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We study the structure of numerically simulated hard sphere packings at different densities by
investigating local tetrahedral configurations of the spheres. Clusters of tetrahedra adjacent by faces
present relatively dense aggregates of spheres atypical for crystals. The number of spheres participating in
such polytetrahedral configurations increases with densification of the packing, and at the Bernal’s
limiting density (the packing fraction around 0.64) all spheres of the packing become involved in such
tetrahedra. Thus the polytetrahedral packing cannot provide further increase in the density, and alternative
structural change (formation of crystalline nuclei) begins henceforth.
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The model of hard spheres is widely used in structural
studies of liquids, glasses, colloids, and granular materials.
It successfully reproduces the main structural properties of
the condensed phase, such as crystallization of liquids [1,2]
and amorphous solid phase transition [3,4]. The wide
applicability of this simple model reflects the fact that
the structure of dense matter is determined first of all by
impenetrability of atoms, and ultimately comes from geo-
metric properties of the packings of nonoverlapping
spheres in three-dimensional space [5].

In this work we study a characteristic feature of dense
disordered packings of spherical particles—the presence
of tetrahedral configurations, which in turn join together
forming polytetrahedral aggregates of spheres. The impor-
tant properties of these aggregates are, on the one hand,
rather high local density, and, on the other hand, their
incompatibility with crystalline structures. It is commonly
believed that this promotes stability of the disordered
phase, and prevents crystallization of liquids. This idea
was first suggested by Frank in 1952 to explain supercool-
ing of liquid metals [6]. He showed that the icosahedral
configuration of atoms (a compact cluster of 20 tetrahedra)
has a lower potential energy than a crystalline fragment
built from these atoms, but the icosahedron has fivefold
symmetry axes forbidden for translational symmetry. Since
then many works have appeared in which the authors were
deliberately searching for icosahedral local order in
liquids, using both physical experiment [7–9] and com-
puter simulation [3,10–13]. However, tetrahedra can join
not only into icosahedra, but also in other, quite different
aggregates [13–17]. The analysis of computer models has
long demonstrated that tetrahedra prefer to form branching
linear clusters with five-membered rings [15,16], and ico-
sahedra per se are rarely found in monoatomic disordered
systems, as pointed out, e.g., in the works [2,17,18] that
specifically investigated this question. It is thus more cor-
rect to refer not to icosahedral, but rather to polytetrahedral
structure of simple liquids [5,13,19]. Note that conclusions
inferred from analysis of pair interatomic distances (as
provided from diffraction experiments) can only say

about the presence of face-adjacent tetrahedra because
such clusters contain all pair distances that are present in
icosahedron.

First studies of disordered hard sphere packings were
started by Bernal on mechanical packings of steel balls [5].
He noted that a disordered packing has a limiting (critical)
density that is a packing with higher density contain crys-
talline regions inevitably. Physical experiments give an
estimate of 0.637-0.64 for this density [5,20,21], computer
simulations provide the very close values (0.637–0.645)
[3,4,22–26]. What is important, this density is substan-
tially lower than the maximum packing fraction attainable
in the densest crystalline structures, �=

������

18
p

� 0:74. The
origin of the critical density for disordered packing and its
precise value are not known today despite the substantial
effort that has been put into this study. It is unclear what
geometrical principle is at work in disordered packing and
why it is limited at a density of about 0.64. This problem
still remains a challenge for both physicists and mathema-
ticians [5,27]. It looks like ‘‘a disordered analog’’ of the
Kepler conjecture for the densest crystalline packing of
spheres [28,29], which had been proved only recently
[29,30]. We suggest that the answers to these questions
can be sought in the study of the structure of polytetrahe-
dral aggregates.

In this Letter we show that aggregates of face-adjacent
tetrahedra are the essential feature of the dense disordered
packings. Such a principle of structural organization seems
to be preferable from the statistical viewpoint, as in this
case a broad range of dense local configurations can be
realized. However, it does have its limit, as higher densities
can only be reached with crystalline placement of spheres.

We study a large set of hard sphere packings (about 300)
with packing density from 0.53–0.71. Each packing con-
tains 10 000 identical hard spheres in a model box with
periodic boundary conditions. More then 200 packings
were obtained using a modified Jodrey-Torey algorithm
that employs ‘‘repulsion’’ of overlapping spheres with
gradual reduction of their radii [23,31]. This algorithm
can easily produce not only disordered packings with
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densities up to the limiting value, but also more dense
systems containing crystalline structures [17,31]. To test
the independence of structure on the algorithms used for
packing generation we also computed a series of 70 pack-
ings in the range of densities from 0.54–0.67 using the
Lubachevsky-Stillinger algorithm [25]. This algorithm em-
ploys a different procedure for raising the density: a mo-
lecular dynamics of nonoverlapping spheres with gradual
increase of their radii.

