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Evaluation of surface tension and Tolman length as a function of droplet
radius from experimental nucleation rate and supersaturation ratio:
Metal vapor homogeneous nucleation
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Zinc and silver vapor homogeneous nucleations are studied experimentally at the temperature from
600 to 725 and 870 K, respectively, in a laminar flow diffusion chamber with Ar as a carrier gas at
atmospheric pressure. The size, shape, and concentration of aerosol particles outcoming the
diffusion chamber are analyzed by a transmission electron microscope and an automatic diffusion
battery. The wall deposit is studied by a scanning electron microscope �SEM�. Using SEM data the
nucleation rate for both Zn and Ag is estimated as 1010 cm−3 s−1. The dependence of critical
supersaturation on temperature for Zn and Ag measured in this paper as well as Li, Na, Cs, Ag, Mg,
and Hg measured elsewhere is analyzed. To this aim the classical nucleation theory is extended by
the dependence of surface tension on the nucleus radius. The preexponent in the formula for the
vapor nucleation rate is derived using the formula for the work of formation of noncritical embryo
�obtained by Nishioka and Kusaka �J. Chem. Phys. 96, 5370 �1992�� and later by Debenedetti and
Reiss �J. Chem. Phys. 108, 5498 �1998��� and Reiss replacement factor. Using this preexponent and
the Gibbs formula for the work of formation of critical nucleus the dependence of surface tension
on the radius RS of the surface of tension is evaluated from the nucleation data for above-mentioned
metals. For the alkali metals and Ag the surface tension was determined to be a strong function of
RS. For the bivalent metals �Zn, Hg, and Mg� the surface tension was independent of radius in the
experimental range. A new formula for the Tolman length � as a function of surface tension and
radius RS is derived by integration of Gibbs-Tolman-Koenig equation assuming that � is a
monotonic function of radius. The formula derived is more correct than the Tolman formula and
convenient for the elaboration of experimental data. Using this formula the values of � are
determined as a function of RS from the experimental nucleation data. It is determined that all the
metals considered are characterized by strong dependence of � on radius; for the bivalent metals �
changes sign. © 2006 American Institute of Physics. �DOI: 10.1063/1.2140268�
I. INTRODUCTION

The thermodynamic properties of interphase surface are
fully characterized by a state function which is called surface
tension �. Therefore, when studying the colloid systems �for-
mation process, thermodynamic stability, aging, etc.� the
knowledge of surface tension as a function of droplet radius
R is strictly necessary. In this paper we determined ��R�
from the experimental data on Zn and Ag vapor homoge-
neous nucleations.

Our modern understanding of interfacial thermodynam-
ics has its origins in the Gibbs theory of surface tension.1

This theory considers a fluid maternal phase with i compo-
nents and another fluid phase �with the same i components
within it� being in equilibrium with the maternal one. This
system is substituted to a hypothetical system composed
of two homogeneous bulk phases �maternal phase � and
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another phase �� and a dividing surface, at the certain posi-
tion. The key parameter in the Gibbs theory is surface ten-
sion � attributed to a so-called surface of tension. The criti-
cal nucleus �i.e., the embryo which is in equilibrium with the
maternal phase� is often extremely small in size so that the
homogeneous bulk properties are not attained even at its cen-
ter, but interfacial thermodynamics remains valid. The
chemical potential of the bulk phase � is the same as that of
the critical nucleus and the difference in pressure and com-
position between the nucleus and the phase � is incorporated
in the value of the surface tension. Thus, to describe the
thermodynamics of the interfacial system one should only
know the surface tension and the location of the surface of
tension.

In the case of spherical symmetry one can denominate
the radius of the surface of tension RS. As follows from the
Gibbs theory the surface tension is a function of curvature.
This dependence on curvature is governed by the Gibbs-

2,3
Tolman-Koenig �GTK� differential equation:
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d�ln ��RS��
d�ln RS�

=
�2��RS�/RS��1 + ���RS�/RS� + 1

3 ���RS�/RS�2�
1 + �2��RS�/RS��1 + ���RS�/RS� + 1

3 ���RS�/RS�2� , �1�

where ��RS� is the so-called Tolman length which in the case
of single-component system is equal to

��Rs� = Re − RS, �2�

Re is the radius of the equimolar surface. Equation �1� may
be written via the superficial density � of matter at the
boundary between the phases � and � �computed with re-
spect to the surface of tension�,2

d�ln ��RS��
d�ln RS�

=
2�m

RS��
�1 +

2

RS

�m

��
�−1

, �3�

where �� �g/cm3� is the difference between the densities of
phases � and �, and m is the mass of molecules. If the
function ��RS� is known it is possible to solve Eq. �1� and
determine the function ��RS�. On the other hand, Eq. �2�
gives the relationship between RS and the real radius Re; the
last radius can be measured directly in the experiment.

Tolman believed2 “that � will be reasonably constant
over a wide range of droplet sizes since it measures the dis-
tance between two surfaces whose separation is presumably
closely connected with intermolecular distances in the liq-
uid.” Therefore, Tolman has solved the Eq. �1� treating � as a
constant and neglecting the terms � /RS and �2 /3RS

2 in com-
parison with unity. This simplification resulted in Tolman’s
formula:

��RS� = ���1 +
2�

RS
�−1

, �4�

where �� is the surface tension for planar interface. How-
ever, the last two decade papers �see, for example, Refs. 3–9�
showed by numerical calculations that even for the simplest
systems such as the Lennard-Jones �LJ� and Yukawa fluids as
well as regular solutions � strongly depends on the drop size.
Thus, Tolman equation �4� is not correct. Recently Bartell6

has derived an approximate equation which described good
enough the LJ systems,

��RS� �
k

RS
− �� =

k

RS
− 	��, �5�

where 	 is the isothermal compressibility of the liquid, k is
an undetermined integration constant depending upon physi-
cal properties of the system, and 	�� is a fundamental length
that is only weakly dependent on the nature of liquids10,11 to
be equal to 	���0.05a, where a�3–5 Å. The important
features of Eq. �5� are � is negative in sign and close to zero
at large radiuses, and at small radiuses � is a strong function
of RS.

