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Abstract

We investigate the origin of the Bernal’s limiting density of 64% in vol-
ume fraction associated with the densest non-crystalline phase (random
close packing limit) in equal sphere packings. To this end, we analize
equal sphere packings obtained both from experiments and numerical
simulationsuse by using a Delaunay simplexes decomposition. We show
that the fraction of ‘quasi-perfect tetrahedra’ grows with the density up
to a saturation fraction of ∼ 1/3 reached at the Bernal’s limit. Aggre-
gate ‘polytetrahedral’ structures, made of quasi-perfect tetrahedra which
share a common triangular face, reveal a clear sharp transition occurring
at the density 0.646. These results are consistent with previous findings1

concerning numerical investigations.

1.1. Introduction

Sphere packings have been used for centuries to model natural structures
both at the atomic level and at macroscopic level.2 One of the main quests
in these studies is to understand the nature of the transition between dis-
ordered and ordered-crystalline packings. It is known that for the dens-
est packing of equal spheres, the fraction of volume occupied by the balls
with respect to the total volume (packing fraction or density) is equal to

ρ√
18
≈ 0.74.2 Such maximal density can be realized in infinitely many ways,

with two common examples being the face centered cubic lattice (fcc) and
the hexagonal closed packed structure (hcp). All the maximally-dense pack-
ings are based on stacking close-packed 2-dimensional hexagonal layers of

1
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spheres. After the first and the second layers (a) and (b), there are two
possibilities for the relative location of the third layer: it can be placed
with the spheres in vertical correspondence with the ones of the first layer
(a) or in an other position (c) that differs both from (a) and (b). A layered
structure with maximal density can be built by stacking such layers in po-
sitions a, b or c with the only restriction that repetitions of two consecutive
‘letters’ (aa, bb, cc) must be avoided. The class of such maximally dense
layered packings are known as Barlow packings; named after the mid 19th
Century scientist who explored several possible stackings of spheres in an
attempt to explain the atomic origin of crystal shapes. In terms of this
‘alphabet’ the hcp and fcc structures are the two simplest sequences being
respectively: hcp = ababab... and fcc = abcabcabc... . They are the most
common crystalline structures in atomic systems, like heavy metals, solid
noble gases, and they are also commonly observed in colloids. However,
these systems can also have non-crystalline phases. These are in general
metastable states, and the atomic system will eventually relax into the
crystalline phase, which is more stable from the thermodynamic point of
view.

On the other hand, particles of non-microscopic sizes (a-thermal sys-
tems with typical sizes above 50 µm, called under the general name of
‘granular materials’) reveal a strong tendency to avoid crystallization de-
spite the fact that this is the most favorable state. To describe the nature of
such non-crystalline packings and to understand the mechanisms that pre-
vent crystallization is one of the major challenges in present day research
on packings and granular materials. Empirical studies2–7 show that such
packings can be produced at different densities in the rather broad range
between the two limiting densities 0.55 (called random loose packing) and
0.64 (called random close packing).

The fact that non-crystalline packings of equal spheres cannot be packed
tighter than the limiting density of ∼ 0.64 was observed by J.D. Bernal in
his experiments with steel balls.18 The microscopic origin of such bounding
densities is still unexplained. It is surprising that we still lack of a clear un-
derstanding of the structure of this disordered phase despite the relevance
of non-crystalline packing problems to a broad range of applied and funda-
mental issues of scientific importance. Indeed, disorder is hard to classify
as an equivalent to the ‘order parameter’ associated with the structural
properties is hard to identify. In disordered packings, each configuration
is different from the others and the overall structure is an assembly made
up of a very large number of different configurations that precisely match
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together as in a sort of jigsaw puzzle with a unique solution. On the other
hand, these disordered packing are not completely random. Indeed, they
present a very large number of repetitions: local configurations with very
similar properties are found all over the packing, but such local ‘motifs’ are
not identical and they are not positioned regularly. In these systems, tradi-
tional methods such as pair correlation function or the structure factor fail
to give a clear characterization of the three-dimensional structural organiza-
tion. Indeed, these are essentially one-dimensional measures that quantify
the occurrence of characteristic lengths. Conversely, to study these three-
dimensional structures we must identify the three-dimensional ‘motifs’ in
the atomic arrangements. To achieve this here we employ a description
of the packing based on Delaunay simplexes. These simplexes are unam-
biguously and uniquely defined for any (regular or disordered) set of points
in space. They define configurations of quadruples of ‘atoms’, and they
are the simplest elements to which a three-dimensional packing can be re-
duced. Delaunay simplexes represent a mosaic covered space of a sample,
so if we select simplexes with a given structural substance, the clusters of
such simplexes give a design on the mosaic to reveal a structural motif.8,9

