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Abstract. The performance of various structure characteristics in the task of indicating structural pecu-
liarities in packings of hard spheres is investigated. Various characteristics based on Voronoi polyhedra,
spherical harmonics, and Delaunay simplices are considered together with the pair correlation function and
the mean number of r-close triples. They are applied to a set of hard sphere packings of density φ from
0.62 to 0.72. It turns out that all used structure characteristics are able to indicate changes of order from
non-crystalline to crystalline packings. However, not all of them are sensitive enough to indicate different
stages of structure transformation under densification. The characteristics based on Delaunay simplices
turn out to be the most sensitive for this purpose. For the models considered three principal structure
classes are found: packings of densities lower than the known critical value 0.64 showing a non-crystalline
behavior; packings with considerable crystalline regions for φ up to 0.66–0.67; rather complete crystals
although with numerous defects for φ above 0.67.

PACS. 61.43.-j Disordered solids – 61.43.Bn Structural modeling: serial-addition models, computer sim-
ulation

1 Introduction

Packings of identical hard spheres are useful models in the
study of the structure of diverse systems in physics, chem-
istry and engineering. They approximate well the struc-
ture of atomic and granular systems. Moreover, they are
able to reproduce the liquid-to-solid phase transition, in-
cluding both freezing of liquid to crystal and ‘glass tran-
sition’ [1–5]. Hard sphere systems give a striking physical
example illustrating that the structure of atomic systems
is governed mainly by short-range repulsion and, ulti-
mately, by geometrical properties of spheres in 3D-space.

The structure and degree of disorder in hard spheres
depend heavily on the density or packing fraction φ. At
φ = 0.494 the liquid phase of hard sphere systems be-
comes non-stable. With increasing density crystallization
may begin, or such a system may become a supercooled
liquid and then, somewhere at φ = 0.56 [6], take a solid
amorphous state. The disordered (non-crystalline) pack-
ing of hard spheres has a limited density around 0.64. This
is proven well both experimentally [7–11] and by computer
simulation [12–15]. The densest hard sphere systems are
crystalline, namely fcc and hcp (both with φ = 0.7405),
however a ‘stable’ crystalline phase exists until φ = 0.545
(melting point).
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The investigation of the structure of simulated models
of atomic systems stimulated the development of new sta-
tistical methods, additionally to the classical use of pair
correlation function and structure factor known in physics
of liquids. These methods are based on quite different con-
cepts. One of them uses tessellations, starting with the
work by Bernal on Voronoi polyhedra [7,16]. Metrical and
topological parameters of the Voronoi polyhedra around
atoms reflect geometrical properties of the close neighbor-
hoods of atoms in the system. In particular, the number of
polyhedra faces indicates the quantity of ‘natural’ neigh-
bors, and the volume of Voronoi polyhedra defines a ‘local
density’ [3,17,18]. Finney [19] coined in this context the
term ‘polyhedral statistics’. Also the Delaunay tessella-
tion, which is dual to the Voronoi tessellation, turned out
to be a valuable statistical tool [20–22]. A Delaunay sim-
plex is defined by a quadruple of ‘mutually closest’ atoms.
Such quadruples of atoms represent ‘bricks’ which com-
pose the atomic system; therefore their analysis is particu-
larly useful for structure investigation. The simplex shapes
play an important role in structure characterization, for
which various measures can be used [21]. In particular,
they can be used to select simplices of a shape close to that
of a perfect tetrahedron. The spatial distribution of such
simplices inside an atomic system gives valuable structural
information [22]. The use of Delaunay simplices, Voronoi
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polyhedra and the corresponding tessellations for struc-
ture investigations is known as the ‘Voronoi-Delaunay
method’, which is applied in many fields of science [23,24].

Another approach for studying the structure of atomic
systems uses the bond-orientational order characteris-
tic Q6 [25]. The idea is to decompose the vectors directed
from an atom to its neighbors into spherical harmonics.
The corresponding coefficients Qlm depend on the ar-
rangement of the neighbors and thus specific invariants
of them (in particular, Q4, Q6, W6 [4,25–29]) can be used
to characterize the structure of the neighborhoods. Q6 is
used in a local and global version [28,30].

