УДК 541.14

Кинетика и механизм фотолиза комплекса железа(III) с винной кислотой

Ву Фенг,^а Денг Наншенг,^а Е. М. Глебов,⁶* И. П. Поздняков,⁶ В. П. Гривин,⁶ В. Ф. Плюснин,⁶ Н. М. Бажин⁶

^аУниверситет г. Ухань, Факультет экологии, КНР, 430072 Хубэй, Ухань.* ^бИнститут химической кинетики и горения Сибирского отделения Российской академии наук, Российская Федерация, 630090 Новосибирск, ул. Институтская, 3. Fax: (383) 334 2350. E-mail: glebov@ns.kinetics.nsc.ru

При лазерном импульсному фотолизе комплекса железа(III) с анионом винной кислоты [Fe^{III}Tart]⁺ (1) в присутствии метилвиологена (MV) обнаружено образование катион-радикалов MV⁺⁺. Измерены константы скорости реакций с участием MV⁺⁺. Сделан вывод, что при фотолизе 1 происходит внутримолекулярный перенос электрона с образованием Fe^{II} и выходом органического радикала в объем растворителя.

Ключевые слова: фотохимия, комплексы Fe^{III}, карбоновые кислоты, водные растворы, УФ-спектры, лазерный импульсный фотолиз.

ŀ

Фотохимия комплексов железа(III) с органическими лигандами вносит существенный вклад в баланс органических соединений в природных водных системах^{1,2}. В частности, фотолиз комплексов Fe^{III} с анионами карбоновых кислот интенсивно исследуется в последние два десятилетия^{1—12}. При этом механизм фотолиза предложен на основе анализа конечных продуктов фотохимических реакций^{1—9}. Прямые эксперименты по наблюдению промежуточных продуктов фотолиза встречаются крайне редко.

Механизм фотолиза, предложенный на основе анализа конечных продуктов реакций, включает в качестве первичного акта внутримолекулярный перенос электрона с образованием железа(II) и выходом органического радикала в объем растворителя. Первичный свободный радикал может декарбоксилироваться, а образовавшийся в результате этого вторичный радикал вступает в реакции с различными компонентами системы (например, Fe^{III} и кислородом). Типичная схема реакций на примере комплекса Fe^{III} с винной кислотой представлена уравнениями (1)—(8) (подобная схема для фотолиза цитратного комплекса Fe^{III} приведена в работе⁹). При проведении экспериментов в отстутствие O₂ исключаются реакции (5)—(8).

$$[Fe^{III}Tart]^{+} \xrightarrow{n_{v}} Fe^{2+} + -OOC-CHOH-CHOH-COO^{-}, \qquad (1)$$

$$\longrightarrow$$
 -OOC-CHOH--CHOH+CO₂, (2)

 $-OOC - CHOH - CHOH + Fe^{III} \longrightarrow$

* Department of Environmental Science, Wuhan University, Wuhan, 430072 Hubei, P. R. China. 2-ООС—СНОН—-СНОН —→ Продукты, (4)

 $-OOC-CHOH-CHOH+O_2 \longrightarrow$

$$\longrightarrow -OOC-CHOH-CHO + O_2^{-} + H^+, \qquad (5)$$

$$O_2^{\cdot -} + H^+ \Longrightarrow HO_2^{\cdot}, \tag{6}$$

$$HO_2^{\cdot}/O_2^{\cdot-} + Fe^{III} \longrightarrow Fe^{II} + O_2, \tag{7}$$

$$HO_2'/O_2' + Fe^{II} \longrightarrow Fe^{III} + H_2O_2.$$
(8)

Механизмы фотореакций, предложенные на основе анализа конечных продуктов, требуют экспериментального подтверждения регистрацией предполагаемых интермедиатов. Однако использование прямых экспериментальных методов (лазерный импульсный фотолиз) для определения первичных процессов в фотохимии карбоксилатных комплексов переходных металлов затруднено ввиду того, что предполагаемые промежуточные частицы не имеют интенсивных полос поглощения в видимой или ближней УФ-области спектра. Исключением является оксалат Fe^{III}, при лазерном возбуждении которого образуется интермедиат с интенсивным поглощением в области 400 нм — предположительно, комплекс Fe^{II} с органическим радикалом⁹.