Recently Delaunay simplexes were applied in studying the structure of a
large set of hard sphere packings at different densities.1 The paper consid-
ered the structure in terms of the content of the tetrahedral units (Delaunay
simplexes of tetrahedral shape) and their local arrangements. Using a tetra-
hedrality criterion, derived from that used in Hales’ recent solution of the
Kepler conjecture (which states that the densest possible packing of equal
spheres occupies 0.74% of the volume as in the Barlow packings), it was ob-
served that the volume fraction occupied by the tetrahedra increased with
increasing density of the overall packing up to the Bernal limit. At this
stage a distinct transition was was observed, with the volume fraction oc-
cupied by clusters of tetrahedra (polytetrahedra) passing through a sharp
maximum while the fraction of spheres involved in tetrahedra saturates.
The position of this maximum was estimated at 0.646.

In this work, we consider in further detail the nature of this transition by
comparing the numerical data with experimental observation. We confirm
the polytetrahedral structure of disordered packings and retrieve the drastic
behavior of the clusters of tetrahedra at the limiting density. Our results
demonstrate that the structure of packings in physical experiments is very
similar to the structure observed in ideal hard spheres packings.
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Delaunay simplexes

Fig. 1.1. Simplexes typical for dense packings of hard spheres: (a) perfect tetrahedron,
it has T=0, dt = 0, δ = 0; (b) an example of ‘a boundary’ tetrahedral shape, T ∼ 0.018,
dt ∼ dq , δ ∼ 0.25; (c) perfect quartoctahedron (a quarter of octahedron), one edge is

√
2

longer than the others, T = 0.05, dq = 0, dt = 0.179, δ = 0.41, see text.

The first step in the quest for a structural characterization is to identify
local configurations and quantify their similarities and occurrence. There
exists a general approach, used in geometry, which allows us to unam-
biguously select the closest quadruples for an arbitrary system of discrete
points. Such an approach is the Voronoi - Delaunay tessellation (decom-
position), well known both in physics10 and mathematics.11 This method
exploits an evident geometrical fact that for each point in a set of points
embedded in a given metric space it is always possible to distinguish the
portion of space closest to such a point with respect to any other point
in the set. This region is called the Voronoi polyhedron (cell, region) and
the space-partition built from the assembly of all Voronoi cells is called
the Voronoi tessellation or Voronoi diagram.11 For any Voronoi tessella-
tion, there exists a dual tessellation called the Delaunay tessellation, which
consists of Delaunay simplexes (irregular tetrahedra, in the general case)
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whose vertices are the quadruples of closest points in the set. The names of
these constructions derive from the mathematicians that posed the mathe-
matical foundations of the methods: G.F. Voronoi (1868-1908) explored in
detail the properties of these tessellations by using analytical methods for
lattice systems; whereas B.N. Delaunay (1890-1980) proved the correctness
of Voronoi’s main theorems for points positioned at random in space.12–14

Shape characterization of simplexes

In order to characterize the packing structure we first need to build a simple
instrument to measure quantitatively the shape of each simplex. Several
approaches have been suggested to characterize the proximity of a simplex
to a perfect tetrahedron.8,19–22 In this paper we will discuss three different
methods that embrace a significant range of possibilities.

Edge differences, T -measure
Let us start with a rather old and simple method in which the irregularity
of the tetrahedron is quantified by summing over the average square of the
simplex edge length differences8

T =
1

15l̄2

∑

i<j

(li − lj)
2 (1.1)

where li, lj are the lengths of the simplex edges, and l̄ is the mean edge
length. In a perfect tetrahedron all edges have equal length and T is equal
to zero. More generally, small values of T correspond to simplexes which
are close to a perfect tetrahedron. Conversely, large values of T indicate
significant deviations from regularity.