Finally, two further useful order metrics appeared in
the literature, namely the ‘translational order characteris-
tic’ T [29,31] and, going beyond second-order characteri-
zation, a third-order characteristic T3(r) proposed in [32],
which will both be explained below.

The present paper has two aims: to show structural
differences in disordered packings of identical spheres of
different packing density, and to compare the ability of
the various statistical characteristics to indicate the occa-
sionally rather fine structural differences in these packings.

The packings examined here have densities between
0.62–0.72. We characterize our packings as ‘maximally
disordered’ for a given density. It is not very clear how
to formulate this condition mathematically, however in-
tuitively its physical meaning is understandable. Indeed,
structures of packings of a given density can be very di-
verse. It is known that a packing may contain crystalline
nuclei starting from a density of 0.495. On the other hand
it can be completely non-crystalline up to φ ≈ 0.64. The
structure of a packing depends on the protocol of the sim-
ulation; both on the algorithm and on the parameters of
the given algorithm (see e.g. [33,34]). A long evolution and
perceptible amount of free volume enable the appearance
of crystalline nuclei, while a fast quenching or densifica-
tion of an initial random configuration of spheres results
in a ‘jammed’ disordered packing. Our packings with den-
sity up to φ ≈ 0.64 do not contain any recognizable crys-
talline nuclei or aggregates of any other specific symmetry.
(They could be clearly detected by the pair correlation
function, or, with more precision, using spherical harmon-
ics [10] or shape analysis of Delaunay simplices [35,36].)
In this meaning these packings can be called maximally
disordered. Note that such packings are obtained very eas-
ily in experiments [10]. The packings with higher density
cannot be created without crystalline nuclei. In this case
we can speak about a maximal disorder because we did
not go far (in configurational space) from the obtained
non-crystalline packings using our procedure of densifica-
tion, see Section 2. The crystalline nuclei which spring up
in our packings on the interval 0.64–0.66 are randomly
distributed. The more dense packings (denser then 0.67)
obviously represent a ‘total’ crystalline structure, and the
disorder in this models is realized by numerous defects in
the crystal. We think that maximal disorder at these high
densities can only be realized in this way.

Digressing from physical processes resulting in such
packings and from computational algorithms of genera-

tion, our packings can be considered as sets of ‘points’ in
some configurational space (each point represents a con-
crete configuration of non-overlapping spheres in space),
and we use them to demonstrate a feasible disorder for a
given density.

Clearly, different structural characteristics indicate dif-
ferent properties of packing structures. In particular, char-
acteristics determined by many atoms such as Voronoi
polyhedra and spherical harmonics invariants, which are
based on about 15 neighbor atoms, are hardly able to de-
tect small crystalline nuclei at the beginning of crystal-
lization. In contrast, Delaunay simplices seem to be better
adapted to the problem of finding fine structural peculiar-
ities, since they are defined by quadruples of atoms.

The performance of these and other structure charac-
teristics is systematically compared. By the way, it is diffi-
cult to order the various characteristics systematically. We
consider here four groups, where the first contains mainly
characteristics that consider the packing from the stand-
point of a single atom. The other three groups are related
to the number of atoms directly involved in the definition:
two-pair correlation function, three-triplet correlation and
four-Delaunay simplex.

2 Generation of sphere packings

The hard-sphere packings studied in this paper were gen-
erated using the so-called force-biased algorithm [15,37],
which belongs to the family of so-called ‘collective rear-
rangement’ algorithms. It is based on the classical algo-
rithm used in [12,38].

The initial configuration of the algorithm is a set of N
spheres with random centers uniformly distributed in a cu-
bic container. Overlappings are permitted. While the num-
ber of spheres is fixed, the algorithm attempts to reduce
overlaps between spheres by shifting overlapping spheres
and gradual shrinking of the radii. Periodic boundary con-
ditions are used.

An important element of the algorithm is a ‘repul-
sion force’, Fij , between each pair (i, j) of overlapping
spheres, which determines the extent of the shifts. It con-
trols heavily the efficiency of the algorithm, see [15]. In
every step, for all spheres these shifts and a shrinking op-
eration, which reduces all radii by the same factor, are
carried out. This is continued until all overlappings van-
ish.