Thus, the surface tension and the dependence of surface
tension on curvature for the real systems are of primary in-
terest in the interfacial thermodynamics. One of the possibili-

ties to get an information on the surface tension is to extract
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it from the homogeneous nucleation rate. The expression for
the nucleation rate defined as a number of critical nuclei
formed per unit volume per unit time is

I = K0 exp�−
Wcrit

kBT
� , �6�

where kB is the Boltzmann constant, T is temperature, and
Wcrit is the minimum work required to form a critical
nucleus. As follows from the Gibbs theory of capillarity,1

Wcrit =
4
RS

2��RS�
3

. �7�

The formula used in the classical nucleation theory
�CNT� is not expression �7� but uses �� instead of ��RS� and
Re instead of RS which is a rough approximation. However,
CNT has had a considerable success in predicting �usually
qualitatively� the experimental supersaturations required to
initiate homogeneous nucleation for a wide range of molecu-
lar fluids �see, for example, Refs. 12 and 13�. Nevertheless,
the theory is frequently in error when predicting actual
nucleation rates.14–16 In many experiments it was found that
predictions of CNT differed from experimental by several
orders of magnitude.17–21

The preexponential factor in Eq. �6� can be presented for
the single-component system as:22

K0 = 2Re
2n1

2�Y/m�1/2, �8�

where

Y = − �d2W

dg2 �
g=gcrit

, �9�

and n1 is concentration of single molecules in vapor �cm−3�,
g and gcrit are numbers of molecules in the droplet and criti-
cal droplet, respectively, and W is the reversible work of the
formation of a noncritical droplet. Thus, to evaluate K0 one
should know W. One should note again that CNT uses ��

and Re instead of ��RS� and RS, respectively, when estimat-
ing W and Y which results in the following preexponential
factor:22

K0
CNT = n1

2�2m��




1

�
, �10�

where � �g/cm3� denotes the density of the incompressible
bulk phase �.

Recently Nishioka and Kusaka23 and Debenedetti and
Reiss24 have extended the Gibbs treatment to noncritical
nucleus by introducing a constraint that prevents the free
transfer of matter between the embryo and the mother phase.
Due to this constraint the embryo of arbitrary size can be
considered as to be in equilibrium with the vapor phase. This
formalism results in a new expression for the reversible work
W of noncritical embryo formation the extrema conditions
for which give Gibbs formula �7�. The new expression for W
gives the possibility to determine the value Y in �8� and,
consequently, the rigorous expression for the nucleation rate.

On the other hand, the rigorous expression for this rate gives
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the direct possibility to retrieve the surface tension ��RS� and
the radius of the surface of tension from the experimentally
measured nucleation rate.

It is accepted now that a correction factor in the preex-
ponent taking into account the Brownian motion of the clus-
ter is necessary. The Lothe and Pound theory gave the cor-
rection factor 1014–1017 �see Refs. 25–27�. Reiss et al.28 have
argued that a careful calculation has led to an additional fac-
tor, but this coefficient is many orders of magnitude smaller
than the Lothe and Pound factor. In the later paper29 Reiss
et al. have derived the expression for this correction factor
KR,

KR �
1

Sn1
sat�kBT	vg

, �11�

where n1
sat is the saturated vapor concentration �cm−3�, S is

the supersaturation ratio, and vg=4
Re
3 /3 is the volume of

the drop. The value of this factor varies in the range of
103–107 for typical systems studied in the literature such as
H2O, alcohols, saturated hydrocarbons, alkali metals �Li, Na,
and Cs�, and bivalent metals �Zn, Hg, and Mg�. For Ag �Ref.
19� the correction factor is KR�1011.

Metals are qualitatively different than molecular liquids
due to the delocalized electrons in the bulk phase. The mo-
bile electrons result in the oscillating dependence of cluster
energy on the cluster size which gives relatively high con-
centration of magic size clusters with respect to antimagic
ones.30 This magic size effect gives an additional correction
factor of about three orders of magnitude to the rate of nucle-
ation. However, as it will be discussed in Sec. IV C this
additional correction factor leads to a small error in the
evaluation of the droplet surface tension. Therefore, taking
into account the fact that there is still some uncertainty in the
replacement correction factor KR this magic size effect is out
of the scope of this paper.

Thus, using Eqs. �6�, �8�, �9�, and �11� and the expres-
sion for W by Nishioka and Kusaka23 and Debenedetti and
Reiss24 one can evaluate the work of formation of critical
nucleus from the experimentally measured nucleation rate at
known temperature and supersaturation ratio. Then, using
Gibbs formula �7� and the Kelvin equation:23

ln S =
2��RS�m
kBT�RS

, �12�

one can determine the radius RS of the surface of tension and
the surface tension ��RS� of critical nucleus.

This work is aimed at the evaluation of surface tension
as a function of droplet radius for metals. In principle, the
total cluster energy and surface tension can be determined by

ab initio calculations for sufficiently large basis sets, but
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these calculations are nonrealistic for large enough clusters
especially for heavy metals with many electrons and relativ-
istic cores. However, just recently a paper30 was published
where the authors have used the jellium model which treats
the atomic nuclei in the cluster and core electrons as uniform
charge distribution providing a symmetric potential well for
the valence electrons. These valence electrons were treated
as an ideal Fermi gas moving in a spherical potential. It was
found that the jellium model is able to evaluate the cluster
energy for monovalent metals �Groups 1 and 11 of the Peri-
odic Table�. Treating this energy as free energy the nucle-
ation onset pressure was calculated and a reasonable agree-
ment with the experimental data for the alkali metals Li, Na,
Cs, and Ag was found. Thus, the droplet energy and as a
consequence surface tension can be estimated for alkali met-
als but this jellium model is not applicable for the higher
valence metals.30 Therefore, the only possibility to determine
surface tension and the location of the surface of tension for
multivalent metals droplets is to retrieve it from the experi-
ment. In this paper we determined experimentally the nucle-
ation rate and supersaturation at a known temperature for Zn
to extract the droplet surface tension as a function of radius
RS. Besides, we elaborated other papers nucleation results for
Li,18 Na,31,32 Cs,33–35 Ag,19 Hg,36 and Mg �Ref. 37� to deter-
mine differences and common tendencies for the droplet sur-
face tension and Tolman length.

II. EXPERIMENT

The main experimental results were obtained for Zn va-
por nucleation. For comparison some measurements for Ag
vapor nucleation were also done. Further in this section we
will mainly describe the experimental procedure for Zn sys-
tem. The data for Ag nucleation were obtained in the same
manner as for Zn. The experiments on Zn and Ag vapor
nucleations were carried out in a horizontal laminar flow
diffusion chamber �Fig. 1�. The nucleation chamber con-
sisted of a horizontal quartz tube with the inner diameter of
dch=1.2 and 1.4 cm in cases of Zn and Ag, respectively, and
an outer oven. A flux of Ar was supplied to the inlet of the
tube. Before entering the diffusion chamber the gas passed
through a high efficiency Petrianov aerosol filter.38 The Ar
flow rate was 17 cm3/s �at room temperature and atmo-
spheric pressure�. There was a saturation isothermal zone in
the chamber where a crucible with metal was put �to create
saturated vapor pressure� and a supersaturated vapor zone
�temperature decrease zone�, where the temperature was
dropping down along the flow. In the last zone the vapor
supersaturation S increased with the axial coordinate Z. Fi-
nally, at some coordinate the supersaturation reached the

FIG. 1. Scheme of the laminar flow diffusion chamber.
critical value resulting in homogeneous nucleation. The satu-
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ration zone temperature in Zn vapor experiments was varied
in the range Tsat=750–900 K. A typical temperature profile is
presented in Fig. 2. The axial and wall temperatures were
measured by a K-type thermocouple. We assume that the
vapor pressure was equal to the saturated vapor pressure in
the saturation zone. This assumption was supported by the
fact that there was a mirrorlike deposit at the beginning of
temperature decrease zone testifying that a small decrease of
temperature beyond the saturation temperature resulted in
vapor supersaturation and as a consequence in wall vapor
deposition. Another support to our assumption of vapor satu-
ration is the independence of the experimental results on the
metal surface area in the crucible.