Для регистрации слабо поглощающих интермедиатов необходимо использовать акцепторы — соединения, которые в реакциях с исследуемым радикалом дают интермедиат с интенсивным характеристическим поглощением. Примером реализации такого подхода является доказательство образования гидроксильного радикала при фотолизе гидроксокомплекса Fe^{III} (см. лит.^{10,13–16}).

Целью данной работы является поиск эффективных акцепторов короткоживущих промежуточных частиц, возникающих при фотолизе комплек-

^{© 2007 «}Известия Академии наук. Серия химическая», Российская академия наук, Отделение химии и наук о материалах Российской академии наук, Институт органической химии им. Н. Д. Зелинского Российской академии наук

са [Fe^{III}Tart]⁺. Данный подход может быть распространен на комплексы Fe^{III} с другими карбоновыми кислотами.

Экспериментальнаяџ часть

Спектры промежуточных соединений и кинетику изменения оптической плотности изучали на установке лазерного импульсного фотолиза с возбуждением XeCl лазером (308 нм, длительность импульса 20 нс, энергия импульса 20 мДж)¹⁷. Для получения комплекса [Fe^{III}Tart]⁺ использовали перхлорат Fe^{III} и винную кислоту с концентрациями обоих реагентов $5 \cdot 10^{-4}$ моль $\cdot \pi^{-1}$ при pH 3.0. В этих условиях (константы устойчивости lg $K_1 = 7.49$ и lg $K_{1,2} = 11.86$ (см. лит.¹⁸), уравнения (9)—(10)) 86% ионов Fe^{III} связаны в комплекс [Fe^{III}Tart]⁺.

Обсуждение полученных результатов

УФ-спектр комплекса приведен на рисунке 1 (кривая *1*). Для удаления кислорода растворы продували аргоном в течение 15 мин.

$$Fe^{3+} + Tart^{2-} \stackrel{K_1}{\Longrightarrow} [Fe^{III}Tart]^+, \qquad (9)$$

$$[Fe^{III}Tart]^+ + Tart^{2-} \xleftarrow{} [Fe^{III}(Tart)_2]^-.$$
(10)

В качестве акцептора промежуточных радикалов использовали дикатион метилвиологена (MV²⁺).

Рис. 1. УФ-спектры поглощения водных растворов комплекса [Fe^{III}Tart]⁺ при рН 3.0 (*I*), дикатиона метилвиологена MV^{2+} при рН 5.5 (*2*) и катион-радикала MV^{++} (*3*).

Источником ионов MV²⁺ был метилвиологен дихлорид гидрат («Aldrich»). Данный выбор обусловлен восстановительными свойствами радикала -СООН-СНОН- СНОН, возникающего в результате декарбоксилирования первичного радикала -СООН-СНОН-СНОН-СОО (реакции (1)-(2)). Ранее MV²⁺ неоднократно использовали в качестве ловушки радикалов-восстановителей в экспериментах по импульсному радиолизу¹⁹⁻²³ и импульсному фотолизу^{24—26}. В оптическом спектре дикатиона MV^{2+} (см. рис. 1) имеется слабое поглощение на длине волны лазерного излучения ($\varepsilon_{308} = 425 \text{ л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$). Использованные концентрации MV²⁺ и комплекса железа(III) близки, поэтому основной поглощающей частицей является комплекс [Fe^{III}Tart]⁺, для которого $\varepsilon_{308} = 6250 \, \text{л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$.

При фотолизе раствора $[Fe^{III}Tart]^+$ в отсутствии MV^{2+} наблюдается ступенчатое просветление в области полосы поглощения исходного комплекса (рис. 2, *a*). Таким образом, промежуточные частицы действительно имеют очень слабое поглоще-

Рис. 2. Кинетические кривые, зарегистрированные при лазерном импульсном фотолизе (308 нм) водных растворов (pH 3.0) комплекса [Fe^{III}Tart]⁺ (5 · 10⁻⁴ моль · π^{-1}) (температура 298 К, толщина кюветы 1 см, продувка аргоном в течение 15 мин, концентрация метилвиологена 0 (*a*) и 1 · 10⁻³ моль · π^{-1} (*b*)).

