Reversible modification of magnetic properties of Fe3C nanoparticles by chemisorption of CO 
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1. Introduction

The development of nanoscience and nanottechnology has resulted in various application of magnetic nanoparticles including magnetic targeting in drug delivery [1, 2], medical imaging [3, 4], gas sensing [5]. There is an enormous potential for the applications of nanoparticles in magnetic storage technology [6, 7]. The nano-size particles are of significant importance for the high-density magnetic recording [8 - 11]. If the medium density is to reach the value of 100 Gb/in2 or higher, the required magnetic grain size has to be about 10 nm or smaller [12]. The attractive properties of magnetic nanomaterials are enhanced coercivity [13] and magnetization [14 - 16] as well as superparamagnetism [17, 18] as the dimension approaches the nanoscale region. Magnetic nanoparticles embedded in nonmagnetic host materials, including carbon structures, are of interest because embedding provides encapsulation and prevents grain growth and agglomeration [19]. Fe3C nanoparticles have attracted a special attention due to the enhanced magnetic properties and diverse technological applications [20 - 27]. Important is that Fe3C particles are more resistant to oxidation than iron nanoparticles.
Generating microscopic magnetic patterns on the surfaces of nanoparticles is one of the goals of the modern nanotechnology development [28]. It is now well established that the particle magnetism can be changed essentially by the adsorption of gases [29-36]. The majority of the literature contributions on this subject is devoted to the chemisorption of H2, CO, O2 on Ni nanoparticles. It is shown that the adsorbed carbon monoxide reduces magnetic moments of Ni particles [30 - 33] due to the demagnetisation of individual atoms on Ni surface [28]. The adsorption of H2 and O2 on Ni surface may result in both decrease [30, 34] or increase [30, 35] of particle magnetisation. The adsorption of hydrogen on Fe clusters increases the magnetic moments of clusters substantially [36] and that of CO on cobalt clusters decreases the magnetization [29]. Unfortunately there is a lack of experimental data about the influence of gas adsorption on the magnetism of Fe3C nanoparticles.