The size and shape of Zn nanoparticles coming out of
the diffusion chamber were studied by a transmission elec-
tron microscope �TEM�. The sampling for TEM was carried
out thermophoretically. The particles were deposited on an
electron microscopy grid covered with polyvinyl formal film.
The morphology of wall deposit was studied by a scanning
electron microscope �SEM�. To this end a thin quartz fila-
ment of diameter of 0.1 cm was fixed longitudinally on the
inner surface of the diffusion chamber before the nucleation
experiment. The experiment was held at a constant flow and
temperature during time of 30–200 min. After the run the
filament covered by the Zn deposit was removed from the
flow chamber, cut to pieces, and the surface of these pieces
was analyzed by SEM. Besides, the particle size spectrum
and number concentration for the aerosol coming out of the
diffusion chamber were measured by an automatic diffusion
battery �ADB� coupled with a condensation nucleus
counter.39 This device is able to measure aerosol concentra-
tion in the range of 101–109 cm−3 and particle size distribu-
tion in the range of 2–200 nm.

III. RESULTS

Figure 3 shows aerosol number concentration and mean
particle diameter as measured by the ADB at the outlet of the
diffusion chamber for different saturation temperatures. Fig-
ure 4 demonstrates TEM images of particles sampled at the
chamber outlet at different saturation temperatures. The par-
ticles seem to be crystalline. They have regular geometric

FIG. 2. Temperature profile in the laminar flow diffusion chamber.
shape; some particles have shapes of a stick. This regular
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shape is typical for aerosol particles of Zn and other
metals.40 Figure 5 demonstrates examples of Zn particle size
spectra determined by the ADB measurement and TEM im-
age elaboration.

The analysis of Zn deposit formed at the surface of
quartz filament inserted to the diffusion chamber showed that
there are two distinctly separated deposition zones character-
ized by a smooth and a powderlike deposit, respectively �Fig.
6�a��. The nucleation rate is a strong function of supersatu-
ration ratio; thus, we suppose that the position of border
between the smooth and powderlike deposits corresponds to
the zone of sharp increase of the nucleation rate. Figure 6�b�
shows the deposit image for low deposition time and tem-

FIG. 3. Zn particle outlet concentration and mean diameter dm �circles� vs
vapor saturation temperature Tsat in the flow diffusion chamber �automatic
diffusion battery measurements�. The square symbol shows the mean diam-
eter of particles deposited to the wall at the nucleation zone �SEM data�.

FIG. 4. TEM images of Zn particles sampled at the outlet of diffusion

chamber. Vapor saturation temperature Tsat=780 �a� and 860 K�b�.
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perature. The border between the powderlike and smooth
deposits is denoted by the coordinate Z2. The smooth deposit
�before Z2� is formed by single particles and vapor deposi-
tion; the powderlike deposit consists of aggregates formed at
the surface due to the overdeposition. Figure 6�c� shows the
deposit profile measured by the light absorption. The linear
dependence of the light absorption efficiency on the deposit
density was checked in special experiments by cutting the
quartz tube with deposit to pieces and weighing the deposit
from each piece. One can see from the mass profile that the
weight of the smooth deposit �before the coordinate Z2� is
about 1% of the total deposit mass. This means that the vapor
depletion due to the wall deposition is negligible in the su-
persaturation zone. Therefore, to evaluate the supersaturation
ratio one should not take into account the vapor wall depo-
sition. The magnified SEM image of the powderlike deposit
is given in Fig. 6�d�. The image of deposit at the coordinate
Z2 is presented at Fig. 6�e�. One can distinguish single par-
ticles which came to the wall from the nucleation zone. The
frequency distribution for the diameters of these particles is
shown in Fig. 6�f�. The mean arithmetic diameter for par-
ticles deposited at Z2 is 100 nm. It is of interest to compare
the size of particles deposited to the wall near the nucleation
zone with the size of particles outcoming the flow chamber.
Figure 3 shows that at Tsat=830 K the outcoming particle
diameter is the same as the deposited particle diameter
�square symbol�.

The nucleation rate �the number of nucleus formed in 1 s
per 1 cm3 at the axial coordinate Z2 corresponding to the
boundary between the smooth and powderlike deposits� was
evaluated as 1010 cm−3 s−1. In more detail the procedure of

FIG. 5. Size distribution of Zn particles sampled at the outlet of the diffu-
sion chamber �n is the number of particles and d is the particle diameter�. �a�
Automatic diffusion battery measurement, vapor saturation temperature
Tsat=795 K; �b� TEM image elaboration result, Tsat=860 K.
estimation of nucleation rate is given in Sec. IV A. We call
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the supersaturation ratio and temperature at the coordinate Z2

as critical supersaturation and nucleation temperature, re-
spectively. Changing experimentally the temperature of satu-
ration we changed the location of Z2 as well. As a result a
new nucleation temperature and a critical supersaturation
corresponded to the new location of Z2. Thus, the critical
supersaturation ratio Scrit as a function of nucleation tempera-
ture Tn was measured. Figure 7 demonstrates log10 Scrit vs Zn
nucleation temperature. In case of Ag we measured
S=6000 and Tn=870 K. This supersaturation ratio for Ag is
compared with the data19 in Fig. 8. One can see a reasonable
agreement between the two sets of experimental data.

