pyrolysis of silanes,19–21 condensation of magnesium
oxide,11 a model aerosol nucleation,17 and in a numerical
investigation of different types of aerosol reactors.18

The general dynamic equation model is only partially
reversible as it takes into account only the reverse reaction
for the monomer condensation and does not take into ac-
count the reverse reaction for the cluster-cluster coagulation.
A standard justification for not accounting the processes of
evaporation of dimers, trimers, etc., is that the evaporation of
dimers, trimers, etc., from large particles can be neglected
being much slower than the evaporation of monomers. This
is certainly true for large particles. However, the same as-
sumption is extended to small clusters, which requires justi-
fication. The errors associated with this neglecting are diffi-
cult to assess. The partially reversible models have an
inherent problem—they are thermodynamically inconsistent
due to violation of the principle of detailed balance. The
resulting system of differential equations does not have a
solution that corresponds to the thermodynamically equilib-
rium state. Intuitively, it appears to be not important for sys-
tems that are far from equilibrium, however, the range of the
conditions where such thermodynamic inconsistency plays a
role is yet to be assessed.

On the other hand, a complete kinetic model which treats
all reaction �cluster-cluster and cluster-monomer� as revers-
ible does not require any additional parameters beyond those
used in the partially reversible models. The rate constants for
the evaporation of dimers, trimers, etc., can be derived based
on the rate constant for the monomer evaporation using the
principle of detailed balance. Katz et al.22 used this approach
to find corrections to classical nucleation theory due to con-
densation and evaporation of dimers, trimers, etc. Recently
Arstila23 assessed the impact of the evaporation of dimers,
trimers, etc., on the steady-state cluster size distribution
function and the nucleation rate. It should be noted that such
an approach is generally accepted in the modeling complex
chemical reactions, where kinetic models use detail balanced
elementary reactions, which require the rate constants in the
forward directions as well as the thermodynamic properties
of the reactants and products. The rate constants for the re-

verse reactions are calculated based on the equilibrium con-
stants determined from the thermochemical data.

In this work a complete thermodynamically consistent
kinetic model for particle nucleation and growth was devel-
oped. The kinetic model was converted into a computer code
via a sectioning �binning� procedure. The code itself can be
used for a wide range of problems, such as the initial phase
of aerosol formation process or the final phase of particle
coagulation, as well as for different experimental arrange-
ments, such as continuous or pulsed monomer production. In
the current research, in the majority of the calculations, the
free molecular condensation for the forward processes com-
bined with the Kelvin model �the surface tension model� to
calculate the reverse processes was used. However, the set of
the rate constants as well as the thermodynamic properties
can be varied to incorporate any deviations from the free
molecular condensation and the surface tension model. Ad-
ditional calculations were performed with a reduced �com-
pared to the gas kinetic� rate constant of the dimer formation
to assess the impact of the “pressure falloff” effects in the
dimerization of water.

All versions of the classical nucleation theory1,2,4,24 as-
sume the existence of the steady-state regime, which is used
to calculate the nucleation rate. Such a steady state does not
necessarily exist. The establishing of the steady state requires
time. The problem of the time lag was thoroughly
addressed.21,25 However, there is another time limit for the
existence of the steady state. After establishing, the steady
state survives until the onset of rapid condensation of mono-
mers on growing particles. This fast condensation destroys
the steady-state distribution functions. The larger the super-
saturation, the shorter is the time delay before this massive
condensation. This delay might become shorter than the time
lag for the establishing of the steady state. In this case the
nucleation occurs not in the steady-state regime, and the
classical nucleation theory is not applicable anymore.

The second issue that is addressed in this study is the
possible errors associated with the thermodynamic inconsis-
tency of the partially reversible kinetic models of particle
nucleation and growth. It is shown that under some experi-
mental conditions �easily encountered in practice� such ther-
modynamic inconsistency can lead to significant �from one
to several orders of magnitude� errors in the concentrations
of critical nuclei, and, hence, in the nucleation rates.

In the current study, for the purpose of comparison, the
same approximations for the collision rate constants and the
thermodynamic parameters as in the classical nucleation
theory are made. As in the classical nucleation theory and in
the previous kinetic models, for the cluster-cluster reactions
the rate constants based on the gas collision theory �free
molecular condensation� are used. The rate constants for the
reverse reactions are calculated based on the Gibbs free en-
ergies of clusters formation from monomers, which in turn
are based on the Kelvin formula for the vapor pressure above
curved surfaces �the surface tension model�.

There are several versions of the nucleation theory that
differ somewhat by the expressions used for thermodynamic
parameters of the clusters based on the same initial Kelvin
formula.3,24,26,27 These differences are associated with the
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different level approximations made in the derivation of the
thermodynamic expressions. The critical survey on the issue
is given by Wilemski.28 The classical nucleation theory uses
the expression that is in conflict with the law of mass
action.28 Courtney noted and corrected this contradiction.5

Currently, the correction introduced by Girshick and Chiu26

is widely used, where the Gibbs free energies for all clusters
are rather arbitrary shifted to set the Gibbs free energy of
formation of a monomer from monomers to zero. Katz27 in-
troduced an expression for the Gibbs free energy of forma-
tion of clusters from monomers via a sum of terms that re-
flect sequential additions of monomers. This expression is
free of inconsistencies associated with other expressions28

and, perhaps, is the most natural in association with the
Kelvin model. This expression �hereafter “the discrete
Kelvin model”� is adopted in this study for the description of
the thermodynamic properties of clusters. Wilemski28

showed that the difference between the discrete Kelvin
model and the classical expression corrected by Girshick and
Chiu26 is not significant.

As it was already mentioned, we focus our discussion on
two issues—the numerical verification of the assumption of
the steady state and the assessment of the potential impact of
the “kinetic cycles” caused by the thermodynamic inconsis-
tency of the combined models. It should be stressed that it is
not our intention to discuss the validity of the thermody-
namic properties of clusters derived based on the Kelvin
model, which was done in numerous previous works.28 The
Kelvin model is used in this study only for the reason that
the large body of the previous studies as well as the interpre-
tations of the experiments are based on this model. The nu-
merical model developed and evaluated in the current work
can be used with any set of thermodynamic parameters, such
as derived, for example, using theoretical chemistry.29 The
rate constants in the model could be incorporated from dif-
ferent sources as well. For example, the rate constants calcu-
lated using variational transition state theory could be used.30

Although we use the simple gas kinetic model for the for-
ward rate constants, it is realized that the rate constants for
the dimerization �and even subsequent formation of trimers,
etc.� of small molecules �such as water� might be in the low
pressure or in the pressure falloff region, therefore being
quite different from the gas kinetic rate constants or the rate
constants calculated using any form of the transition state
theory. In addition, it should be noted that another purpose of
the study was to investigate the applicability of classical ap-
proaches to the systems in extreme conditions, such as with
very large supersaturations achieved in the nanoparticle for-
mation by rapid expansion of supercritical solutions,31 con-
densation of supercooled vapors after the Laval nozzle,32 as
well as in the pulsed initiation of photochemical aerosols.33

In all these examples the initial supersaturations are from
�50–150 �Ref. 32� to �109.31 Due to the nature of these
experiments, we use the initial value formulation of the prob-
lem, that is, the time evolution of the size distribution func-
tion is calculated starting from instantly generated mono-
mers. Furthermore, several comparisons are made with the

experimental data and the predictions of the classical nucle-
ation theory for condensation of water under more “benign”
conditions of typical nucleation experiments.