This algorithm leads to packings of φ around 0.66. To
obtain packings of higher densities, the result of an earlier
run of the algorithm is used as a starting configuration,
where the corresponding diameters are enlarged so that
new overlappings may appear. This procedure can be re-
peated several times.

All packings discussed in this paper consist of
10 000 spheres, a size which turned out to be large enough
for our statistical investigations. For statistical purposes
for each density φ several independent packings were gen-
erated; ten for φ < 0.7, as we are mainly interested in
structural changes happening between φ = 0.64 and 0.7,
and three for higher densities.
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a) b)

c) d)

e) f)

Fig. 1. A series of monosize hard-sphere packings with differ-
ent densities: (a) 0.64; (b) 0.65; (c) 0.654; (d) 0.66; (e) 0.67;
(f) 0.71. Each packing consists of 10000 spheres. The order in
the packings increases with growing density.

Figure 1 shows a series of packings with different den-
sities. The sample with density φ = 0.64 looks like a com-
pletely disordered packing. The packing with φ = 0.65
also looks disordered, but a few lineal rows of spheres
can be recognized. However, a packing with φ = 0.654
demonstrates clear crystalline regions, which becomes pro-
nounced at φ = 0.66. The packings at the bottom present
completely crystalline samples. At φ = 0.67 there are still
a lot of defects, but at φ = 0.70 an almost perfect dense
crystalline structure can be observed. Thus, one can see
that the more principal structural changes seem to take
place in the rather narrow interval 0.64–0.66.

The question is how robust the structural changes of
the packings are with respect to changes in the algo-
rithm. To test this we generated models of 10 000 spheres
of packing densities from 0.60 to 0.66 using a modified
Lubachevsky-Stillinger algorithm [39]. This algorithm re-
alizes Newtonian dynamics of hard spheres together with a
gradual growth of their radii. Thus it is in some sense dual
to the force-biased algorithm, where the radii are reduced.
To get packings with ‘a maximal disorder’ (see Sect. 1),
we chose a relatively high rate of growth of sphere radii; to
obtain higher densities the rate of radius growth should be

lower. A random configuration of non-overlapping spheres
was used as initial configuration for each run. As result we
obtained packings whose structure is statistically identical
to the structure of packings used in this paper for the same
packing fractions. Note that it was found that, if we choose
slow growth of sphere radii in the Lubachevsky-Stillinger
algorithm, small crystalline nuclei already appear in pack-
ings with rather low density, in particular from a density
of 0.62.

3 Scalar order metrics

A famous measure of disorder in sphere pack-
ings is the bond-orientational order characteristic Q6

[3,25,28,30,40–42]. It is applied in two forms. In the global
version the whole network of all nearest neighbor bonds
(defined by means of the Voronoi tessellation) is used,
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where Nb denotes the total number of bonds in the packing
and Y6m(θi, ϕi) are the spherical harmonics, with θi and
ϕi being the polar and azimuthal angles of bond i. In this
way a single number characterizes a whole packing.

In a perfect crystal these bonds have well-defined di-
rections, which persist over macroscopic distances. There-
fore it is natural that Q6,global takes large values if crys-
talline structures are present in the packing and reaches
its maximum for the perfect fcc crystal, which is 0.57452,
as stated e.g. in [40]. Below the behavior of Q6,global is
shown in comparison with another order metric.

The local bond-orientational order characteristic
Q6,local [3,26,28,30,41,42] for a single sphere is defined as

Q6,local =
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where nb is the number of nearest neighbors of the sphere
considered and θi and ϕi are the polar and azimuthal an-
gles of bond i of the sphere. The corresponding mean for
the whole packing Q6,local is the next disorder measure;
since Q6,global and Q6,local differ in the averaging proce-
dure, they yield different numerical values. Below the be-
havior of Q6,local is discussed in comparison with another
order metric.