IV. DISCUSSION

A. Thermophoretic depletion of particles
and nucleation rate

Taking into account that the saturated pressure of Zn
vapor depends on temperature as41

log10�Psat�Torr�� = 8.35–6400/T , �13�

one can estimate from Fig. 3 that only a small fraction of the
initial saturated Zn vapor comes out of the nucleation cham-
ber as aerosol; the rest is deposited to the walls as aerosol
particles due to the thermophoresis. For example, for the
saturation temperature Tsat=830 K we can estimate the vapor
to outlet particles conversion ratio as:

�part�
�vapor�

Troom

Tsat
� 2 � 10−5, �14�

where �part� and �vapor� are the mass concentration of outlet
particles and saturated vapor, respectively. The thermo-
phoretic velocity uT of particles in the free molecule regime
can be estimated via the following expression:42

uT = − 0.55�
�T

T
, �15�

where �T is radial temperature gradient, and � is the kine-
matic viscosity of the ambient gas �Ar� which can be ap-
proximated by the temperature dependence41 �=1.19
�10−5T1.65 cm2/s. The average temperature gradient can be
roughly estimated �see Fig. 2� as �T /T�0.3 cm−1. Then, the
thermophoretic velocity for the temperature of 500 K is
about 0.06 cm/s. Assuming the parabolic flow velocity pro-
file in the tube we estimated the characteristic thickness �x
of the layer near the wall from which the particles will come
to the wall due to the thermophoresis during the residence
time t��x���Ztherm/�fl��x�, where �Ztherm is the length of
the zone of thermoforetic deposition �10 cm�, and �fl��x�
is the flow velocity �cm/s� at the distance �x from the
wall. Solving the equation �x=uTt��x� we obtained
�x�0.05 cm. Thus, the estimation shows that nucleation oc-
curs near the walls in the layer of about 0.05 cm.

Figure 6�b� demonstrates the wall deposit formed at the
vicinity of the nucleation zone at the temperature of 600 K.
One can clearly see the locations of nucleation onset �Z1� and
powderlike deposit beginning �Z2�. The SEM images showed
that the characteristic distance of nucleation development is

�Z�0.03 cm. Assuming that the nucleation started at a dis-
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tance of 0.05 cm from the wall one can estimate Poisel’s
flow velocity at this distance �and T=600 K� to be
�fl=10 cm/s. Thus, the characteristic nucleation time
tnucl��Z /�fl=3�10−3 s. As shown in Fig. 6�c� the mass of
deposit in the range ZZ2 is about 1% of the total deposit.
Thus, one can conclude that at the location Z2 not more than
1% of initial vapor is converted to particles. The SEM and
TEM analyses showed that the diameter of particles depos-
ited to the wall at the nucleation region �at Tn=600 K� is of
about 40 nm. Thus, taking into account the particle size, the
vapor pressure at Z2 �0.2 Torr� and vapor to particle conver-
sion degree �1%� we estimate the concentration of particles
at Z2 to be n�2�107 cm−3 and the nucleation rate

10 −3 −1
I�n / tnucl�10 cm s . Some supporting arguments for
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the estimated particle concentration can be found in Fig. 3
where the outlet concentration for particles with diameter
of 40 nm is about 103 cm−3. Taking into account the deple-
tion coefficient 2�10−5 �see Eq. �14�� we get again the
particle concentration in the nucleation zone to be about
5�107 cm−3.

B. Homogeneous nucleation rate

Our task in this section is to obtain the expression for the
homogeneous nucleation rate which takes into account the
dependence of the droplet surface tension on radius, in other
words, to obtain the formula for the preexponential factor

FIG. 6. SEM images of Zn wall
deposit: Nucleation temperature is
Tn=660 ��a� and �d�� and 600 K �b�;
�c� deposit mass �M� profile for condi-
tions of �b�; �e� SEM image from the
border between the smooth and pow-
derlike deposit regions Tsat=830 and
Tn=690 K; �f� frequency distribution
of the diameters of single particles
presented in picture �e�.
in Eq. �6� using formulas �8� and �9� and the expression for
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the work of formation of noncritical nucleus derived by
Nishioka and Kusaka23 and Debenedetti and Reiss.24 Follow-
ing Nishioka and Kusaka we consider a multicomponent sys-
tem which is a liquid spherical drop surrounded by a vapor
phase. In general the drop is not a critical nucleus. The total
number of molecules for the component i in the system is
specified as Ni to be governed by the following equation:

Ni = Ni
� + Ni

� = const, �16�

where Ni
� and Ni

� are the numbers of atoms in the real system
belonging to the vapor and droplet, respectively. One of the
main assumptions of the publication23 is that the interfacial
region is regarded as belonging to a drop. In other words, the
chemical potential for surface molecules is equal to the
chemical potential for the volume molecules of droplet.

Instead of the real system we consider now a hypotheti-
cal system composed of the two phases, liquid �noted as ��,
and vapor �noted as �� being uniform up to an imaginary

FIG. 7. Zn vapor supersaturation vs nucleation temperature. Circles: this
work experimental data; dash line: classical nucleation theory prediction.

FIG. 8. Supersaturation vs nucleation temperature. Symbols: experimental
data obtained in this work and elsewhere: Li,18 Na,31,32 Cs,33,35 Ag,19 Hg,36

37
and Mg.
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geometrical surface that divides the two phases. We can
specify the volumes of these phases as V� and V� which are
governed by the following relationship:

V = V� + V� = const. �17�

In general the droplet and vapor chemical potentials of the
two phases � and � are nonequal,

�i
� � �i

�. �18�

Following Gibbs the surface of tension was chosen as a di-
viding surface between two phases so that the fundamental
equation has the following form:23

dE = TdS + 	
i

�i
�dNi

� + 	
i

�i
�dNi

� − P�dV� − P�dV�

+ �dA , �19�

where E is the energy, S is the entropy of the whole system,
P� and P� are pressures of hypothetical homogeneous phases
� and �, respectively, and � and A are the surface tension
and area of the surface of tension for the droplet which is a
noncritical nucleus in the general case �for the critical
nucleus we have denoted the surface tension by ��. For the
spherical drop the variations of volume and surface are
dV�=−dV�=4
�RS

nc�2dRS
nc and dA=8
RS

ncdRS
nc, respectively,

where RS
nc is the radius of the surface of tension for a non-

critical nucleus. As the system is assumed to be under a
formal equilibrium the Laplace equation follows from Eq.
�19�,23

P� − P� =
2�

RS
nc . �20�

It was shown in Ref. 23 as well as in Ref. 24 that the
minimum work necessary to form a noncritical droplet in a
multicomponent system and its variation at T, �i

�, and P�

being constant are

W = 	
i

Ni
���i

� − �i
�� − V��P� − P�� + �A , �21�

dW = 	
i

��i
� − �i

��dNi
� − �P� − P��dV� + �dA . �22�

It follows from �20� and �22� that

dW = 	
i

��i
� − �i

��dNi
�. �23�

The condition that a cluster formed is a critical nucleus is
given by the extremity condition dW=0 which results in the
following equation:

�i
� − �i

� = 0. �24�

Under the condition �24� we have �=� and RS
nc=RS. There-

fore, substituting �24� to �21� and taking into account
Laplace relation �20� we get well-known expression �7� for
the minimum work of formation of the critical nucleus.