We now want to identify a bound on the value of T which defines a
class of tetrahedra that are regular enough and therefore can be considered
‘quasi-perfect tetrahedra’. In Refs.9,23 this measure was calibrated using
the models of a fcc crystal at different temperatures (at different degrees of
perturbation). It is known that this crystal structure (as any Barlow pack-
ing) can be reduced to a tiling with elementary tiles made of two perfect
tetrahedra and one octahedron. At finite temperatures they are distorted,
but as long as the crystal structure is retained the two main classes of De-
launay simplexes, tetrahedra and quartoctahedra (quarters of octahedra),
are present (see Fig. 1). As a boundary value which identifies simplexes
that are closer to perfect tetrahedra they choose Tb = 0.018. This value of
Tb divides the two classes of simplexes in the calibrating models and is the
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value which we will use in this work. This can be compared to studies with
a more physical viewpoint (see Refs.9,23), where the Delaunay simplexes,
whose shape varies within the limits 0 ≤ T ≤ Tb, are associated with the
tetrahedral configurations of atoms in heated fcc crystal.

Procrustean distance, d-measure
From the perspective of mathematical shape theory,24,25 the proximity of
an arbitrary simplex to a given reference shape is estimated by the de-
gree of coincidence upon their superposition. To this end, the total mean
square deviation d2 between the corresponding vertices of the optimally
superimposed simplexes can be calculated. The magnitude d is called the
Procrustean distance between the two simplexes. Let {x1,x2,x3,x4} and
{y1,y2,y3,y4} be the coordinates of the vertices of two simplexes. The
square of Procrustes distance between such simplexes is:

d2 = minR,t,P

{
1
4

4∑

i=1

||yi − (Rxi + t)||2
}

, (1.2)

where the minimum is calculated over all three-dimensional rotations R,
the translations t, and all possible mappings between vertices of simplexes
P . The measure d allows us to compare a simplex to any reference shape.
For instance, it is possible to calculate the distance from a given simplex
to both the perfect tetrahedron dt and to perfect quartoctahedron dq. Ac-
cording to this classification, a simplex can be considered as a ‘quasi-perfect
tetrahedron’ if its Procrustean distance to a perfect tetrahedron is less than
its distance to a perfect quartoctahedron, i.e. if the following condition is
satisfied

dt < dq. (1.3)

For a given correspondence (mapping) between vertices, it is possible to
calculate analytically the Procrustean distance and there are several algo-
rithms to solve such least squares problems. For instance, one of the most
efficient methods is based on computing the singular value decomposition
of the derived matrix (see Ref.26 for details). Note that the Procrustean
distances are a mathematically well defined distance measure, i.e. distance
between equivalent simplexes is equal to zero, and the distance measured
from simplex 1 to simplex 2 is the same as from 2 to 1. Thus the simplex
with perfect tetrahedral shape has dt = 0, and the distance between perfect
tetrahedron and quartoctahedron is equal to 0.17936.21
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Maximal edge length, δ-measure
A very simple but effective way to determine how close an irregular sim-
plex is to a perfect tetrahedron consists of calculating the length of the
maximal edge emax. This method of selecting tetrahedral simplexes was
used by Hales in his proof of the Kepler conjecture.22 This approach seems
especially suitable for identical hard spheres of unit diameters, where the
minimal possible length of the simplex edge is 1. In this case, a value of
emax close to 1, unequivocally indicates that all edges are close to 1 and
therefore the simplex is close to a regular tetrahedron. A convenient mea-
sure of the simplex shape is therefore the difference between the lengths
of the maximal and the minimal edges: δ = emax−1.1 Small values of δ

unambiguously indicate that the shape of the simplex is close to a per-
fect tetrahedron, while large values correspond to substantially distorted
shapes. In the proof of the Kepler conjecture, Hales chose the maximal
edge length 1.255 as the upper boundary for ‘quasi-perfect tetrahedra’. In
our notation this corresponds to δ = 0.255. It is important to remark that
the δ-measure is strictly related to the two previous measures.