The quantity Q6,local can be interpreted as the mean
value of the random variable Q6,local associated with the
spheres. This leads to the idea to consider also other
aspects of the distribution of Q6,local. While below the
variance of Q6,local is discussed in comparison with the
variance of another characteristic, Figure 2 presents the
probability distributions of Q6,local for different values of
φ. It shows that for the considered packings with densi-
ties around 0.7 a shoulder appears in addition to the main
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Fig. 2. Distributions of Q6,local under densification of hard
sphere packings: bottom — 0.62 (—), 0.67 (– – –); top — 0.68
(– – –), 0.7 (- - -), 0.72 (—). While all distributions look like
Gaussian distributions with increasing mean, around φ = 0.7
there is an anomaly with a shoulder.

peak. This indicates a structural change at this density, re-
lated to the appearance of large crystalline regions, where
both fcc and hcp structures may appear. Interestingly, this
shoulder is transient, it vanishes with ongoing densifica-
tion, in which a uniform crystalline structure develops,
presumably fcc. Furthermore, the dispersion of the distri-
butions clearly decreases while the mean increases with
increasing φ.

Another well-known order metric is the translational
order characteristic T introduced by Torquato et al. [43].
It measures the degree of spatial order in a hard sphere
system relative to the perfect fcc structure [30,40,44]. T
compares the mean occupation of thin shells concentric
with each sphere to the mean occupation of the same shells
in the fcc structure and in an ideal gas:

T =

∣∣∣∣∣
∑Ns

i=1(ni − nideal
i )∑Ns

i=1(n
fcc
i − nideal

i )

∣∣∣∣∣ . (3)

Here ni is the occupancy of the ith shell averaged over
all spheres in the system and Ns the number of shells.
nideal

i and nfcc
i are the corresponding mean shell occupa-

Fig. 3. Development of Q6,global (—) and T (– – –) under
densification of hard sphere packings. The points represent the
mean values for each density.

tion numbers for an ideal gas and the fcc lattice, respec-
tively. The positions and the width ε of shells are spec-
ified so that they correspond to the successive neighbor
shells of the fcc lattice. As in [40] the first seven neighbor
shells were considered in this paper, using a shell width
ε = 0.196. By the way, it is easy to show that T is a second-
order characteristic closely related to Ripley’s K-function,
which is an integrated form of the pair correlation func-
tion.

The performance of Q6,global and T for the analyzed
hard sphere packings is shown in Figure 3. There is a
continuous rising of T with ongoing densification with a
steep increase at φ around 0.68. That means, T is able to
detect ‘good’ crystals, but is not sensitive to the structural
changes between φ = 0.64 and 0.66. In contrast, Q6,global

seems to perform better in the task of identifying and
proving a beginning of crystallization since it changes its
behavior after φ = 0.65 greatly.

A different approach of structure characterization
from the standpoint of single atoms is based on the
Voronoi tessellation, which is widely used in the study
of the geometrical arrangement of the hard spheres in
packings (see e.g. [3,7,17,18,45]). It divides the space
into convex polyhedral cells, where each cell contains
exactly one sphere. Characteristics of Voronoi tessella-
tions [23,24,44,46] which are useful for the comparison
of sphere packings are the probabilities p(f) of f -faceted
cells and the mean number of faces 〈f〉 per cell, which also
represents the mean number of neighbors of a sphere.

Figure 4 shows the probability distributions of the
number of faces at different densities. Obviously the dis-
persion decreases with increasing φ, indicating the in-
creasing degree of order in the packings. However, the
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Fig. 4. Distributions of the number of faces per Voronoi cell for
sphere packings with densities 0.62 (bottom), 0.654 and 0.72
(top). While the mean is nearly fixed, the variability decreases
with increasing φ.

distributions are not very sensitive to densification and
hardly indicate structural changes.

While in Figures 3 and 4 probability distributions are
compared, Figure 5 demonstrates the development of the
mean Q6,local and the mean number of faces 〈f〉 at the
densification of sphere packings. It shows a continuous
rising of Q6,local, while the mean number of faces per
Voronoi cell decreases with increasing density, converg-
ing towards 14, the value for an fcc system. Both curves
are nearly linear and do not indicate abrupt structural
changes like a beginning of crystallization. In particular,
no peculiarities can be observed at φ between 0.64 and
0.66.

A similar behavior was observed for the number of
contacts between spheres: the mean number of contacts
increases nearly linearly.

Fig. 5. Development of the local bond-orientational order
characteristic Q6,local (—) and of the mean number of faces
per Voronoi cell 〈f〉 (– – –) during the densification of hard
sphere packings.

Fig. 6. Development of the variances of the local bond-
orientational order Q6,local (—) and the number of faces per
Voronoi cell f (– – –) at the densification of hard sphere pack-
ings. Both curves show a cusp point in the φ-interval 0.64–0.66.