Equation �23� will be the starting point in our further
discussion. This paper’s experimental data are received for
two-component Ar+Zn system. However, we assume that Ar

gives negligible influence to the nucleation process. The only
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effect from Ar gas is the increase of total pressure. Therefore
we will apply to our nucleation process the single-
component system formalism. For the single-component sys-
tem Eq. �23� will transform to the following evident relation:

dW

dN� = ���P�� − ���P�� . �25�

Using the condition of incompressibility and Laplace Eq.
�20� and the previous notation for the number of molecules
in droplet N�=g �see Introduction� we can rewrite Eq. �25�,

dW

dg
= ���P�� − ���P�� +

�P� − P��m
�

= ���P�� − ���P�� +
2�m

RS
nc�

. �26�

The density � of the hypothetical phase � is linked with g
and the radius of equimolar surface Re

nc via the following
equation:

�
4
3
�Re

nc�3 = gm . �27�

As mentioned in the Introduction our purpose in this
section is to obtain the second derivative of W at the point
g=gcrit. Using �26� we get the second derivative of W �at
constant �, T, and P�� as

d2W

dg2 =
2m

�

d

dg
� �

RS
nc� . �28�

Thus, to determine the second derivative of W one should
know the derivative d /dg�� /RS

nc� which can be presented as

d

dg
� �

RS
nc� = −

�

�RS
nc�2

dRS
nc

dg
+

1

RS
nc

d�

dg
. �29�

To determine this derivative we will use the Gibbs-Duhem
relation derived in Ref. 23,

− d� = ��d�� + ��d��, �30�

where �� and �� are superficial densities governed by the
following expressions:

4
RS
2�� 
 N� − Nh� � 0, �31�

4
RS
2�� 
 N� − Nh�  0, �32�

where Nh� and Nh� are the numbers of molecules in the
hypothetical homogeneous phases � and �, respectively. Let
us consider the nonequilibrium process of deviation from the
initial equilibrium state for the conditions of the � phase
being kept invariant �d��=0�. Then, we have from Eq. �30�,

− d� = ��d��

dP��dP�

dg
�

ne
dg = �����dP�

dg
�

ne
dg , �33�

where �� is molar volume. On the other hand, for the equi-
librium process of change of droplet radius �d��=d��� we

get from �30�
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− d� = ��� + ���
d��

dP�

dP�

dg
dg = ���

dP�

dg
dg , �34�

where �=��+��. Note, that �� and �� and other quantities
in Eqs. �31� and �32� are attributed to the initial equilibrium
state. The derivatives �dP� /dg�ne and dP� /dg in Eqs. �33�
and �34� correspond to the nonequilibrium and equilibrium
processes of drop size change, respectively. From Eqs. �34�
and �33� we obtain

d�

dg
=

��

�
�dP�

dg
�

ne
�dP�

dg
�−1d�

dg
. �35�

Thus, from Eqs. �29� and �35� we get

d��/RS
nc�

dg

= −
�

�RS
nc�2

dRS
nc

dg
+

1

RS
nc

��

�
�dP�

dg
�

ne
�dP�

dg
�−1 d�

dRS

dRS

dg

= −
dRS

nc

dg
� �

�RS
nc�2 −

1

RS
nc

��

�
� dP�

dRS
nc�

ne
�dP�

dRS
�−1 d�

dRS
� . �36�

At g=gcrit we get

�d��/RS
nc�

dg
�

g=gcrit

= −
�

RS
2�dRS

nc

dg
�

g=gcrit

�1 − �
��

�

d ln �

d ln RS
� ,

�37�

where �= �dP� /dRS
nc�RS

nc=RS
�dP� /dRS�−1. The derivative

d�ln �� /d�ln RS� in Eq. �37� corresponds to equilibrium pro-
cess �34� and is governed by Eq. �3�. Thus, we rewrite Eq.
�37� as

�d��/RS
nc�

dg
�

g=gcrit

= −
�

RS
2�dRS

nc

dg
�

g=gcrit

�1 + ��� , �38�

where �= �2 ��� �m / �RS���� / �1+2�m / �RS����.
For the case when the phase � is liquid and the phase �

is gas ����. Then, the numerator of the fraction � is �see
Eq. �32��

2����m
RS��

� 2
4
RS

2����m
4
RS

3�
=

2

3

Nh� − N�

Nh� �
2

3
. �39�

Taking into account that the denominator of the fraction � is
higher than unity when ��� � � ���� �i.e., �2/RS���m /���
�0� and is about unity when ��� �  ���� �because in this
case ��2/RS���m /��� �  �2/RS����� �m /���� 2 � 3 � we get

� �
2
3 . �40�

Strict inequalities �39� and �40� can be violated when there
are a few molecules in the drop, in other words, there should
be at least one coordination sphere around the central mol-
ecule to satisfy �39� and �40�. Taking into account that
P�� P� we suppose that ��1 which means that P� is
mainly determined by the surface tension and is weakly de-
pendent of P�. Thus, for the system vapor—incompressible
liquid in the process of deviation from equilibrium state Eq.

�38� is reduced to
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�d��/RS
nc�

dg
�

g=gcrit

� −
�

RS
2�dRS

nc

dg
�

g=gcrit

. �41�

One can see comparing Eqs. �29� and �41� that in effect �
may be treated as a constant equal to the equilibrium surface
tension in taking the derivative from � /dRS

nc.
To estimate the derivative dRS

nc/dg in �41� we set

dRS
nc

dg
�

dRe
nc

dg
=

Re
nc

3g
. �42�

The last equation in �42� follows from Eq. �27�.
Finally we obtain from �28�, �41�, and �42�

�d2W

dg2 �
g=gcrit

� −
8
Re

4��RS�
9gcrit

2 RS
2 . �43�

Substituting �43� to �6�–�9� we have

I � n1
2�2m��RS�




1

�

Re

RS
exp�−

4
RS
2��RS�

3kBT
� . �44�

Note, the preexponent in Eq. �44� is formally almost the
same as CNT formula �10�. The difference between these
two factors is that the CNT expression includes the surface
tension �� for the flat surface and Eq. �44� includes the sur-
face tension ��RS� related to the surface of tension for criti-
cal nucleus. Thus, Eq. �44� is an extension of the CNT ex-
pression for the vapor homogeneous nucleation rate which
considers the curvature-dependent surface tension.

Finally, multiplying �44� to replacement correction factor
KR�11� and using Kelvin expression �12� we get

I �
n1

satS

2
RS

�3 ln S

�	
exp�−

16
m2

3�2�ln S�2���RS�
kBT

�3� . �45�

Solving �45� together with �12� for certain temperature T we
can evaluate the critical nucleus radius RS and surface ten-
sion ��RS� from known supersaturation ratio and nucleation
rate.