One can verify that for dense packings of hard spheres all these measures
pick practically the same tetrahedral simplexes. For disordered packing at
density 0.64 we estimated that the conditions T < 0.018 and δ < 0.255
select the same simplexes with an overlap of 95%, and the coincidence
rate increases with the onset of crystallization. Thus each of the measures
reliably picks tetrahedra with shapes close to perfection. Some ambiguity
is observed only for simplexes with boundary shapes, which are not critical
for our analysis.

1.2. Models

Computer simulations of sphere packings
We study a large series of hard sphere packings with packing densities
ranging from 0.53 to 0.71. Each packing contains 10000 hard spheres of
equal radii in a box with periodic boundary conditions. The majority of
the packings (more than 200) were obtained using a modified Jodrey-Torey
algorithm that employs “repulsion” of overlapping spheres with gradual re-
duction of their radii.27–29 The initial configuration is a set of identical
spheres uniformly distributed in the box. Overlapping of spheres is per-
mitted at this stage. The algorithm attempts to reduce overlaps between
spheres by shifting overlapping spheres and gradually shrinking of the radii.
This is continued until all overlaps vanish. This algorithm can easily pro-
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duce not only disordered packings with densities up to the limiting value,
but also more dense systems containing crystalline structures. It can lead
easily to packings of a density of around 0.66. For higher densities, the
result of an earlier run is used as a starting configuration, where the diam-
eters are enlarged. This procedure can be repeated several times. In order
to test the independence of structure on the algorithms used for packing
generation we also computed a series of packings (about 70) in the range
of densities from 0.54 to 0.67 by using the Lubachevsky-Stillenger algo-
rithm.30 This algorithm employs a different procedure for densification of
the packing. The initial configuration of spheres in this case is also random,
however no sphere overlaps are permitted. The simulation then proceeds
via event driven Newtonian dynamics in which the spheres are considered
perfectly elastic. The radii of the spheres is gradually increased until a final
“jammed configuration” is obtained. A principal control parameter of this
algorithm is the growth rate for sphere radii. Small values of growth rates
will result in crystallization as it is well-known for “physical” simulations of
hard spheres.31,32 To avoid crystallization the growth rate should be rather
large, forcing the packing into “jammed” non-crystalline structures.33,34

Physical experiments with sphere packings
We tested the numerical results over a set of 6 experiments from a database
of sphere packings obtained by X-ray Computed Tomography of large sam-
ples of disorderly packed mono-sized spheres. The experimental technique
and some results were presented in detail in.7,15,16 These studies are the
largest and the most accurate empirical analysis of disordered packings
ever performed. At present, the entire database collects the coordinates
(with precision better than 1% of the sphere diameters) of more than three
million spheres from 18 samples of monosized acrylic and glass spheres pre-
pared in air and in fluidized beds. The sample densities range from 0.56 to
0.64. In this work we will refer to samples A (ρ ∼ 0.586), B (ρ ∼ 0.596),
C (ρ ∼ 0.619), D (ρ ∼ 0.626), E (ρ ∼ 0.630) and F (ρ ∼ 0.640). These
samples are composed of acrylic beads in air contained within a cylindrical
container.7,15,16 The geometrical investigation of the packing structure was
performed over a central region at 4 sphere-diameters away from the sample
boundaries.
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1.3. Results

Fraction of quasi-perfect tetrahedra
For each packing from our set of models and experiments we calculate all the
Delaunay simplexes and selected the quasi-perfect tetrahedra shapes. Fig.
2 shows how the fraction of such tetrahedra depends on the packing density.
One can verify that the general behaviors are comparable for all three
measures of shape described above. Only the Procrustean distance (dt <

dq) tends to overestimate the fraction of tetrahedra at low densities. Indeed,
this criterion can pick rather distorted simplexes that are far away from
perfect tetrahedron, but are even farther from perfect quartoctahedron.
Note each point on a curve represents an independent packing. The good
coincidence of points at similar densities illustrates the representativeness
of our computer models and highlights the agreement between experimental
and numerical results.