KINETIC MODEL

While in the particle nucleation and growth terminology
the processes are separated into “nucleation,” “condensa-
tion,” “agglomeration,” “coagulation,” etc., in our approach,
we treat all processes similarly as reversible elementary re-
actions of clusters consisting of n monomers with clusters
consisting of m monomers,

Pn + Pm � Pn+m, n,m = 1,2,3, . . . � . �1�

The set of elementary reactions �Eq. �1�� results in the ordi-
nary differential equation �ODE� system

dNn

dt
= − �

m=1

�

�nm�knmNnNm − knm� Nn+m�

+ �
m+k=n,m�k

�mk� �kmkNmNk − knm� Nn� , �2�

where knm and knm� are the rate constants of reaction �1� in the
forward and reverse directions, and �nm and �mk� are the sto-
ichiometric coefficients,

�nm = 2 for n = m ,

�nm = 1 for n � m , �3�

�mk� = 1 for any m and k .

Nn�molecule cm−3� is the number density of clusters consist-
ing of n monomers, and knm�cm3 molecule−1 s−1� and
knm� �s−1� are the rate constants for the forward and reverse
reactions �Eq. �1�� respectively.

The reverse rate constants are determined based on the
forward rate constants, knm, and the equilibrium constants of
reaction �1� according to the principle of detailed balance.
The equilibrium constants are calculated based on the “dis-
crete Kelvin model.”27,28 The details of the derivation are
given in Appendix A. The rate constants of the reverse reac-
tions, knm� , are given by

knm� = knm�P�NA

RT
�� p1

*

p��
�exp�2�

3
��

i=2

n+m
1

i1/3 − �
i=2

n
1

i1/3 − �
i=2

m
1

i1/3�� , �4�

where p1
* is the equilibrium vapor pressure above a flat sur-

face, p�=1 bar is the standard pressure, NA is Avogadro’s
number, R is the gas constant, and � is the dimensionless
surface energy of a monomer,26

� =
4�r1

2	

kBT
=

�1/3�6V1�2/3	

kBT
. �5�

Here V1 is the volume of the monomer, r1 is the radius of
the monomer, 	 is the surface tension, and kB is Boltzmann’s
constant. Both the monomer volume V1 and the radius r1 are
defined by
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V1 = Vm,1/NA = �4�/3�r1
3, �6�

where Vm,1 is the molar volume of the monomer in the con-
densed phase. Throughout the paper we define the supersatu-
ration as the ratio of the concentrations of monomers, not
through the ratio of partial vapor pressures.15,28 The super-
saturation defined in this way is approximately equal to the
supersaturation calculated using the partial vapor pressures,

S0 	
N1,0

N1
* 


p0

p* , �7�

where S0 is the initial supersaturation, N1,0 is the initial num-
ber density of the monomers, N1

* is the equilibrium number
density of monomers above a flat surface, p0 is the initial
partial pressure of the vapor, and p* is the equilibrium vapor
pressure above a flat surface.

Equation �4� can be transformed as

knm� = knmN1
* exp�2�

3
��

i=2

n+m
1

i1/3 − �
i=2

n
1

i1/3 − �
i=2

m
1

i1/3�� .

�8�

In this work we refer to the pulsed arrangement of the
experiment, when the supersaturation of the monomers is
achieved on a time scale much shorter than the characteristic
time of all subsequent reactions, including the reaction of
dimerization. Therefore, for the system of ODE system �2�
the initial conditions are

N1 = N1,0,

�9�
N2 = N3 = N4 = ¯ = 0 at t = 0.

The ODE system �2� is further transformed by introducing
dimensionless variables, specifically dimensionless time, 
,
and dimensionless number densities, ni,


 = t2k11N1,0, �10�

ni = Ni/N1,0. �11�

The system of Eq. �2� becomes

dnn

d

= − �

m=1

�

�nm��nmnnnm − �nm� nn+m�

+ �
m+k=n,m�k

�mk� ��mknm · nk − �mk� · nn� . �12�

The dimensionless initial conditions are

n1 = 1,

�13�
n2 = n3 = n4 = ¯ = 0 at t = 0.

The new dimensionless rate constants in Eq. �12� are defined
as

�nm = knm/2k11, �14�

�nm� = knm� /2N1,0k11. �15�

In the gas kinetic model �free molecular condensation�
the dimensionless rate constants are10 �note that we use the

definitions accepted in chemical kinetics, where for reaction
of two identical molecules the stoichiometric coefficient of 2
appears in the differential equation with simultaneous reduc-
tion of the gas collision rate constant by a factor of 2�,

�nm =
1

�nm

1

4�2
�n1/3 + m1/3�2�1/n + 1/m�1/2. �16�

For the dimensionless rate constant of the reverse reaction,
combining Eqs. �4�, �7�, and �8�, one obtains

�nm� = �nm� 1

S0
�exp�2�

3
��

i=2

n+m

i−1/3 − �
i=2

n

i−1/3 − �
i=2

m

i−1/3�� ,

�17�

where S0 is defined in Eq. �7�.
Finally, the dimensionless problem consists of the set of

ordinary differential equations �Eq. �12�� with the initial con-
ditions �Eq. �13�� and the dimensionless rate constants �Eqs.
�16� and �17��. The problem has two dimensionless param-
eters, the initial supersaturation S0 and the dimensionless sur-
face energy of a monomer, �. The first parameter S0 is the
ratio of the initial concentration of monomers and the equi-
librium concentration of monomers in saturated vapor above
flat surface. Under the approximation made �negligible con-
tribution of dimers, trimers, etc., to the vapor pressure above
a flat surface� this parameter is equal to the ratio p0 / p*. The
second parameter � is the ratio of the surface energy of a
monomer and the characteristic thermal energy kBT. This
parameter depends on the surface tension and temperature.
For reference, the initial critical nucleus size nc,0 is expressed
via S0 and �,4

nc,0 = � 2�

3 ln S0
�3

. �18�

NUMERICAL APPROACH

The number of differential equations that should be
taken into account in Eq. �12� is determined by the maximum
particle size of interest �in our calculations about 107�. The
problem cannot be solved unless further approximations are
made. Several techniques for solution of large systems of
differential equations have been explored. Among them are
the discrete size section methods,8,34 the moments
method,9,35 and the cubic spline method.36 The section
method is the one that is used most often. A disadvantage of
the section method is the “numerical diffusion” which
spreads the particle size distribution over a wider size inter-
val. Various calculation schemes were investigated to reduce
numerical diffusion.19 Another way to circumvent this prob-
lem is in using a larger number of sections.

In this work we used the simplest form of a discrete-
sectional model, but with much narrower sections. The total
range of the cluster sizes from monomers to the maximum
size is divided into N sections �bins�. The clusters within the
same section are treated as identical. The system of sections
is characterized by a small number, �. The width of the kth
section is
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Wk  1 + �Lk, �19�

where Lk is the average cluster size in the kth section. Typi-
cally in the calculations �=0.01 was used. In this case the
widths of the first 100 sections are equal to 1 and they form
a discrete region. In this region the differential equations for
the bin concentrations coincide with the equations for the
cluster concentrations. The next 50 sections then have the
width Wk=2, and so on. The number of differential equations
of the reduced �binned� system is equal to the number of
sections N. The number of sections required to cover the
particle size range from 1 to 107 is then N=1250 �for �
=0.01�. It should be noted that in our calculations the sec-
tions were much narrower than that used previously. For ex-
ample, �=0.01 corresponds to 690 bins/decade of the cluster
diameter, while in Ref. 37 only 9 sections/decade were used.