C. Surface tension and Tolman length
as a function of nucleus radius determined
from the experimental supersaturation ratio
and nucleation rate

Figures 7 and 8 present data on metal nucleation deter-
mined both in this paper and elsewhere.18,19,31–33,35–37 The
critical supersaturation for Zn vapor is compared with the
CNT predictions. One can see a discrepancy of about two
orders of magnitude between this paper experimental data

TABLE I. Important parameters for metals considere

Metal T0 /K � /dyne cm−1 K−1

Li 3300 0.140 8
Na 2350 0.100 7
Cs 1790 0.048 7
Ag 6980 0.161 8
Hg 2540 0.210 8
Mg 3128 0.254 8
Zn 5430 0.167 8
Downloaded 13 Mar 2006 to 194.85.127.211. Redistribution subject to
and CNT calculated supersaturation. The data for Ag mea-
sured in Ref. 19 are consistent with the data determined in
this paper as well as the results for Na determined in Refs. 31
and 32 looks to be in qualitative agreement.

Solving �45� and �12� for fixed nucleation rate and tem-
perature we can determine droplet surface tension as well as
radius RS of critical nucleus for each point in Figs. 7 and 8.
In principle both � and �� are functions of temperature but
the ratio � /�� can be considered as independent of tempera-
ture in the narrow temperature range. The evaluated ratios
� /�� are presented as functions of RS in Fig. 9.

The important parameters used for evaluation of � /��

are summarized in Table I. The temperature dependence of
the planar interface surface tension is presented by

�� = ��T0 − T� , �46�

where � and T0 are parameters determined by fitting �46� to
the dependencies of surface tension on temperature available
from reference books �see, for example, Ref. 41�. The tem-
perature dependence of saturated vapor pressure is given by
the following formula:

this paper.

D /K � / �g/cm3� 	 �cm2/dyne�

8120 0.47 8.47�10−12

5460 0.87 1.61�10−11

3920 1.75 5.0�10−11

14 464 9.35 9.03�10−13

3215 13.55 4.05�10−12

7674 1.59 5.06�10−12

6400 6.81 1.92�10−12

FIG. 9. Droplet surface tension � to flat interface surface tension �� ratio vs
radius RS of the surface of tension as determined from the nucleation data
�Figs. 7 and 8� by solving Eqs. �12� and �45� at fixed nucleation rates �see
Table II�. Solid lines are determined by the numerical integration of Gibbs-
Tolman-Koenig Eq. �1� using Eq. �49� for the Tolman length and parameters
� and �� as given in Table III. Dotted lines correspond to Tolman equation
�4� with �=�T �see the values of �T in Table II�.
d in

C

.00

.70

.25

.92

.04

.80

.35
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log10�Psat�Torr�� = C −
D

T
, �47�

where C and D are parameters determined by fitting �47� to
the reference book data on saturated vapor pressure. The
input data for evaluation of � /�� are summarized in Table II.

One can see from Fig. 9 that all the metals considered
can be divided into two groups Li, Na, Cs, and Ag �monova-
lent metals� and Mg, Zn, and Hg �bivalent metals�. The alkali
metals and Ag are characterized by the ratio � /���1. Li,
Na, and Ag demonstrate a monotonic decrease of surface
tension with RS increasing. The plot � /�� vs RS for Na is
very similar to that for Li. This similarity can be explained
by the neighboring positions in the Periodic Table for these
elements. The points for Cs are shifted to the right with
regard to Li and Na which are probably related to the fact
that the atomic radius for Cs �2.7 Å� is significantly larger
than that for Li and Na �1.6 and 1.9 Å, respectively�. The
dependence of � on RS for Ag is similar to that for alkali
metals �at least for Li and Na�. Silver belongs to the Group
11 of the Periodic Table. The elements of this group have an
electronic configuration nS1�n−1�d10 where n is the principal
quantum number of the valence shell. The outermost S shell
contains one electron and the d shells are fully filled and
contracted. The nS electrons of these elements act similarly
to the S electrons of the Group 1 metals.30

The data on Cs deserve a special consideration. The
nucleation rate for Cs was measured in Ref. 33 as a function
of supersaturation in the temperature range of 420–490 K
using upward thermal diffusion cloud chambers. At tempera-
tures less than 440 K the critical supersaturation increases
dramatically with temperature decreasing �see Fig. 8�. In
Ref. 35 the nucleation rate was measured in the range of
290–550 K �solid triangles in Fig. 8� which demonstrated
much weaker temperature dependency for the critical super-
saturation at low temperature than it was found in Ref. 33.
However, the dependence of surface tension on RS is quite
different for these two sets of experimental results measured
in Refs. 33 and 35. The data33 demonstrate the decrease of
� /�� with RS increasing which is consistent with the data for
other monovalent metals presented in Fig. 9. On the other
hand, the results35 demonstrate monotonic increase of � /��

TABLE II. Experimental nucleation data and evaluated RS, ��2RS�, NS, �, a
were evaluated by the solution of Eqs. �12�, �45�, and �52� �at fixed nucleatio
to the experimental ranges of T; �T=const was determined by the fitting of

Experimental parameters
Metal T /K S I �cm3 s−1� RS /Å

Li 820–1100 400–10 109 4.5–6.8
Na 556–670 40–10 1010 6.2–7.4
Na 393 105 105 4.5
Cs 290–550 400–8 0.1–1 8.2–12.
Ag 520–770 2�1015–2�106 108 2.2–2.9
Ag 870 6000 1010 3.2
Hg 258–312 5�104–2�103 1 4.2–4.7
Mg 707–890 40–10 1010 5.0–6.1
Zn 600–725 23–10 1010 4.6–5.3
with RS increasing which means that this function overpass a

Downloaded 13 Mar 2006 to 194.85.127.211. Redistribution subject to
maximum somewhere at large RS because it must come to
unity finally. The authors35 have measured more accurately
the nucleation rate than it was done previously in Ref. 33,
however, the disagreement of latest ��RS� dependency for Cs
with that for other monovalent metals is surprising. The ex-
planation for this disagreement can be in overestimation of
the nucleation rate in Ref. 35 for the low-temperature region,
or in the fact that the properties of Cs are different from that
for other monovalent metals considered in this paper.

The bivalent metals Zn, Hg, and Mg demonstrate
� /��1. Moreover within the experimental accuracy the
surface tension is independent on RS for these elements in the
studied range of critical nucleus radius. Probably the similar
behavior of the function ��RS� for Mg, Zn, and Hg is related
to the similar electronic configuration ns2.

We checked the sensitivity of the above method of
evaluation of RS and ��RS� to the value of the preexponent in
Eq. �45�. To this aim the preexponent was increased by four
orders of magnitude. The resulted magnitudes of both RS and
��RS� increased due to this variation by 6% for Li, Na, Ag,
Zn, and Mg and by 4% for Hg and Cs which is within the
experimental accuracy.