In addition to the mean value considered above, also
other statistical characteristics of the distributions of
Q6,local and f can be considered, e.g. their variance. For
both the variance is decreasing with increasing φ, as shown
in Figure 6. While for the variance of f no abrupt changes
can be found, the variance of Q6,local has a steep descent at
densities larger than 0.65, which may indicate structural
changes.
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Fig. 7. Pair correlation function at different densities: bottom
— 0.62 (—), 0.63 (- - -), 0.64 (– – –), middle — 0.654 (—), 0.66
(- - -), 0.67 (– – –); top — 0.68 (– – –), 0.7 (- - -), 0.72 (—).
The small peak at r =

√
2 for φ = 0.66 indicates structural

changes in the packing.

4 Pair correlation function

A classical approach to analyze hard sphere packings is the
use of higher-order characteristics for the point process of
sphere centers. To this class belongs the pair correlation
function g(r) (or radial distribution function) [44], which
is the most popular second-order characteristic in physi-
cal applications and usually more informative than scalar
characteristics. It is able to indicate structural changes by
small shoulders or maxima [47].

Figure 7 presents the pair correlation functions for
three groups of hard sphere packings, representing dis-
ordered packings, packings with some crystal nuclei and
crystalline structures, respectively. Here clear differences
between the three groups of packings can be recognized. In
the group of packings where crystallization starts a peak
at r =

√
2 becomes slightly visible, which is an indica-

tor of local crystalline order. This peak and other crystal-
related peaks become still clearer with ongoing densifi-
cation and are very pronounced at densities higher than
0.67. Thus the pair correlation function is obviously sen-
sitive to structural changes in hard sphere packings going
from disordered to ordered phase.

5 Triplet correlation

Now a third-order metric T3(r) is considered, which was
introduced by Schladitz & Baddeley [32]. It results from
integration of the well-known three-particle correlation
function (see e.g. [44]), which itself is too complex for
practical statistical applications. The characteristic T3(r)

might be called mean number of r-close triples. For a pack-
ing of N hard spheres in the volume V , T3(r) is the mean

T3(r) =
1

2λ2

1
N

N∑
i=1

pi(r), (4)

where pi(r) is the number of pairs of sphere centers of
distance smaller than r within the test sphere of radius r
centered at the center xi of the i-th sphere of the pack-
ing; in these pairs xi is not included. For r a bit larger
than 1, T3(r) describes the appearance of triples of con-
tacting spheres, while T3(r) = 0 for r < 1, because in a
sphere of diameter smaller than 1 there cannot be other
spheres of diameter 1. For larger r T3(r) is increasing and
for a crystalline lattice structure it has jumps at the char-
acteristic inter-point distances for fcc structures, namely
at r = 1,

√
2,

√
3, 2 and so on. Nevertheless, by definition

T3(r) is not directly related to some crystalline lattice.
Methods for the estimation of T3(r) are described in [32].
For our calculations the so-called translation correction
method was used.

Figure 8 shows T3(r) for three classes of packings.
There is a completely different behavior of T3(r) for sphere
packings with low and high density. For low density pack-
ings a nearly parabolical increase of T3(r) can be observed
with increasing r, while for high densities jumps appear.
This happens, as Figure 8 shows, not only for high den-
sity systems (0.68 and higher), but the first development
in this direction can already be recognized at systems with
φ = 0.654, which indicates presence of crystal nuclei in the
packings.

To compare T3(r) to scalar order characteristics it is
helpful to consider its values at special distances r. An
interesting behavior can be expected for r = 1,

√
2,
√

3, 2
and so on. However, numerical effects in the simulated
packings make the choice of these values unattractive,
but somewhat larger r’s are useful. Therefore T3(1.1) and
T3(1.5) are used.

As Figure 9 shows, T3(1.1) increases continuously,
since with increasing φ the number of triples of contact-
ing spheres increases. At φ = 0.65 there is a sharp bend
and a faster increase starts. For T3(1.5) even a slight de-
crease is visible, but then a still sharper bend is observed.
This more sensitive reaction to structural changes is due
to the fact that triples of spheres with distances up to

√
2

are bound to crystalline structures and rarely appear by
chance.