The system of differential equations �Eq. �12�� was fur-
ther transformed in terms of the bin concentrations. The pro-
cedure is described in Appendix B. The resulting system of
differential equations was solved numerically. The system is
stiff, and implicit methods are required. The implicit Rosen-
brock method with the automatic step size adjustment was
used.38 Several test calculations were performed in order to
assess the accuracy of the approximations and the accuracy
of the numerical calculations.

In one test we used a known exact analytical solution for
the irreversible problem in a special case when all �nm�nm

=1 and �nm� =0. The solution is10

nn�t� = � 2

t + 2
�2� t

t + 2
�n−1

. �20�

For these test calculations the system of bins with �=0.005
was used, with the number of equations of 2000. Comparison
of the numerical solution with the analytical expression �20�
resulted in the relative accuracy of 10−4 for the main part of
the distribution function. The accuracy in the “tail” of the
distribution function �where the distribution drops abruptly�
was better than 0.005 �0.5%�.

In another test a comparison of a numerical solution of a
binned system with the numerical solution of the original
large system of differential equations �Eq. �12�� was made. A
system of 10 500 equations was solved numerically for di-
mensionless times 
�3000 �for longer times the truncation
of the system has an impact on the solution�. Comparison
with the solution of the binned system showed the accuracy
in the range of 0.001–0.01 �0.1%–1%�.

As a routine test of the accuracy we used numerical cal-
culations using two different bin size systems implemented
on the original system of 107 differential equations. Negli-
gible difference was seen between numerical solutions per-

formed using binning with �=0.005 and �=0.01. The distri-
bution functions calculated with �=0.01 and �=0.02 differ
by 0.2%–0.5% for the cluster concentrations in the range of
1–10−9. For the lower concentrations �at the tail of the dis-
tribution function� the differences were �10% –20%.

In addition, conservation of the total mass in the calcu-
lations was checked. The mass disbalance increased from 0
at the start of the calculations to �0.2% –1% at the end of
the calculations �at the dimensionless time of 

104�.

NUMERICAL MODELING OF PARTICLE NUCLEATION:
THE CRITERION FOR THE STEADY STATE

As a test object, we first considered a model system with
the parameters that correspond to supersaturated water vapor
at T=252 K. The relevant physical properties of water for
this and subsequent examples are summarized in Table I.39

At 252 K the surface tension, the density, and the vapor pres-
sure of water are 78.05 dyn/cm, 0.9922 g/cm3, and
31.05 Pa, respectively. The corresponding dimensionless pa-
rameter �=10.57. For model calculations the initial super-
saturation was taken as S0=10. Although these are the only
parameters required for the numerical calculations, the cor-
respondence between the dimensionless variables and the
physical variables is given below for reference. The initial
concentration of monomers is 8.93�1016 molecule cm−3.
This corresponds to one unit of the dimensionless concentra-
tion. The rate constant k1,1=1.8�10−10 cm3 molecule−1 s−1.
One unit of the dimensionless time corresponds then to 3.1
�10−8 s. The critical nucleus size at this supersaturation is
nc,0=28.7.

The results of the numerical calculations for example 1
are shown in Figs. 1–3. Figure 1 shows the time evolution of
the dimensionless distribution function. According to the ini-
tial conditions, at 
=0 only monomers exist. Then the
steady-state distribution establishes and spreads to larger and
larger clusters. At 
=10, the steady-state distribution is in the
size range of 1–20, at 
=100 the steady state extends to the
1–300 range, and at 
=400 the steady-state distribution
reached sizes larger than 10 000. The concentration of the
monomers changes insignificantly during this period. The
concentration of the monomers decreases quickly from the
initial value n1=1.0 to n1=0.9279 due to the formation of
dimers and trimers, and then stabilizes.

The main quantitative characteristic in the classical
nucleation theory is the nucleation rate �in other words, the
particle flux Jk� in the steady state. The particle flux is de-
fined by Becker and Doring1 as

TABLE I. Physical parameters of water used in examples 1-3.

T,
K

�,
dyn/cm

�,
g /cm3 � S0

Pvapor

Pa
N1,0

cm−3
1/2k11N1,0

s nc,o

pexp

mbar

1 252 78.05 0.9922 10.57 10 31.05 8.93�1016 3.11�10−8 28.7 400-700
2 230 81.22 0.97 12.16 40 4.16 5.24�1016 5.46�10−8 10.62 0.86-6.1
3 210 83.45 0.9463 13.91 120 0.434 1.795�1016 1.64�10−7 7.28 0.86-6.1
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Jk = Jk
+ − Jk+1

− , �21�

where Jk
+ is the number of clusters which increase their size

from k monomers to �k+1� monomers per unit time due to
the vapor condensation, and Jk+1

− is the number of clusters
which decrease their size from �k+1� monomers to k mono-
mers per unit time due to the cluster evaporation. In the
cluster size domain where the steady state exists, Jk is inde-
pendent of k, Jk=J.

In the present kinetic model all processes of
condensation/evaporation of monomers, dimers, trimers, etc.,
are included. Therefore, instead of Eq. �21� we define the
particle flux Jk as

Jk =
d

dt
�
i=k

�

Ni. �22�

Definitions �21� and �22� are equivalent until the onset of
coagulation of large clusters. This difference is not important
because the classical nucleation theory was intended to de-
scribe the early stages of the particle nucleation and growth
processes, when monomers in excess of the equilibrium con-
centration are still available and large clusters are still absent.

The cluster flux profiles Jk, calculated using expression
�22� at different dimensionless times 
, are shown in Fig. 2.
The calculations show that the steady-state distribution,
which is established after a period of time, corresponds to the
constant cluster flux in compliance with the classical nucle-
ation theory. The flux profiles become rectangular shaped
with the flat top at about 
=70, and this shape remains until
the onset of fast condensation of monomers. In this specific
example condensation begins at 
=2500. The constant flux
during this period does not depend on time; in this example
the flux is 3.46�10−12 in the dimensionless variables.

On the other hand, the cluster flux can be calculated
using the theory of homogeneous nucleation, and compared
with the numerical modeling results. To calculate J we used
the exact solution of Katz and Wiedersich,40

J = ��
q=1

G−1
�N1

e�q

kq,1Nq
eN1

q+1�−1

, �23�

where G is a sufficiently large number, so that
�NG /NG

e ��N1
e /N1�G�1. Expression �23� is derived from Katz

formula by replacing the rate of condensation of monomers
with the equivalent term, kq,1N1Nq

e. After substitution the pa-
rameters S0 and � and conversion to the dimensionless form
expression �23� becomes

J = ��
q=1

G−1
1

�q,1S0
q−1n1

q+1 exp�− �2�/3��
i=2

q

i−1/3�
−1

. �24�

Calculations were performed using the numerically stable
algorithm described by Wilemski.28 With the following pa-
rameters: n1=0.9279 �which is the concentration of mono-
mers at the dimensionless time 
=100�, S0=10, and �
=10.57, Eq. �24� results in the dimensionless flux J=3.29
�10−12. This value is shown by the dashed line in Fig. 2. It
is slightly lower than that obtained in the numerical model-
ing. The difference is due to the contribution of the dimers,
trimers, etc., to the condensation rate, the processes that are
not taken into account in the classical nucleation theory.