It is of interest to check if Tolman equation �4� is able to
describe the dependence of � /�� on RS evaluated from the
experimental nucleation rates. As seen from Fig. 9 the agree-
ment between the Tolman equation predictions and our
evaluation results is rather poor. Thus, the assumption of
�=const seems to be too rough. The values of Tolman length
��T=const� determined by fitting Eq. �4� to the quantities of
� /�� are summarized in Table II.

To find an approximate dependence of � on RS we sim-
plify GTK differential Eq. �1� in the assumption of ��RS� /RS

being small with regard to unity and integrate it from
RS=� corresponding to a plane surface to any radius RS �in
assumption that �� is known�,

ln
��RS�

��

� �
�

RS �2��RS�/RS
2��1 + ��RS�/RS�

1 + 2��RS�/RS
dRS

� �
�

RS

�2��RS�/RS
2��1 − ��RS�/RS�dRS. �48�

T. RS, ��2RS�, and NS �number of atoms confined by the surface of tension�
e as presented in the table�. The ranges of S, RS, ��2RS�, and NS correspond
an equation �4� to � /�� �see Fig. 9�.

Evaluated parameters
��2RS�Å NS � �T /Å References

−1.3 to−0.5 16–54 1.7 −1.00 18
−0.5 to−0.2 23–39 1.2 −0.36 31
−1.0 9 −0.95 32

−1 18–68 1.0 −1.02 33 and 35
−0.4÷−0.2 2–5 1.0 −0.32 19

0.0 7.2 This work
0.9–1.0 7–24 0.5 1.00 36
1.4–1.9 21–37 0.5 1.94 31 and 37
2.1–2.6 26–39 0.5 2.78 This work
nd �
n rat
Tolm

7

One can see that the integral in Eq. �48� is mainly deter-
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mined by the function 1/RS
2 so that the main contribution to

this integral gives the region from RS to about 3RS. In prin-
ciple for approximate estimations � in Eq. �48� can be sub-
stituted to some constant value approximately equal to
��2RS�. But we perform more rigorous approach assuming
that the dependence of � on radius is governed by the fol-
lowing simple monotonic function:

��RS� =
�

RS
+ ��, �49�

where � is constant, and �� is the Tolman length for the flat
surface. One can see that function �49� is chosen as the two
first terms of the Taylor-series expansion. In general case �
and �� can be both positive and negative. Though formula
�49� is relatively simple it is able to describe all the possible
types of monotonic tendencies. Function �49� gives strong
dependence on radius for small particles and asymptotic ap-
proach to the value ��. Formally relationship �49� is the
same as Bartell’s formula �5� determined for the LJ systems.
Substituting �49� to �48� we get

ln
��RS�

��

= −
2

RS
� �

2RS
+ ��� +

2

RS
2�� �

2RS
+ ���2

−
��

2
� �

1.5RS
+ ���� . �50�

Taking into account �49� we rewrite Eq. �50� as

ln
��RS�

��

= − 2
��2RS�

RS
�1 −

��2RS�
RS

�� , �51�

where �= �1− �1/2������1.5RS� /�2�2RS���. In the case when
��� � � ���2RS��, which, in particular, corresponds to the LJ
fluids, we have ��1. In the case �����2RS����1.5RS�
�0 one gets ��0.5. One can see from Eq. �51� that ��RS� is
mainly determined by ��2RS� as foreseen above. Multiplying
Eq. �51� by 1+���2RS� /RS we have for ����2RS� /RS�2�1,

��2RS�
RS

� −
ln ��RS�/��

2 + � ln ��RS�/��

. �52�

One should note that Eq. �52� is a more exact formula than
the Tolman expression because this formula was derived by
integrating Eq. �48� which contains one more linear term
with regard to the Tolman’s integration procedure,2 besides,
� is a function of radius in our integration. The important
feature of Eq. �52� is that it does not include directly the
values of � and ��. Thus, using Eq. �52� one can determine
��2RS� directly from ��RS� /�� presented in Fig. 9.

On the other hand, taking the derivative �d /d�lnRS��
��ln���RS� /���� from Fig. 9 one can determine ��RS� using
GTK Eq. �1�. However, as one can see from Fig. 9, due to
the experimental error the quantities � /�� are determined
with the standard deviation of about 10%. This experimental
error results in the accuracy of evaluation of quantity
�d /d�lnRS���ln��RS� /��� to be 50% at the ends of the experi-
mental range and 10% at the middle part of the range of RS.
Therefore, we used Eq. �1� to determine directly ��RS� only
at the middle point of the range of RS to be consistent with

the accuracy of the quantities ��RS� /��. It seems as if one
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and the same Eq. �1� gives information on both the quantity
��RS� which is contained by �1� directly and the quantity
��2RS� which is not contained by Eq. �1�. However, in fact
��2RS� is calculated from integral GTK Eq. �48� which con-
tains more information than Eq. �1� because the integral
equation includes the quantity ��.

The values of � are presented in Fig. 10. Semifilled sym-
bols correspond to direct calculation by differential GTK Eq.
�1� for each metal except for Cs �for which the above deriva-
tive is uncertain�. Open symbols �and two filled symbols for
Na �Ref. 32� and Ag �this work�� correspond to evaluation by
Eq. �52�. When evaluating ��2RS� for Li and Na we deter-
mined � in �52� by consecutive approximations using
�0=1 at the initial step. Then the plot including points for
both ��RS� and ��2RS� was fitted by Eq. �49�. After this a
new value of� for the next approximation was determined.
The values of � determined for Li and Na in this approxi-
mation process are given in Table II. In the case of Ag the
initial approximation �0=1 was enough. In the cases of Zn,
Hg, and Mg we set �=0.5 and for Cs �=1.0. The determined
quantities � were fitted by Eq. �49� �solid lines in Fig. 10�
with the values of � and �� as given in Table III.

Alkali metals Li and Na demonstrate the dependence of
� on RS which is akin to that for Ag �� is negative in sign and
the absolute value of � decreases monotonically with RS�.
However, Ag is much more similar to LJ systems than Li and
Na because ���0 for Ag as in contrast with Li and Na �see
Table III�. This similarity between Ag and LJ systems corre-
lates with the fact that both the Group 11 elements �Cu, Ag,
and Au� and the Group 18 elements have the same fcc type
of crystal lattice as in contrast with the Group 1 elements
which have bcc crystalline structure. The dependence of � on
RS for the bivalent metals is quite different from that for the
monovalent metals. Zn, Mg, and Hg show � close to zero at
RS�5 Å and positive � increasing with RS at higher radii.