The method of Electron Spin Resonance (ESR) is very sensitive to the properties of magnetic nanoparticles [37] especially to the modification of those by the gas adsorption [38]. That is why this techniques is widely used for the Fe3C magnetism investigation [20 - 22, 39, 40] 
This paper is devoted to the ESR and magnetic measurements of Fe3C nanoparticles covered by a carbon structure. A special attention is paid to the changes of magnetic properties due to the particle interaction with CO and O2.
2. Experimental
The samples of Fe3C nanoparticles coated with carbon were prepared by co-pyrolysis of C3H8 + Fe(CO)5 diluted by Ar at atmospheric pressure. A flow quartz reactor (the inner diameter was 3.0 cm) with the outer resistive heating was used. The inlet molar fractions for propane and iron pentacarbonyl were, respectively, 6.0×10-2 and 1.8×10-5. The propane and iron pentacarbonyl decomposition degree were analysed by the gas-chromatography and IR spectrometry, respectively. The reactor operated at the inlet flow rate of 8 cm3s-1 (at STP) and temperature 1280 K which corresponded to the residence time 5.1 s and complete decomposition of C3H8 and Fe(CO)5. The pyrolysis resulted in aerosol particle formation which were sampled thermophoretically at the outlet of reactor to be analyzed by a Transmission Electron Microscope (TEM) JEM – 100SX and a High Resolution Transmission Electron Microscope (HRTEM) JEM – 2010. The phase composition studied by means of the X-ray diffraction (XRD) using a diffractometer URD-63 (CuK( radiation). The ESR measurements were carried out using X-band spectrometer Bruker ESP 300 at room temperature. The magnetic measurements were carried out by a vibration magnetometer SQUID MPMS XL (Quantum Design). XRD samples as well as samples for ESR and magnetic measurements were obtained collecting the aerosol particles by a high efficiency aerosol filter. In the case of ESR analysis the deposit was detached from the filter and put to a quartz test tube.
3. Results and discussion
A typical TEM images of particles sampled at the reactor outlet are shown in Fig. 1. The only phase observed by the XRD method was Fe3C (see Fig. 2). The high contrast regions (see insert in Fig. 1) are Fe3C particles, while the low contrast matter is carbon. One can see that there are small Fe3C nanoparticles (of size from a few to a few tens nanometer). In more detail the structure of sampled particles is shown in Fig. 3. There are graphite-like layers of carbon adjoining the Fe3C particles. However, the main part of carbon is amorphous. 
Fig. 4 compares ESR and magnetic measurements data. The ESR spectrum from the as-prepared sample is demonstrated in Fig. 4a. One can see the line from carbon radical centers (g = ge) marked as “Carbon” and other broad lines which are related to the Fe3C phase. The ESR spectrum has changed essentially after the sample being treated by the water vapor (at T = 723 K, PH2O = 20 Torr, exposure time t = 1 hour) or CO (at T = 573 K, PCO = 4 Torr, t = 2 hours), see Figs. 4 b and c. Note, the water exposure at T = 723 K has resulted in the sample treatment by CO which was formed via the reaction H2O + C ( CO + H2. On the other hand, the CO exposure has resulted in the strong decrease of ferromagnetism of the sample (compare Figs 4e and f). The further air exposure of this sample during 10 days has restored the magnetization up to the initial value of 0.2 Gs cm3g-1 (see Fig. 4g), and the ESR spectrum has become about the same as the initial one (Figs. 4a and d). 
Thus, there is no correlation between the ESR spectra and the specific magnetization curves. Therefore we assume that the ESR signals are not related directly with the ferromagnetism of Fe3C particles. On the other hand, the spectrum observed can not be attributed to the paramagnetic resonance from Fe0 or Fe2+ isolated ions, because these species have a very short relaxation time at the room temperature i.e. the line width is very broad to observe the ESR spectrum. The concentration of Fe3+ ions is negligible in the sample under consideration, because the sample was synthesized in a highly reducing medium. Therefore, we attribute the ESR signals to superparamagnetic Fe3C particles. The chemisorbed CO has demagnetized the surface layers of Fe3C particles resulting to the transition of some of Fe3C nanoparticles from ferromagnetic to superparamagnetic state and other particles from superparamagnetic to paramagnetic state. The following air exposure has removed CO from the surface and restored the magnetization. 
TEM and HRTEM images (Figs. 1, 2) support the assumption that the ESR signals are caused by superparamagnetic Fe3C particles demonstrating the presence of small particles with the size of about 10 nm. The strong increase of the ESR spectrum intensity at low magnetic field (see. Fig. 4 a – d) also supports the assumption. As known this strong increase is typical for the superparamagnetic resonance [41] as in contrast to the ferromagnetic one. Besides, as seen from Fig. 4g the coercitivity is quite different from that of the initial sample (Fig. 4e); it can be explained by the superposition of the ferromagnetic and superparamagnetic states only. (Note, the coercitivity for the superparamagnetic state is equal to zero).
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Figure Captions
Fig. 1. Typical TEM images of the samples used in magnetic and ESR measurements

Fig. 2. XRD spectrum from Fe3C phase being a constituent of samples formed by co-pyrolysis of C3H8 and Fe(CO)5 diluted by Ar.
Fig. 3. High Resolution TEM image of Fe3C – Carbon particles sampled at the reactor outlet.
Fig. 4. ESR spectra (a – d) and specific magnetization curves (e-g); a, e – as-prepared sample; b – treated by water vapor, c, f – treated by CO, d, g – exposed to the air during 10 days.
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Fig. 1. Typical TEM images of the samples used in magnetic and ESR measurements
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Fig. 2. XRD spectrum from Fe3C phase being a constituent of samples formed by co-pyrolysis of C3H8 and Fe(CO)5 diluted by Ar.
[image: image4.wmf]-20000

-10000

0

10000

20000

-0.2

-0.1

0.0

0.1

0.2

s

(Gs cm

3

/g)

 

 

T=5K

0.08

H(Oe)

2500


Fig. 3. High Resolution TEM image of Fe3C – Carbon particles sampled at the reactor outlet.
[image: image5.wmf]0

1000

2000

3000

4000

5000

´

 2.0

3

3

2

2

1

1

1

H / Oe

Carbon

1

2

3


[image: image6.jpg]100 nm




� EMBED Origin50.Graph  ���





g





e





f





a





b





c





d





� EMBED Origin50.Graph  ���





� EMBED Origin50.Graph  ���





� EMBED Origin50.Graph  ���





� EMBED Origin50.Graph  ���





Fig. 4. ESR spectra (a – d) and specific magnetization curves (e-g); a, e – as-prepared sample; b – treated by water vapor, c, f – treated by CO, d, g – exposed to the air during 10 days.
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