After converting dimensionless J to physical units one
obtains the nucleation rate of 1�1013 particle cm−3 s−1. The
experimental value at these conditions is about 104 times
smaller, 7�108 particle cm−3 s−1.39 The theoretical value
could be somewhat improved towards the experimental by
taking into account the accommodation coefficient for water
molecules in collision with liquid water. According to Li
et al.,41 the accommodation coefficient varies from 0.17 to
0.32 in the temperature range of 280–258 K. After this cor-
rection the difference in nucleation rates remains about 4000
times, which probably indicate the accuracy of the Kelvin
model �the surface tension model� for the thermodynamics of
water clusters near the critical size.

If the dimensionless parameter � is treated as a formal
parameter of the model, it can be adjusted to fit the experi-

FIG. 1. Calculated dimensionless distribution functions of the cluster size.
Conditions are as for example 1, Table I. Note that ni are the concentrations
of clusters of specific sizes, i.

FIG. 2. The cluster flux profiles, Jk, at different dimensionless times, 
. The
dashed line—the flux calculated using the classical theory of homogeneous
nucleation. Conditions as in example 1, Table I.
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mental nucleation rate. In the above example l, it requires
�=11.56 instead of 10.57. In other words, the standard
Gibbs energy of formation of the critical water cluster �nc

=28.7� from monomers should be �9% larger than that pre-
dicted by the Kelvin model. This is in line with the recent
comparison of modern corrected “self-consistent” theory of
nucleation with the experimental data—using the Kelvin
model for the thermodynamics of water cluster leads to over-
estimation of the nucleation rate by three to four orders of
magnitude.39

It is instructive to compare the steady-state distribution
function obtained using the present complete numerical
model with the distribution function provided by the classi-
cal nucleation theory. The method for calculation of the
steady-state distribution function in the classical nucleation
theory in the discrete formulation is taken from Katz and
Wiedersich.40 The method is based on the recursive relation-
ship

J = kg,1NgN1 − kg,1� Ng+1, g = 1,2,3, . . . . �25�

For known flux J, N2 is linked to N1 by the first equation,
N3 is linked to N2 by the second, and so on. However, direct
implementation of this algorithm leads to problems due to a
numerical instability. A stable algorithm is described by
Wilemski.28 Note that the distribution functions obtained in
this way should be truncated at some large cluster size, since
the distribution function extended to infinite cluster size can-
not be normalized.

The comparison of the steady-state distribution functions
from the present complete kinetic model with the distribution
function from the nucleation theory is shown in Fig. 3. In the
cluster size range of 1–30 the two curves are indistinguish-
able. For larger clusters the distribution functions differ;
however, the difference is quite small, about 5%–10%. This
example shows that for systems with moderate nucleation
rates the complete kinetic model predicts almost the same
nucleation rate as the correctly formulated classical nucle-
ation theory based on the same cluster thermodynamics. The
minor differences are due to the small contributions of the
processes involving dimers and trimers.

The second example is a system with a high nucleation
rate. In the following discussion, we refer to the experiments
of Kim et al.32 on water nucleation in a supersonic Laval
nozzle. In these experiments, the range of supersaturations
spanned from �40 to 120. In the second example the small-
est supersaturation in these experiments is considered. The
experimental conditions are T=230 K and S0=40 �example
2, Table I�. The corresponding dimensionless parameters are
�=12.16 and S0=40. The initial critical nucleus size at these
conditions is nc,0=10.62.

The modeling results are shown in Figs. 4–6. The time
evolution of the dimensionless distribution function is shown
in Fig. 4. The time dependence of the concentrations of
monomers, dimers, and the 11-mers is shown in Fig. 5. Fig-
ure 6 shows the particle flux profiles at different dimension-
less times.

The steady-state distribution is established at about 

=10. In contrast with the previous example, the steady state
exists in a relatively narrow time interval. At 
=100 conden-

sation of monomers begins. The distribution at 
=200 illus-
trates how the condensation destroys the steady state. Finally,
at 
=2000 the distribution function corresponds to the mix-
ture of slightly supersaturated vapor with growing particles.
Further evolution of the distribution function is controlled by
the evaporation of small particles and condensation on large
particles �the Lifshitz-Slyozov regime�.42

FIG. 3. The steady-state distributions calculated numerically �at 
=100� and
analytically �overlapped curves in the top� and their ratio �bottom�. The
conditions as in example 1, Table I.

FIG. 4. Dimensionless distribution functions at different times. Conditions
as in example 2, Table I.
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Figure 6 illustrates the particle flux profiles that corre-
spond to the steady state. The flux is not stable in time any-
more, as it was in example 1. Also, it is not stable in the size
domain, as the classical nucleation theory predicts. However,
the steady-state nucleation rate obtained using the nucleation
theory is close to the nucleation rate obtained in the numeri-
cal calculations. For example, at 
=20 the normalized mono-
mer concentration is n1=0.8715. Using Eq. �24� one obtains
J=6.12�10−6, in agreement with the numerical modeling.

The dimensionless flux of 6�10−6 in this example
corresponds to the nucleation rate of 1.9
�1018 particle cm−3 s−1. The experimental value for these
conditions is ��1–2��1016 particle cm−3 s−1.32 The differ-
ence can be partially attributed to the accommodation coef-
ficient of water molecules on the surface of liquid water,
�0.3.41 Then, the residual difference is a factor of �20–50.
To eliminate this discrepancy, the parameter � should be
increased by about 8%.

From the experimental point of view, the most important

result of this modeling is that the steady state exists in a
narrow time interval, 10�
�80. In the real time this corre-
sponds to 0.6–5 �s. Under more extreme conditions which
were achieved in the experiments with Laval nozzle, the va-
lidity of the steady-state assumption is even more problem-
atic.

To illustrate this we performed numerical modeling with
the parameters �=13.91 and S0=120 �example 3, Table I�.
These parameters correspond to supersaturated water vapor
at 210 K. The initial size of the critical nucleus is nc,0

=7.28.
The time evolution of the dimensionless distribution

function for this example is shown in Fig. 7. In sharp con-
trast with the previous examples, such as shown in Fig. 1, no
steady-state distribution is ever established. At the very be-
ginning of the process, at 
�5, only small clusters are
formed. After about 
=10, a “shoulder” on the distribution
function begins to form. At this moment fast depletion of
monomers occurs due to the condensation on large particles.

Detailed analysis of the consumption of monomers
shows that there is a gap before the start of the condensation
at 
=10–30. However, the flux profiles are not stable over
this period. As it could be seen from Fig. 8, the flux mono-
tonically decreases with time during this period. Surpris-
ingly, the expression for the steady-state flux �Eq. �24�� at
some moments still can predict the flux with a reasonable
accuracy despite the absence of the steady state. For ex-
ample, at 
=20, based on the current concentration of mono-
mers at this time, n1=0.797, the flux predicted by Eq. �24� is
J=0.97�10−4. From the numerical calculations the peak
value of the flux at this time is 1.27�10−4. However, the
absence of the steady state is important for the interpretation
of the experimental data. For example, the formula for the
homogeneous nucleation rate J=N /�t, where N is the con-
centration of the clusters formed during time interval �t, is
not applicable anymore. Moreover, such a fortunate coinci-
dence exists only at short times, the discrepancy increases
with time and reaches orders of magnitude at later times
�Fig. 8�.