6 Analysis of Delaunay simplices-quadruple
correlation

6.1 Tetrahedricity and quartoctahedricity

While the Voronoi tessellation has proved to be a useful
tool in the investigation of hard sphere packings, some dis-
advantages must be noted: each sphere has many neigh-
bors in the Voronoi sense, such that the strength of in-
fluence of any particular sphere is unclear. Furthermore
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Fig. 8. The third-order characteristic T3(r) for sphere packings
with densities between 0.62 and 0.72: bottom — 0.62 (—), 0.63
(- - -), 0.64 (– – –), middle — 0.654 (—), 0.66 (- - -), 0.67 (– – –);
top — 0.68 (– – –), 0.7 (- - -), 0.72 (—). Already for φ = 0.654
the curve shape changes from parabolic to stepwise.

the shape and topological characteristics of the Voronoi
cells vary, e.g. the number of faces fluctuates. This has
led to the idea to use its dual tessellation, the Delaunay
tessellation. The edges of its cells connect those pairs of
sphere centers whose Voronoi polyhedra share a common
face. The cells, called Delaunay simplices, are tetrahedra
having the centers of four neighboring spheres as vertices
and have the property that no sphere centers are situated
inside their circumscribed spheres. Thus, the Delaunay
simplices compose the empty interstitial space in a hard

Fig. 9. Development of T3(1.5) (—) and T3(1.1) (– – –) with
increasing density. Both functions have a cusp point in the
interval 0.64–0.66 for φ, which indicates structural changes in
the packings.

a) b)

Fig. 10. Tetrahedra in crystalline packings: (a) perfect tetra-
hedron; (b) octahedron and quartoctahedron (bold).

sphere packing. They are related to exactly four neighbor-
ing spheres and so of a clear local character. As the Delau-
nay simplices are always tetrahedra, shape measurement
and comparison is easy.

According to [21,22,48] in crystalline fcc and hcp
structures only three typical forms of Delaunay simplices
are possible: perfect tetrahedra, quartoctahedra (quarters
of octahedra) and (flat) squares, as shown in Figure 10.
Therefore the appearance of Delaunay simplices of these
shapes in a hard sphere packing indicates the existence of
crystalline parts.

Based on these ideas, in [23] simplex shape charac-
teristics using the lengths of simplex edges were intro-
duced. They exploit the fact that perfect tetrahedra and
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quartoctahedra have typical edge length proportions,
which can be used to define simplices of these shapes.

In a perfect tetrahedron all six edges have the same
length. As this is only valid for perfect tetrahedra, a sim-
plex fulfilling this condition must be a perfect tetrahedron.
Consequently, in [21] the measure for tetrahedricity (T)
of a simplex is defined as

T =

∑
i<j(ei − ej)2

15ē2
, (5)

where ei, ej are the edge lengths and ē is the mean edge
length of the simplex. The number 15 used as normal-
ization factor is the number of possible pairs of the six
edges of a simplex. Clearly, it is T = 0 for a perfect tetra-
hedron; for a quartoctahedron T is approximately 0.05,
but the latter value is possible also for other (irregular)
simplex shapes.

In a quartoctahedron there are five edges with the
same length while the sixth edge is

√
2 times longer. Also

this condition is one-to-one, i.e. a simplex with such edge
lengths is definitely a quartoctahedron. Taking this into
account, the measure of quartoctahedricity Q is defined
as

Q =
(
∑

i<j;i,j �=m(ei − ej)2 +
∑

i�=m(ei − em/
√

2)2)
15ē2

, (6)

see [23]. Here m is the index of the longest edge. It is
Q = 0 for a quartoctahedron and approximately 0.029 for
a perfect tetrahedron; also this value is shared by other
tetrahedra.

Figures 11 and 12 show the development of the distri-
butions of T and Q with increasing density of hard sphere
packings. With densification a development of two peaks
can be observed in both distributions, which is already vis-
ible at φ = 0.62 and becomes pronounced at φ = 0.67. The
first peak in the distribution of T corresponds to perfect
tetrahedra and the second to quartoctahedra; for Q this is
vice versa. In dense packings there are approximately two
times more quartoctahedra than perfect tetrahedra, which
is typical for systems with nearly fcc structure. Thus the
measures T and Q are obviously sensitive to slight order
variations in hard sphere packings and clearly recognize
(nearly) crystalline structures.