The fraction of tetrahedra rapidly grows with increasing density, reach-
ing about 30% when approaching the critical value ρ ∼ 0.646. Interestingly,
further increase of the density has little effect on the fraction of tetrahedra.
Note that the fraction of quasi-perfect tetrahedra at ρ ∼ 0.646 is close to
1/3, which corresponds to the fraction of perfect tetrahedra in the Bar-
low packings. Such a coincidence of the fraction of quasi-perfect tetrahedra
with the ones in the densest crystalline structure deserves special attention,
as this can shed light on the physical meaning of the class of quasi-regular
tetrahedra. However the problem is not simple: the question is what is
the maximum fraction of tetrahedra which can be present in a dense dis-
ordered packing of equal spheres. It seems reasonable to conjecture that
the fraction of 1/3 is an upper bound. However, a recent work17 seems to
suggest that some classes of tetrahedral packings might reach larger frac-
tions. Note also the body centered cubic (bcc) crystal consists of Delaunay
simplexes which are all quasi-regular tetrahedra according to our criteria
(Tbcc = 0.011, δbcc = 0.15). The fraction of tetrahedra depends also on the
softness of the spheres. For instance, we have found that up to 40% of the
tetrahedrons in a LennardJones glass can be of the concerned quality.

Fraction of polytetrahedral aggregates
We have established that in disordered packings of equal sized spheres there
is a rather large fraction of quasi-perfect tetrahedra which increases during
densification and reaches a plateau around 30% when the limiting density
is overcome. We now want to understand how these quasi-perfect tetrahe-
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Fig. 1.2. Fraction of Delaunay simplexes with tetrahedral shape as a function of pack-
ing density. Different curves correspond to different methods for selecting tetrahedra.
From top to bottom: dt < dq , δ < 0.255, T < 0.018. Large symbols corresponds to
experiments. For simplification of the picture, only two methods are shown: dt < dq

(large circles) and δ < 0.255 (large triangles). Vertical line marks the limiting density
η = 0.646. Horizontal line marks the value of 1/3 that corresponds to the fraction of
tetrahedra in the densest crystals.

dra can aggregate in more complex structures. We consider clusters built
from three or more face-adjacent quasi-perfect tetrahedra and we call such
structures polytetrahedra.1,35 Isolated tetrahedra and pairs of tetrahedra
(bipyramids) are omitted as they are found in fcc and hcp structures. We
can associate a graph to such polytetrahedra aggregates. In such a graph
a vertex represents the centre of a quasi-perfect tetrahedron and a seg-
ment between two vertices is inserted when two quasi-perfect tetrahedra
are sharing a face. Fig. 3 shows some of these graphs for local sphere
packing configurations. In general, such graphs have the form of branching
chains and five-edges cycles which combine in various “animals”.9,35 Math-
ematically speaking such a presentation of clusters of the selected Delaunay
simplexes is called site-coloring on the Voronoi network. Indeed, because of
the duality of the Delaunay and Voronoi tessellations, the center of any De-
launay simplex is a vertex of the Voronoi network, and a common segment
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Fig. 1.3. Examples of polytetrahedral aggregates (clusters of face-adjacent tetrahedra).
(a) three tetrahedra, b) a ring of five tetrahedra, c) a typical cluster for a dense disordered
packing. The lower row shows the motives of the tetrahedra in clusters: the points mark
the centers of tetrahedra and the lines indicate that they are adjacent through a common
face. For cluster c) a skeleton of the graphs is also shown (dead ends are cut off).

is a Voronoi network edge connecting the neighboring vertexes.8,10

For disordered packings at low density a rapid growth is also observed
(See Fig. 4). Upon approaching the Bernal’s critical density, the fraction
of polytetrahedral aggregates also account for about 30% of all Delaunay
simplexes. However, after the critical density the fraction of the tetrahe-
dra belonging to polytetrahedral aggregates sharply decreases. This is a
consequence of the formation of crystalline nuclei.