FIG. 5. Concentrations of monomers and dimers, and the critical size nuclei
�nc=11� vs time. Conditions as in example 2, Table I.

FIG. 6. The cluster flux profiles, Jk, at different dimensionless times, 
.
Conditions as in example 2, Table I.

FIG. 7. Calculated dimensionless distribution functions of the cluster size.
Conditions as in example 3, Table I.
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The dimensionless flux can be converted to the nucle-
ation rate via multiplication of the dimensionless flux
by the conversion factor, in this example by 1.1
�1023 particle cm−3 s−1. The nucleation rate obtained in this
way is about 50 times larger than the experimental nucle-
ation rates, �1–2��1017 particle cm−3 s−1.32 The difference
might again indicate the applicability of the Kelvin approxi-
mation to the thermodynamics of water clusters. However, as
it is evident from the numerical results, the kinetic effects
might play a role, too. Under the conditions when the steady
state is not established, the individual rate constants starting
from monomer-monomer, monomer-dimer, monomer-trimer,
dimer-trimer, etc., might play a critical role. Under the steady
state, the major contribution comes from the processes of
monomer condensation/evaporation from clusters about the
critical size, where �at relatively large critical nuclei� the
assumption of the molecular condensation regime appears to
be reasonable �may be corrected for the accommodation co-
efficient�. However, when no steady state is established, and
the rate constants of the very initial steps play a role, the
assumption of the gas kinetic rate constants for these pro-
cesses might lead to gross errors. The reaction of formation
of water dimers is necessarily in the pressure falloff regime
even at near atmospheric bath gas pressures.43 The situation
is much worse at the conditions of the Laval nozzle
experiments,32 where the bath gas pressure was only
�1–6 mbars. At pressures �1 bar the difference of the third
order rate constant and the second order gas kinetic rate con-
stant is about 1000 times.43 Rough estimates show that at the
conditions of the Laval nozzle experiments one could expect
deviations of the dimerization rate constant from the gas ki-
netic by three to four orders of magnitude. Smaller scale
deviations could be expected for the subsequent reactions of
monomers with dimers, etc. To at least evaluate the possible
impact of these deviations, two additional series of calcula-
tions were performed using the model where the rate con-
stant of the dimerization step was reduced by 103 and 106

times. The calculations show that the cluster size distribution
functions and the rates of particle nucleation differ signifi-
cantly. Figure 9 shows the particle flux profiles obtained with
the dimensionless dimerization rate constant �11=0.001. The
fluxes are about three times smaller compared to the case
when 2�11=1 �Fig. 8�. For the dimerization rate constant
reduced 106 times, Fig. 10, the fluxes are an order of mag-
nitude smaller and are attained at an order of magnitude
longer times. These examples illustrate the importance of the
rates for the first steps of the nucleation process when the
steady state is not really established.

The calculations based on the complete kinetic model
show that at least in some of the experiments of water nucle-
ation in the Laval nozzle the steady state might be not estab-
lished. In such conditions the applicability of any version of
the classical nucleation theory is not warranted, and direct
numerical modeling is required.

The presented kinetic model �as well as the classical
nucleation theory� has two dimensionless parameters, � and
S0. We performed a number of calculations varying these

FIG. 8. The cluster flux profiles, Jk, at different dimensionless times, 
.
Conditions as in example 3, Table I. The solid circles show the steady-state
fluxes calculated using Eq. �24� based on the current monomer concentra-
tions. The circles are placed under the maxima positions of the correspond-
ing flux profiles. The steady-state flux calculated based on the initial mono-
mer concentration is appreciably larger, J0=5.32�10−4.

FIG. 9. The cluster flux profiles, Jk, at different dimensionless times, 
.
Conditions as in example 3, Table I. The rate constant k11 is reduced 1000
times compared to the gas collision rate constant.

FIG. 10. The cluster flux profiles, Jk, at different dimensionless times, 
.
Conditions as in example 3, Table I. The rate constant k11 is reduced 106

times compared to the gas collision rate constant.
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parameters over very wide ranges in order to determine the
conditions when the steady-state assumption is applicable.
The results of these calculations are presented in Fig. 11. The
steady state is established in the lower section in Fig. 11. In
other words, the lower region in Fig. 11 is the region of
applicability of the steady-state assumption—one of the ma-
jor assumptions of the classical theory of homogeneous
nucleation. The criterion which was used to separate two
regions was formulated based on the shape of the particle
flux profiles. It is clear that the quantitative criterion can be
chosen arbitrarily and should be determined based on the
required accuracy. In Fig. 11, the criterion chosen was the
flatness of the flux profile in the time domain �like in Fig. 2�
within 20% over the time period from tmin to tmax, with at
least tmax�3tmin. It should be noted that the boundary out-
lined in Fig. 11 depends upon the chosen quantitative crite-
rion, although the dependence is not too strong.

The results presented in Fig. 11 qualitatively confirm the
generally accepted view that the classical theory of homog-
enous nucleation is applicable at small and moderate super-
saturations, and cannot be used at large supersaturations.
However, the position of the boundary depends on the di-
mensionless surface tension �parameter ��. It should be em-
phasized that the boundary in Fig. 9 at different � corre-
sponds to different sizes of the critical nucleus, nc,0. The
critical nucleus size can be obtained from � and S0 using Eq.
�18�. For example, for �=5 the boundary corresponds to
nc,0=50, for �=10 the boundary corresponds to nc,0=15, and
for �=30 the boundary corresponds to nc,0=5.2. If the di-

mensionless surface tension is large �high surface tension at
low temperatures�, the steady state can be achieved even
with relatively small critical nucleus.

IMPACT OF THE THERMODYNAMIC INCONSISTENCY
OF THE PARTIALLY REVERSIBLE KINETIC
MODELS

The kinetic model, which is used as the foundation of
the classical theory of nucleation, takes into account only the
reactions of monomer condensation and evaporation.4 The
rates of evaporation are evaluated based on the condensation
rates and the equilibrium concentrations of the corresponding
clusters in saturated vapor. This kinetic model is thermody-
namically consistent. The ratio of the forward and reverse
rate constants is equal to the equilibrium constant �expressed
in the concentration units�; it is generally assumed that under
some conditions this relationship holds for nonequilibrium
states.44 However, models that include only processes in-
volving monomers cannot be used at the deep stages �e.g.,
the coagulation stage� of aerosol growth, when the excess
concentration of monomers is already consumed and the pro-
cesses of coagulation of larger clusters became important.

To address this issue, a modified kinetic model was
introduced.10 In addition to the monomer condensation/
evaporation this model includes all reactions between clus-
ters in the forward direction. The processes of evaporation of
dimers, trimers, and larger clusters are neglected, which is
justified by their low probability.