To check the accuracy of evaluation of � we integrated
numerically GTK Eq. �1� substituting Eq. �49� for � and

FIG. 10. Tolman length � vs radius of the surface of tension as determined
from � /�� data �Fig. 9� using Eq. �52�: open and solid symbols, and Gibbs-
Tolman-Koenig Eq. �1�: semifilled symbols. Solid lines are governed by Eq.
�49� with � and �� as given in Table III.
using � and �� presented in Table III. The integration results
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are given as solid lines in Fig. 9. One can see that there is a
good agreement between symbols and lines indicating the
validity of formula �52� within the experimental accuracy
and to the fact that our approximation �Eq. �49�� is sufficient.
One can see also that the curve calculated for Na �Ref. 31� is
in reasonable agreement with the point for Na.32

Thus, the knowledge of the function ��RS� allows one to
reconstruct the function ��RS� in the range wider than the
experimental area. It is important to note also that the calcu-
lated � /�� curves come through a minimum for the bivalent
metals demonstrating a strong increase with RS decreasing at
small values of the radius and approaching to unity at large
RS. Thus, the surface tension values for bivalent metals as
determined from the experiment are found to be in the mini-
mum of the function ��RS� which evidently corresponds to
the lowest potential barrier in nucleation process. The mini-
mum of the function ��RS� is caused by the change of sign of
� for the Zn, Mg, and Hg. As seen from Eq. �1� this change
of sign could be foreseen just from the fact of d� /dRS�0
for these metals as demonstrated in Fig. 9. The question of
possibility that � might change sign is discussed in the
literature.2

One can see from Fig. 9 that Tolman equation �4� is
applicable for small droplets only in a very narrow range of
nucleus size at some fixed � which we denoted as �T. The
range of size under consideration can be characterized by the
mean radius RS

mean. Comparing �T with ��2RS� �see Table II�
one can find out that

�T � ��2RS
mean� . �53�

When ��2RS� /RS�1 relationship �53� follows from Eq. �51�;
indeed, under this condition the second term in the brackets
of the right-hand side of Eq. �51� vanishes. Then expanding
ln���RS� /��� in a Taylor series around ��RS� /��=1 we get

��RS� = ���1 +
2��2RS�

RS
�−1

, �54�

which is formally the same as Tolman formula �4� with the
only difference that Eq. �54� includes the function ��2RS�
while �4� contains �=const. Thus to estimate � for RS by the
Tolman formula one should use � for 2RS. For a narrow
range of droplet size one can use ��2RS

mean� in Eq. �54� and
obtain relationship �53�. There is a discussion in the literature
about the range of applicability of Tolman Eq. �4� �see, for
example, Ref. 5�. The accepted point of view is that the
Tolman length in �4� is defined as ��. The density-functional

5

TABLE III. The values of � and �� from Eq. �49� which govern the solid
lines in Figs. 9 and 10.

Metal � /Å2 �� /Å

Li −19.45 0.97
Na −13.51 0.67
Ag −1.96 0.07
Hg −5.71 1.56
Mg −20.30 3.50
Zn −22.50 4.48
calculations for LJ systems show that under the assumption
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�=�� the Tolman equation is not valid when the droplet
holds less than 106 molecules. The last fact is not surprising
because as shown above to evaluate ��RS� for small droplets
one should substitute �=const in the Tolman equation to
��2RS� which is much larger than �� for LJ systems.

V. CONCLUSIONS

Zinc and silver vapor homogeneous nucleations are stud-
ied experimentally at the temperatures from 600 to 725 and
870 K, respectively, in a laminar flow diffusion chamber
with Ar as a carrier gas at atmospheric pressure. Using SEM
data the nucleation rate for both Zn and Ag is estimated as
1010 cm−3 s−1. The vapor critical supersaturation is measured
as 25–9 for Zn vapor and 6000 for Ag.

A new approach for the evaluation of the droplet surface
tension as a function of radius from the experimental homo-
geneous nucleation rate and supersaturation ratio is devel-
oped. To determine the droplet surface tension we extended
the classical nucleation theory �CNT�. As a result the preex-
ponent in the expression for the nucleation rate was derived
�for the case of gaseous maternal phase� using the formula
for the work of formation of noncritical embryo �obtained by
Nishioka and Kusaka23 and Debenedetti and Reiss24�. At
some simplification this preexponent looks formally almost
the same as in the CNT formula with the difference that the
new expression includes the surface tension for nucleus as in
contrast to CNT formula which involves the surface tension
for flat surface. Using the extended formula we retrieved the
dependence of surface tension on the radius of surface of
tension RS from the nucleation rate and supersaturation ratio
determined experimentally at certain temperatures for Zn and
Ag �measured in this paper� as well as Li, Na, Cs, Ag, Mg,
and Hg �measured elsewhere�. It is found that the monova-
lent metals are characterized by the relationship � /���1
and monotonic decrease of surface tension with RS in-
creasing �at least Li, Na, and Ag�; the surface tension
for the bivalent metals is governed by the relationship
� /��=const1.

To evaluate the Tolman length as a function of droplet
radius we simplified and integrated the Gibbs-Tolman-
Koenig equation assuming that � is the monotonic function
of radius �49�. This approximation resulted in the relation-
ship between the Tolman length and the surface tension �Eq.
�52��; one can obtain the function ��2RS� directly from the
quantity ��RS� determined experimentally. Using formulas
�52� and �1� we retrieved the dependence of � on RS from the
dependencies of � on RS determined for the above-
mentioned elements. Equation �52� is more correct than Tol-
man formula �4�, because we did not neglect the linear term
in the numerator of GTK equation as in contrast with
Tolman;2 besides we considered � to be a function of the
droplet radius. We found that all the elements are character-
ized by a strong dependence of � on radius. In the cases of
Li, Na, Cs, and Ag �monovalent metals� � is negative in sign
and its absolute magnitude increases with radius �at least for
Li, Na, and Ag�. For Ag ���0 like in the case of the
Lennard-Jones systems. This similarity between Ag and LJ

fluids can be explained by the fact that both Ag and LJ sys-
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tems have the same fcc type of crystal lattice. The depen-
dence of � on RS for the bivalent metals is quite different
from that for the monovalent metals. Zn, Mg, and Hg show �
close to zero at RS�5 Å and a positive � increasing with RS

at higher radii.
To check the accuracy of the Eq. �52� we calculated

��RS� by integrating numerically GTK Eq. �1� using the
evaluated functions ��RS�. A good agreement was found be-
tween the calculated dependencies ��RS� and the values of
surface tension as determined from the experimental data.
The calculated � /�� curves come through a minimum for
the bivalent metals demonstrating a strong increase with RS

decreasing at small values of the radius and approaching to
unity at large RS. Thus, the surface tension values for biva-
lent metals as determined from the experiment are found to
be in the minimum of the function ��RS� which evidently
corresponds to the lowest potential barrier in the nucleation
process. The minimum of the function ��RS� is caused by the
change of sign of � for Zn, Mg, and Hg. As seen from Eq. �1�
this change of sign could be foreseen just from the fact that
d� /dRS�0 for these metals as demonstrated in Fig. 9.
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