A particularly elegant numerical characteristic in the
given case of bimodality is the median. The median of
a distribution is the point at which it is divided into two
equal parts, with 50% of the values smaller and 50% larger.
Figure 13 shows that the median of Q decreases with
increasing φ, converging to zero, while the median of T
decreases up to φ = 0.65 and increases afterwards. This
different behavior is closely related to the crystallization
process: with growing density the degree of order increases
in the packings and more and more nearly regular poly-
hedra appear. This leads first to decreasing values of T
as well as of Q. With ongoing densification, however, ob-
viously a development towards an fcc structure happens,
where, as noted above, the number of quartoctahedra is
twice the number of perfect tetrahedra. Thus the median is

Fig. 11. Distributions of the tetrahedricity measure T for
sphere packings with densities between 0.62 and 0.72: bottom
— 0.62 (—), 0.63 (- - -), 0.64 (– – –); middle — 0.654 (—), 0.66
(- - -), 0.67 (– – –); top — 0.68 (– – –), 0.7 (- - -), 0.72 (—).

dominated by the quartoctahedra, which leads to the con-
vergence towards zero for the Q-median and to increasing
values for the T-median.

Note that instead of side lengths also angles [49] and
procrustean shape characteristics [50] can be used.

Finally, in [51] the ratio T/Q of fractions of tetrahedral
and quartoctahedral simplices is considered. This ratio is
very sensitive to the packing density, in particular, to the
appearance of crystalline nuclei in the packing. For models
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Fig. 12. Distributions of Q for sphere packings with densities
between 0.62 and 0.72: bottom — 0.62 (—), 0.63 (- - -), 0.64
(– – –); middle — 0.654 (—), 0.66 (- - -), 0.67 (– – –); top —
0.68 (– – –), 0.7 (- - -), 0.72 (—).

generated by our algorithm the curve of T/Q via packing
fraction shows a sharp peak at φ = 0.645 ± 0.0015. It
was interpreted as a maximal value for the densest non-
crystalline packing [51]. The packings obtained by the
Lubachevsky-Stillinger algorithm behave quite similarly,
which shows that our packings do not depend on the choice
of one of these two algorithms. It also means that packings
of maximal disorder might have a deep structural mean-
ing.

Fig. 13. Development of the medians of T (—) and Q (- - -)
with densification of hard sphere packings. The minimum of the
median curve for T indicates structural changes at φ between
0.64 and 0.66.

7 Conclusions

This paper analyzes the performance of various structure
characteristics in the task of indicating structural changes
in packings of hard spheres under densification. A set of
such models of density φ from 0.62 to 0.72 is studied.
Packings with φ lower than the known critical value 0.64
show a disordered (non-crystalline) behavior. Then, in the
φ-interval between 0.64 and 0.66, fundamental structural
changes happen: while at φ = 0.64 there is still disorder,
at 0.66 already considerable crystalline regions become
clearly visible, and at 0.67 the packings present rather
complete crystals although with numerous defects. For
further increasing values of φ the crystal structure is im-
proved continuously.

All considered order characteristics are able to recog-
nize certain structural changes from disorder to crystalline
structure. However, not all of them are sensitive enough to
indicate different stages of crystallization. The Delaunay
simplex shape measures T and Q turn out to be the most
sensitive characteristics for this purpose. They recognize
the beginning of crystallization better than the others be-
cause the simplices of given shapes present natural struc-
ture elements of the arising crystal structures (fcc and
hcp).

The characteristics T as well as 〈f〉 and Q6,local (and
the corresponding variances) are of little value for the
problem considered here, since they increase with increas-
ing φ with only slowly varying slope. In contrast, the
curves for Q6,global and T3(r) have sharp cusp points in
the φ-interval 0.64–0.66, indicating massive appearance of
crystals. Also the pair correlation function indicates struc-
tural changes for φ between 0.64 and 0.66. The first evi-
dence of beginning crystallization (a peak at r =

√
2) ap-

pears at φ = 0.654. However, the other specific crystalline
peaks remain smoothed up to φ = 0.67, after which they
start to grow sharply.
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