A closer look at the rate constants of the cluster evapo-
ration shows that the rates of these reactions are not neces-
sarily always negligible. For example, for �=10.57 and S0

=10 �water at T=252 K, see example 1 in Table I� the rate
constants of the dimer evaporation from clusters below the
critical size are only from 1.5 to 13 times smaller than the
rate constants for the evaporation of monomers �Table II�.
What is even more important is that this kinetic model is
thermodynamically inconsistent. Taking into account only
forward reactions and neglecting the corresponding reverse
reactions of dimers, trimers, etc., while for the processes in-
volving monomers using both forward and reverse reactions,
is in conflict with the principle of detailed balance. When the
system is at equilibrium or close to equilibrium such a model
predicts kinetic “cycles” which are thermodynamically for-
bidden. An example of such a cycle is a sequence of the
coagulation reaction of a cluster with a dimer followed by
subsequent evaporation of two monomers.

Reliable analytical evaluation of the errors in the distri-
bution functions caused by neglecting the reactions of cluster
evaporation is difficult. Therefore, we performed numerical
model calculations in order to evaluate these errors. The cal-
culations were performed with the parameters of example 1,

FIG. 11. The region of applicability of the steady-state assumption. The
steady state is established in the region below the solid line �see text for the
criteria�. Open circles: model calculations where the particle flux does not
stabilize at any time; solid circles: the particle flux profiles satisfy the crite-
ria. Solid triangles: examples 1 and 2; open triangle: example 3 from Table
I.

TABLE II. Dimensionless rate constants for the reactions of monomer and dimer evaporation, Pi+1→Pi+ P1

and Pi+2→Pi+ P2, calculated using expressions 16 and 17. �=10.57, S0=10.

Process i=3 i=6 i=10 i=29 i=50 i=200

Pi+1→Pi+ P1 10.3 6.03 4.39 2.88 2.62 4.05
Pi+2→Pi+ P2 6.22 1.90 0.85 0.22 0.133 0.064
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Table I �water at 252 K�. The rate constants for all reverse
reactions except for the monomer evaporation were set to
zero. The comparison of the steady-state distribution func-
tions obtained in these calculations with the steady-state dis-
tribution functions for the complete model �Fig. 1� shows the
error of about one order of magnitude. The dimensionless
steady-state particle flux is larger by about one order of mag-
nitude as well, 6.4�10−11 vs 3.4�10−12. Figure 12 shows
the particle flux profile for 
=300 and the contributions to
the flux. The steady state obtained in the calculations is char-
acterized by the particle flux that is stable in the time and
size domains. In Fig. 12 it is labeled as Jtotal. The total par-
ticle flux could be divided to flux caused by the monomer
condensation/evaporation reactions, Jmono, the dimer reac-
tions, Jdimer, the trimer reactions, Jtrimer, etc. The monomer
component could be calculated using

Jmono = �1,in1ni − �1,i� ni+1. �26�

The dimer contribution is

Jdimer = �2,in2ni − �2,i� ni+2. �27�

The trimer and other contributions to the flux are calculated
similarly.

The contributions of monomers, dimers, and trimers to
the total flux calculated based on Eqs. �26� and �27� are
presented in Fig. 12. It could be seen that for clusters smaller
than 24 monomers, the monomer component of the flux is
negative in contrast to the other components. Different signs
of the fluxes make the existence of the “kinetic cycles” in the
steady state evident. The large positive flux caused by dimer
and trimer condensation is compensated by a large negative
flux of monomer flux �mainly evaporation of monomers�. It
is apparent that the kinetic cycles in this thermodynamically
inconsistent kinetic model lead to large errors in the steady-
state nucleation rates.

It should be stressed that the demonstration of the mag-
nitude of the impact of the “kinetic cycles” in Fig. 12 is not
based upon the rate constants for the dimer and trimer evapo-
ration obtained using the Kelvin model. These rate constants

are set to zero. Only the rate constants for monomer evapo-
ration, calculated using the Kelvin model, were used.

The contributions to the steady-state particle flux ob-
tained using the complete, thermodynamically consistent ki-
netic model are shown in Fig. 13. In contrast with Fig. 12, all
the components of the particle flux are now positive. The
main contribution to the nucleation rate is due to the reac-
tions of monomers. As it should be, no kinetic cycles are
observed in the steady state obtained by thermodynamically
consistent kinetic model.

In the considered example the error in the nucleation rate
caused by the thermodynamic inconsistency of the kinetic
model is about one order of magnitude. Under different con-
ditions the errors could be much larger. For lower supersatu-
ration ��=4.66 and S0=4� the error in the nucleation rate
obtained with the inconsistent kinetic model was about three
orders of magnitude. These examples show that the thermo-
dynamic inconsistency might lead to large errors, and that
such models should be used with caution.

Numerical calculations described above are based on the
Kelvin model, applicability of which for small clusters is
questionable at best. One can argue that the impact of such
inconsistencies might be not as significant if more realistic
thermodynamics is used. However, the comparison of the
recent theoretical calculations29 and the experimental data45

for water clusters with the Kelvin model shows that the
Kelvin model can be used for reliable estimates. Figure 14
shows the standard Gibbs energy of formation of water clus-
ters from monomers at 298 K based on the discrete Kelvin
model, as well as the results of quantum chemical
calculations29 and the experimental data for water dimers.45

It is apparent that the predictions of the Kelvin model are in
good agreement with the calculations and the experimental
data. It should be noted, however, that there are theoretical
calculations that do not agree so well with the Kelvin model.
The Monte Carlo simulations of water clusters consisting of
2–10 water molecules at 243 K resulted in the reversible
work of cluster formation �10% –30% larger than predicted
by the Kelvin model.46

FIG. 12. The cluster flux profile, Jk, at the dimensionless time 
=300 ob-
tained using the kinetic model with zero rate constants of dimers, trimers,
etc., evaporation. Conditions are as in example 1, Table I.

FIG. 13. The cluster flux profile, Jk, and the components of these fluxes.
Complete kinetic model. Dimensionless time 
=300. Conditions are as in
example 1, Table I.
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CONCLUSIONS

In this work, a complete thermodynamically consistent
elementary reaction kinetic model of particle nucleation and
growth from supersaturated vapor was developed and nu-
merically evaluated. The model treats all processes recog-
nized in the aerosol science �such as nucleation, condensa-
tion, evaporation, agglomeration/coagulation, etc.� as
reversible elementary reactions. It includes all possible for-
ward reactions �i.e., of monomers, dimers, trimers, etc.� to-
gether with the thermodynamically consistent reverse pro-
cesses.

Numerical calculations were performed under the as-
sumptions accepted in the classical nucleation theory �the
surface tension approximation for the particle thermodynam-
ics and simple collision theory for the forward processes� for
several sets of parameters consistent with the existing experi-
ments on water vapor condensation as well as several model
sets of parameters including very extreme as encountered in
Laval nozzle experiments and nanoparticle formation by
rapid expansion of supercritical solutions. It was shown that
the main assumption of the classical nucleation theory—the
steady-state approximation—breaks already at the supersatu-
rations about 100 comparable with the supersaturations
achievable in the Laval nozzle experiments. The point is
made that under the conditions when no steady state is
achieved the specific rate constants of the very initial stages
of nucleation �dimerization, trimerization, etc.� become im-
portant, and evaluation of these rate constants as gas kinetic
might lead to gross errors. This is especially important to
water as this is a small molecule forming a relatively weakly
bound dimers, so that the assumption of the gas kinetic rate
constant for the dimerization might be in several orders of
magnitude error under the typical experimental conditions.
The impact of the thermodynamic inconsistency of the pre-
viously developed partially reversible kinetic models was as-
sessed. At some experimental conditions typical for water

nucleation, the error in the nucleation rate introduced by the
thermodynamic inconsistency could be about an order of
magnitude.
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APPENDIX A: CLUSTER FORMATION/DISSOCIATION
REACTIONS IN TERMS OF CHEMICAL
THERMODYNAMICS

The purpose of this section is to formulate the thermo-
dynamic properties of the cluster formation/dissociation re-
actions using the approach and the definitions of chemical
thermodynamics. Since the main purpose of the paper is to
describe the process of particle nucleation and growth in
terms of chemical kinetics of the gas-phase reactions, the
thermodynamics of these reactions is also treated on the
bases of the gas-phase reactions.