All our packings can be considered to be ‘‘maximally
disordered at a given density.’’ When generating them we
each time start from a random initial configuration of
spheres and using the quickest way ‘‘lead’’ it into the
desired density. It is easy to make by an appropriate choice
of the parameters of the algorithms [32]. As a result, for
densities below the limiting value, disordered packings are
always produced. At higher densities crystallization natu-
rally begins, and nuclei with face centered cubic (fcc) and
hexagonal close packing (hcp) structures of different mor-
phologies arise in the packings.

As our additional analysis shows, independent packings
having the same densities demonstrate similar structures;
i.e., the pair correlation functions and standard statistical
characteristics of Voronoi polyhedra and Delaunay sim-
plexes [31] for such packings are practically identical. The
representativeness of our models is further illustrated by a
fairly good coincidence of points for each given density on
the figures below, where each point represents an indepen-
dent packing.

Before starting the investigation of polytetrahedral ag-
gregates it is necessary to determine basic configurations of
four spheres which should be considered. There is a gen-
eral approach in geometry that allows unambiguous selec-
tion of the closest quadruples for an arbitrary system of
discrete points (sphere centers). This is done using the
Voronoi-Delaunay partitioning, well known both in phys-
ics and mathematics [33]. A tetrahedron of a general shape
with vertices in these four spheres is called Delaunay
simplex. The Delaunay simplexes are a very convenient
tool for various structural studies [34]. They are the sim-
plest elements of the three-dimensional structure. Any
cluster of Delaunay simplexes represents a fragment of a
packing (an aggregate of the spheres). Thus, to study the
structure of a packing first Delaunay simplexes are calcu-
lated, then their shape is analyzed to pick simplexes of
tetrahedral shape, and finally the clusters of such simplexes
are studied.

There are several possible criteria to evaluate the shape
of a simplex quantitatively [30,34,35]. In this Letter we use
a simple but efficient approach based on the maximal
simplex edge length emax [30]. It is especially suitable for
identical hard spheres, where the diameter of the sphere
sets the minimal possible length of the simplex edge taken
as 1. In this Letter we will use this approach calculating the
difference of the maximal edge lengths from unit

 � � emax � 1:

Small values of � unambiguously indicate that the shape of
the simplex is close to regular tetrahedron with unit edges.

A substantial point in identification of the tetrahedra is
determination of a boundary for the used measure. In the
proof of the Kepler conjecture [29,30] Hales chose 2.51 of
the radius of the sphere as a boundary edge length for
tetrahedral simplexes. In our notation it corresponds to
� � 0:255. Hales found this boundary in his research by
trial, and named the class of simplexes selected by � <
0:255 as ‘‘quasiregular tetrahedra’’ (or simply tetrahedra).
In this work we use this condition to select tetrahedra.
However, to be more sure in physical results obtained we
also employ lower boundary values (0.20 and 0.15) select-
ing simplexes with the better tetrahedral shape.

For each packing from our set of models we calculated
Delaunay simplexes and picked those of them that had
tetrahedral shape according to our criteria. Figure 1 shows
the portion of space occupied by the tetrahedral Delaunay
simplexes in packings via the packing density. Different
curves correspond to different shape regularity of the se-
lected tetrahedra.

The fraction of tetrahedra rapidly grows with density,
and for the curve with � < 0:255 they occupy about 30% of
volume when approaching the density around of 0.64. This
confirms the old qualitative conclusions that dense disor-
dered packings of spherical atoms contain many tetrahe-
dral configurations [5,15]. Tetrahedra with better shape are
also present in noticeable amounts, and their fractions
grow with acceleration up to the same limiting density.
After that point their curves grow linearly according to
raise and improving of crystalline order. Recall the value
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FIG. 1 (color online). Volume fraction of a packing occupied
by tetrahedral configurations as a function of packing density.
Different curves correspond to different criteria for selection of
the tetrahedra: � � 0:255, 0.20, and 0.15, from top to bottom.
Every symbol corresponds to one of the packings. Dashed
horizontal line corresponds to value 1=3.
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1=3 corresponds to the fraction of volume occupied by
tetrahedra in the densest crystalline structures fcc and hcp.