Fig. 4 clearly demonstrates the polytetrahedral nature of disordered
hard sphere packings. Thus we can say the transition from a lower den-
sity to higher density packing occurs via increasing the fraction of quasi-
perfect tetrahedral configuration and their coalescence into polytetrahedral
aggregates. At the limiting density ρ ∼ 0.646 the fraction of quasi-perfect
tetrahedra reaches its maximum. Above this point the polytetrahedral
aggregates get gradually disassembled. This is a result of changing of the
densification mechanism, i.e. crystalline nuclei where only single tetrahedra
and bipyramids begin to appear. A reason why the mechanism of densifi-
cation can be changed was explained in.1 At this density all spheres in the
packing have been involved into the formation of tetrahedra. So a process
of densification by means of formation of polytetrahedral nuclei becomes
exhausted.
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Fig. 1.4. Fraction of tetrahedra which are also part of polytetrahedra aggreagates vs.
packing density. The behavior of these curves is quite different from the curves in Fig.
2.

Fig. 5 demonstrates spatial distribution of polytetrahedral clusters in-
side our samples at density 0.64. For simplification of the pictures only
skeletons of the clusters (see Fig.3) are shown. Thus, after elimination of
lineal clusters and cutting off all dead ends of the clusters, we see mainly ag-
gregates of five-member rings. This picture reveals a “5-symmetry nature”
of the disordered packings discussed by Bernal in his work.18 Visual analy-
sis of these clusters shows that they are rather irregular. Note there are no
clusters like dodecahedron (twelve 5-member faces) which could correspond
to icosahedral local configurations of spheres. This fact is an additional ar-
gument that “icosahedral local order” is not typical for disordered packings
of identical atoms.36–38 Note that we do not observe practically any 6-
member rings, although our class of tetrahedra allow distortions of shape
to organize such rings (e.g. a part of the Delaunay simplexes in the bcc
structure are arranged in such rings). In disordered packings, 6-member
rings of tetrahedra seem not to be preferable.
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Fig. 1.5. Illustration of spatial distribution of the polytetrahedral clusters in packings
of hard spheres at 0.64 in computer (left) and mechanical models (right). To simplify
pictures only skeletons of the polytetrahedra are shown, see Fig.3. Tetrahedral simplexes
are selected according the measure T < 0.018.

1.4. Conclusion

We performed shape analysis of Delaunay simplexes for dense packings of
identical hard spheres in a wide range of densities. Particular attention
was focused on tetrahedral configurations of spheres, which are the charac-
teristic feature of all dense disordered packings of spherical particles. We
confirm the polytetrahedral structure of disordered packings and the dras-
tic behavior of clusters of tetrahedra at Bernal’s limiting density (0.646).
In disordered packings the tetrahedra prefer to coalesce via their faces to
form locally dense aggregates (polytetrahedra) of various morphology. The
important properties of such aggregates are, on one hand, their rather high
local density, and on the other hand their incompatibility with crystalline
structures. (In crystals they contact at edges or are organized in bipyra-
mids). The fraction of polytetrahedral aggregates grows with the density
of the disordered packing. Upon reaching the limiting density all spheres
of the packing become involved in construction of the tetrahedra. Any fur-
ther increase in density within this “polytetrahedral” principle of packing
at this point becomes impossible. To reach higher density the “crystalline”
principle has to be engaged.

To study the sharp structural transitions considered in this work it is
important that the basic tetrahedra not perfect, i.e. not all spheres of
the considered tetrahedral configurations contact each other, and the gaps
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between the neighboring spheres may be as large as δ ∼ 25% of the diameter
of the sphere. These tetrahedra coincide with the class of quasi-perfect
tetrahedra introduced by Hales.

We also compared other measures to select tetrahedra. Specifically, we
used the rather old measure of tetrahedrality (summing over the average
square of the simplex edge length differences) and the Procrustean dis-
tance from mathematical shape theory. All measures demonstrate similar
efficiency, i.e. all of them select practically the same simplexes. The class
of selected tetrahedra, from the physical viewpoint, is those Delaunay sim-
plexes whose shape varies within the limits as the tetrahedral configurations
in heated fcc crystal.

It was demonstrated that the structure of packings in experiments is
very similar to the structure of ideal hard spheres with no friction. This
seems to indicate that the structure of dense matter is determined first of
all by impenetrability of atoms, and ultimately by geometric properties of
the packings of non-overlapping spheres in thee-dimensional space.
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