We treat clusters of all sizes as the gas-phase compo-
nents. The bulk liquid �with the infinite radius of curvature�
is treated as the liquid phase. For the gas-phase species �such
as clusters Pn�g�� the standard state is defined as the hypo-
thetical state of ideal gas of pure clusters Pn at the standard
pressure p�. It should be noted that the value of the standard
pressure �currently accepted p�=1 bar� is not important for
the discussion below. For the bulk liquid, the standard state is
defined as pure real liquid at pressure p�. Thus, for the
evaporation process from the liquid phase into a gas of
monomers, the standard Gibbs energy of vaporization,
�Gvap,1

� , refers to the process

P�l� ⇔ P1�g�, �Gvap,1
� . �A1�

Under the assumption of ideal gas of vapor Eq. �A1� implies

p1
*/p� = exp�− �Gvap,1

� /RT� , �A2�

where p1
* is the equilibrium partial vapor pressure of mono-

mers above a flat liquid surface.
In addition to Eq. �A1�, we will use processes involving

clusters of all sizes that are treated as reactions of gas-phase
species,

Pn�g� + Pm�g� � Pn+m�g�, �Gn,m
� , �A3�

Pn�g� + P1�g� � Pn+1�g�, �Gn,1
� , �A4�

nP1�g� � Pn�g�, �Gcond,n
� , �A5�

where the standard Gibbs energy is defined according to the
definitions accepted in chemical thermodynamics. For ex-
ample, for reaction �A3�, �Gn,m

� is the difference of the Gibbs
energy of 1 mole of clusters Pn+m in a hypothetical state of
ideal gas at pressure p� and the Gibbs energy of unmixed
1 mole of clusters Pn and 1 mole of clusters Pm in the hypo-
thetical ideal gas states both at pressure p�.

FIG. 14. The standard Gibbs energy of formation of the water clusters from
monomers. Open circles: CBS-QB3 calculation �Ref. 29� filled circles: the
discrete Kelvin model; stars: the experiment �Ref. 45�.
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Let us first discuss the process of monomer
condensation/evaporation �Eq. �A4��. The equilibrium con-
stant for this reaction is calculated based on the standard
Gibbs energy of reaction �A4�, �Gn,1

� .
To derive the standard Gibbs energy of reaction �A4�,

the “surface tension model” is invoked. The model is based
on the Kelvin formula �A6� for the equilibrium �unstable�
vapor pressure above a spherical surface,

p = p* exp�2	Vm,l

rRT
� . �A6�

In this expression, p is the �unstable� equilibrium vapor
pressure above a spherical particle with the radius r, p* is the
stable equilibrium vapor pressure above a flat surface, 	 is
the surface tension between the liquid and vapor, and Vm,1 is
the molar volume of monomers in the liquid phase. Expres-
sion �A6� is valid assuming that dimers, trimers, etc., con-
tribute negligible in the equilibrium vapor pressure, that all
components obey the ideal gas law, and that the aerosol par-
ticles are incompressible, and neglecting the molar volume
of liquid in comparison with the molar volume of vapor.
Based on the fact that Eq. �A6� describes equilibrium �al-
though unstable� one can argue that the equilibrium concen-
trations of nc-mers and �nc+1�-mers should be equal �the
discrete analog of the extremum condition�,

Nnc
= Nnc+1, �A7�

where nc is the size of the cluster which is in equilibrium
�unstable� with the vapor at a given partial vapor pressure of
monomers, i.e., the critical nucleus size. The same results
can be also derived based on the fact that the Gibbs energy of
condensation of n-mers from monomers has an extremum
�maximum� at the critical nucleus size. Equating the rates of
the forward and the reverse processes in Eq. �A4� for n=nc

�equilibrium�, one derives

knc,1Nnc
N1 = Nnc+1knc,1� . �A8�

The thermodynamic equilibrium constant for reaction
�A4� is defined as �ideal gas behavior for all components is
assumed�

Kn,1 =
Pn+1/p�

�pn/p���p1/p��
=

p�NA

RT

Nn+1

NnN1
, �A9�

where p�=1 bar is the standard pressure, NA is Avogadro’s
number, and all partial pressures and concentrations refer to
the equilibrium conditions.

The standard Gibbs energy of reaction �A4� is then

�Gn,1
� = − RT ln�Kn,1� . �A10�

For n=nc, using pnc
= pnc+1 �Eq. �A7��, Eq. �A9� can be rear-

ranged as

Knc,1 =
1

�p1/p��
=

1

�p1/p1
*��p1

*/p��
. �A11�

The ratio p1
* / p� is controlled by the standard Gibbs en-

ergy of vaporization of monomers, i.e., process �A1�. The
ratio p1 / p1

* is given by the Kelvin formula which is extended

to the clusters of any size, including monomers. Finally,
combining Eqs. �A2�, �A6�, �A7�, and �A10� we obtain the
standard Gibbs energy of reaction �A4�,

�Gn,1
� = − �Gvap,1

� + 2	Vm,l/rn+1, �A12�

where rn+1 is the radius of a cluster containing �n+1� mono-
mers. In Eq. �A12� nc is replaced with an arbitrary n, since
the critical nucleus can be made of any size by varying the
partial pressure; therefore, Eq. �A12� is applicable to any
cluster size �of course under the extension of the surface
tension model down to the monomer size�.

Applying sequential attachment of monomers, for the
process of condensation of a n-mer from n monomers in the
gas phase �Eq. �A5�� one derives

�Gcond,n
� = − �n − 1��Gvap,1

� + �
i=2

n
2	Vm,l

ri
. �A13�

Using the radius of the monomer r1,

ri = r1i1/3, �A14�

expression �A13� is rewritten as

�Gcond,n
� = − �n − 1��Gvap,1

� +
2	Vm,l

r1
�
i=2

n
1

i1/3 . �A15�

Then the standard Gibbs energy for an arbitrary process de-
scribed by the stoichiometric equation �Eq. �A3�� is

�Gn,m
� = �Gcond,n+m

� − �Gcond,n
� − �Gcond,m

�

= − �Gvap,1
� +

2	Vm,l

r1
��

i=2

n+m
1

i1/3 − �
i=2

n
1

i1/3

− �
i=2

m
1

i1/3� . �A16�

Incorporating the standard notations for the dimensionless
surface energy of the monomers,26

� =
4�r1

2	

kBT
=

�1/3�6V1�2/3

kBT
. �A17�

Here V1 is the volume of the monomer. Both V1 and the
radius r1 are defined as

V1 = Vm,l/NA = �4�/3�r1
3. �A18�

Equation �A16� becomes

�Gn,m
� = − �Gvap,1

� + RT
2�

3
��

i=2

n+m
1

i1/3 − �
i=2

n
1

i1/3 − �
i=2

m
1

i1/3� .