In the class of polytetrahedral aggregates (polytetrahe-
dra) we put clusters built from three or more face-adjacent
tetrahedra, Fig. 2. Isolated tetrahedra and pairs of tetrahe-
dra (bipyramids) are omitted as they are found in the fcc
and hcp crystalline structures. In the general case polyte-
trahedra have the form of branching chains and five-
member rings combining in various ‘‘animals’’ [15–17].

Figure 3 shows the fraction of volume contained in
polytetrahedra as a function of packing density. The be-
havior of these curves is quite different from the curves in
Fig. 1. For disordered packings a similarly rapid growth
with density is observed. Upon approaching the limiting
density they account also for about 30% of volume (for the
criterion � < 0:255) as it was for the total amount of
tetrahedra in Fig. 1. This means nearly all tetrahedra in
the packing have coalesced into polytetrahedral aggregates
at this density. However, after the limiting density the
number of polytetrahedra sharply decreases. This is an
obvious consequence of forming fcc and hcp crystalline
structures, in which tetrahedra prefer to have neighbors
through their edges or form bipyramids. The same behav-
ior is demonstrated by tetrahedra of the better shape, � <
0:20 and � < 0:15. At the limiting density, a majority of
them are also coalesced in polytetrahedra.

A specific behavior of the curves in Fig. 3 (quick rise and
sharp fall) demonstrates a ‘‘critical character’’ of the struc-
tural transformation at the limiting density. The position of
the peaks (we estimate it as 0.646) does not depend visibly
on the quality of selected tetrahedra. It means disintegra-
tion of the polytetrahedra begins simultaneously regardless
of criterion used for tetrahedral shape.

Figure 3 clearly demonstrates the polytetrahedral nature
of the disordered hard sphere packings. The increase of the
density before the Bernal’s limit occurs via growth of the

number of tetrahedral configurations and their coalescence
into polytetrahedral aggregates. The question then arises
why this principle stops working for high density? What
resource of packing becomes exhausted upon approaching
the limiting density? Figure 4 demonstrates that the pa-
rameter reaching its limit is the number of spheres involved
in formation of tetrahedra. For each packing we counted
the spheres that are a vertex of at least one tetrahedron.
Each sphere of the packing is a common vertex for several

FIG. 2 (color online). Examples of polytetrahedral aggregates
(clusters of face-adjacent tetrahedra). (a) three tetrahedra, (b) a
ring of five tetrahedra, (c) a typical polytetrahedral cluster in
dense disordered packing. The lower row shows motifs of the
clusters: the points mark the centers of the tetrahedra, and the
lines indicate that they are adjacent through a common face.
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FIG. 3 (color online). Volume fraction occupied by polytetra-
hedral aggregates (Fig. 2) as a function of packing density.
Different curves correspond to different quality of the selected
tetrahedra. Vertical lines correspond to a packing fraction of
0.646.
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FIG. 4. Fraction of hard spheres in the packing involved in
tetrahedra as a function of packing density. The inset shows a
blowup of the region in the vicinity of the limiting density.
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Delaunay simplexes [33]. If at least one of them is a
tetrahedron we count this sphere. As can be seen, the
fraction of these spheres grows with increasing density
and reaches 100% just at the limiting density. The inset
in Fig. 4 shows a blowup of the region in the vicinity of
limiting density. Upon reaching this density only a very
small fraction of spheres avoid involvement in tetrahedra.
These can be considered as rare events and omitted, as
packings with crystalline structures have about the same
number of such ‘‘not accounted for’’ spheres.

Thus, an increase in the density of a disordered packing
occurs via an increase in the number of tetrahedral con-
figurations that coalesce into irregular polytetrahedra. This
process is sustained by involving more and more spheres
into tetrahedra. However, after all spheres of the system
have been involved, a further densification would require
another mechanism to increase the density of the packing.

The performed analysis of computer models of dense
packings of identical hard spheres in a wide range of
densities demonstrates that a characteristic feature of dis-
ordered packings is their polytetrahedral structure; i.e., the
packings contain an appreciable fraction of tetrahedral
configurations that prefer to coalesce via their faces to
form locally dense aggregates of various morphology in-
compatible with translational symmetry. Such tetrahedra
are not perfect, i.e., not all spheres are in contact, and the
gaps between the neighboring spheres may be as large as
25% of the diameter. These tetrahedra coincide with the
class of quasiregular tetrahedra introduced by Hales in his
proof of the Kepler conjecture. The fraction of polytetra-
hedral aggregates grows with the density of the disordered
packing. Upon reaching the limiting density all spheres of
the packing become involved in construction of the tetra-
hedra. Any further increase in density within this ‘‘poly-
tetrahedral’’ principle of packing at this point becomes
impossible.
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