�A19�

Finally, the reverse rate constants for reaction �1� are
calculated based on the principle of detailed balance,
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knm� = � p�NA

RT
�� knm

Knm
�

= knm� p�NA

RT
�exp��Gn,m

�

RT
�

= knm� p�NA

RT
�exp�−

�Gvap,1
�

RT
�exp�2�

3
��

i=2

n+m
1

i1/3

− �
i=2

n
1

i1/3 − �
i=2

m
1

i1/3��
= knm� p�NA

RT
�� p1

*

p��exp�2�

3
��

i=2

n+m
1

i1/3 − �
i=2

n
1

i1/3

− �
i=2

m
1

i1/3�� . �A20�

Introducing the current supersaturation, S, current number
density of the monomers, N1, and the equilibrium number
density of monomers above a flat surface, N1

*,

S =
N1

N1
* 


p1

p1
* . �A21�

Equation �A20� transforms to

knm� = knmN1�1

S
�exp�2�

3
��

i=2

n+m
1

i1/3 − �
i=2

n
1

i1/3 − �
i=2

m
1

i1/3�� ,

�A22�

which leads to the dimensionless equation �Eq. �17�� in the
main text of the paper.

APPENDIX B: SECTIONING „BINNING… APPROACH
FOR THE REVERSIBLE MODEL OF CLUSTER
NUCLEATION AND GROWTH

In this appendix, the sectioning �binning� approach as
well as the main principles of the computer code are sum-
marized.

A section �bin� is defined as an interval for the cluster
size, in terms of the number of monomers. The notation for
the sections is S� where �=1,2 ,3 ,4 , . . .. A set of sections is
characterized by a small parameter �. Let b� be the size of
the smallest cluster in section S�, then the width W� of the
section S� is calculated as

W�  1 + �b�, �B1�

where the result should be rounded off to the closest integer
value. For example, for �=0.01 the width of the first 99
sections is 1, the next 50 sections has the width 2, and so on.
The first 99 sections form the discrete region, but we treat
this region in the same manner as all other sections. The
differential equations for the sections are written in such a
way that if a section has the unit width, then the differential
equation for the section is equivalent to the original discrete
equation.

Let us consider a collision of clusters from sections S�

and S�. The products of such reaction can belong to several

sections. Let S	 be the lowest section of the products of this
reaction. The closer examination of the section system �Eq.
�B1�� shows that the products could belong maximum to
three sections,

S� + S� → S	,S	+1,S	+2. �B2�

Let ��,�
�0� be the number of events, when the product belongs

to section S	, ��,�
�1� the number of events when the product

belongs to section S	+1, and ��,�
�2� the number of events when

the product belongs to section S	+2. Then

��,�
�0� = �

i�S�

�
j�S�

�
k�S	

��i + j − k� , �B3�

where ��n� is the discrete delta function: ��0�=1, ��n�=0 if
n�0. The ��,�

�1� and ��,�
�2� could be calculated in a similar way,

��,�
�1� = �

i�S�

�
j�S�

�
k�S	+1

��i + j − k� , �B4�

��,�
�2� = �

i�S�

�
j�S�

�
k�S	+2

��i + j − k� . �B5�

When calculating ��,�
�0� , the code simultaneously calculates

the average clusters sizes �i� and �j� in the case when the
products belong to section S	,

�i��,�
�0� =

1

��,�
�0� �

i�S�

�
j�S�

�
k�S	

i��i + j − k� ,

�B6�

�j��,�
�0� =

1

��,�
�0� �

i�S�

�
j�S�

�
k�S	

j��i + j − k� .

These average cluster sizes are used to calculate the average
rate constant R�,�

�0� for the process S�+S�→S	 in the forward
direction,

R�,�
�0� =

1

4�2
��i�1/3 + �j�1/3�2�1/�i� + 1/�j��1/2 �B7�

and the average rate constant in the reverse direction,

R�,���0� = R�,�
�0� exp�2�

3
� �

k=2

�i�+�j�

k−1/3 − �
k=2

�i�

k−1/3

− �
k=2

�j�

k−1/3��� S0. �B8�

In the case when the product belongs to section S	+1, the
average cluster sizes are calculated in a similar way,

�i��,�
�1� =

1

��,�
�1� �

i�S�

�
j�S�

�
k�S	+1

i��i + j − k� , �B9�

�j��,�
�1� =

1

��,�
�1� �

i�S�

�
j�S�

�
k�S	+1

j��i + j − k� . �B10�

These average cluster sizes are for the calculations of the
average rate constants R�,�

�1� and R�,�
��1�. Similarly, the average

rate constants R�,�
�2� and R�,�

��2� are calculated for the processes
leading to the products that belong to section S	+2.
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Consequently, a collision of clusters from sections � and
� is described by the following parameters:

	, ��,�
�0� , ��,�

�1� , ��,�
�2� , R�,�

�0� , R�,���0�,

R�,�
�1� , R�,���1�, R�,�

�2� , R�,���2�. �B11�

Before the start of numerical integrations of the set of differ-
ential equations, the code calculates these parameters and
stores in the memory. The data structure is then 10 numbers
for each combination of sections. These precalculated num-
bers are then used for calculations of the right hand sides of
the differential equations.

We used the differential equation in terms of the section
populations,

B� = �
i�S�

ni. �B12�

A reaction between clusters from sections S� and S� might
change the populations of the five following sections: S�, S�,
S	, S	+1, and S	+2. The correspondent terms in the right hand
sides of differential equations are

dB�

d

= ¯

��,�
�0�

R�,�
�0� + ��,�

�1�
R�,�

�1� + ��,�
�2�

R�,�
�2�

��,�
�0� + ��,�

�1� + ��,�
�2� B�B� ¯

+ ��,�
�0�

R�,���0�B	 + ��,�
�1�

R�,���1�B	+1

+ ��,�
�2�

R�,���2�B	+2 ¯ , �B13�

dB�

d

= ¯

��,�
�0�

R�,�
�0� + ��,�

�1�
R�,�

�1� + ��,�
�2�

R�,���2�

��,�
�0� + ��,�

�1� + ��,�
�2� B�B� ¯

+ ��,�
�0�

R�,���0�B	 + ��,�
�1�

R�,���1�B	+1

+ ��,�
�2�

R�,���2�B	+2 ¯ , �B14�

dB	

d

= ¯ +

��,�
�0�

��,�
�0� + ��,�

�1� + ��,�
�2� R�,���0�B�B� ¯

−
��,�

�0�

W	

R�,���0�B	 ¯ , �B15�

dB	+1

d

= ¯ +

��,�
�1�

��,�
�0� + ��,�

�1� + ��,�
�2� R�,�

�1� B�B� ¯

−
��,�

�1�

W	+1
R�,���1�B	+1 ¯ , �B16�

dB	+2

d

= ¯ +

��,�
�2�

��,�
�0� + ��,�

�1� + ��,�
�2� R�,�

�2� B�B� ¯

−
��,�

�2�

W	+2
R�,���2�B	+2 ¯ . �B17�

A cycle of calculations of the right hand sides of the set
of differential equations consists of sequential processing of
all the combinations S� and S�. For each combination S� and
S� the terms �B13�–�B17� are calculated and the results are
stored.
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