ние в области 300—800 нм. Отсутствие изменений в концентрации комплекса [Fe^{III}Tart]⁺ во временно́м диапазоне до 400 мкс свидетельствует также о небольшой величине константы скорости реакции (3) $(k_3 < 5 \cdot 10^5 \, \text{л} \cdot \text{моль}^{-1} \cdot \text{c}^{-1}).$

Кинетические кривые изменения поглощения [Fe^{III}Tart]⁺ после добавления MV^{2+} показаны на рисунке 2, *b*. На рисунке 3, *a* приведен дифференциальный спектр поглощения, возникающий при фотолизе [Fe^{III}Tart]⁺ в присутствии MV^{2+} . На фоне просветления, обусловленного исчезновением исходного комплекса, наблюдаются полосы поглощения в области 370—400 нм и менее интенсивная полоса поглощения с максимумом при 605 нм. Эти полосы принадлежат катион-радикалу MV^{+} (см. лит.^{27–29}) (рис. 1, кривая *3*).

Образование катион-радикала MV^{•+} происходит в результате двух процессов. Во-первых, это прямой фотолиз дикатиона метилвиологена, молярный коэф-

Рис. 3. Лазерный импульсный фотолиз (308 нм) дезаэрированных водных растворов (pH 3.0) комплекса [Fe^{III}Tart]⁺ (5·10⁻⁴ моль·л⁻¹) в присутствии MV²⁺ (1·10⁻³ моль·л⁻¹); *а* — дифференциальные спектры поглощения, зарегистрированные через 0 (*I*) и 8 (*2*) мкс после лазерного импульса, *b* — пример расчета кинетической кривой возникновения и гибели анион-радикалов MV⁺⁺ (396 нм) при концентрации метилвиологена 4·10⁻⁴ моль·л⁻¹. Сплошная линия — аппроксимация кинетической кривой в результате решения системы дифференциальных уравнений, соответствующих реакциям (4), (11), (12) с константами скорости $2k_4 = 1.2 \cdot 10^9 \text{ л} \cdot \text{моль}^{-1} \cdot \text{с}^{-1}$, $k_{11} = 4.0 \cdot 10^6 \text{ л} \cdot \text{моль}^{-1} \cdot \text{с}^{-1}$, $k_{12} = 2.3 \cdot 10^8 \text{ л} \cdot \text{моль}^{-1} \cdot \text{с}^{-1}$.

фициент поглощения которого на длине волны лазерного излучения (308 нм) равен 430 л • моль⁻¹ • см⁻¹ (рис. 1, кривая 2). Эта фотореакция известна в литературе³⁰. По-видимому, прямое образование катионрадикалов происходит в результате фотолиза комплексов [MV²⁺(Cl⁻)]. В процессе подгонки кинетических кривых образование MV⁺⁺ непосредственно в результате фотолиза учитывали введением небольшой (~10⁻⁷ моль • л⁻¹) начальной концентрации катионрадикала метилвиологена.

Кроме того, катион-радикал MV^{+} образуется в реакции MV^{2+} с органическим анион-радикалом. Мы предположили, что таковым является анионрадикал -COOH—CHOH—·CHOH, возникающий в результате декарбоксилирования первичного анион-радикала -COOH—CHOH—CHOH—COO· (реакция (2)). Если в растворе отсутствует кислород и другие окислители, концентрация катион-радикалов MV^{+} не изменяется в течение нескольких минут^{27,28}. В нашем случае скорость исчезновения катион-радикалов росла при увеличении концентрации исходного комплекса, что указывает на наличие реакции между MV^{+} и [Fe^{III}Tart]⁺.

Предлагаемая нами кинетическая схема реакций с участием метилвиологена включает следующие реакции (в дополнение к реакциям (1)—(8)):

$$-OOC-CHOH-CHOH + MV^{2+} \implies$$

$$-OOC-CHOH-CHO + MV^{+} + H^{+}, \qquad (11)$$

$$MV^{+} + [Fe^{III}(CH(OH)COO^{-})_{2}]^{+} \implies$$

$$= MV^{2+} + [Fe^{II}(CH(OH)COO^{-})_{2}]. \qquad (12)$$

Стандартный восстановительный потенциал окислительно-восстановительной пары MV²⁺/MV⁺ относительно водородного электрода равен -0.45 В (см. лит.³¹). Для окислительно-восстановительной пары ⁻OOC-CHOH-CHO, H⁺/⁻OOC-CHOH-[•]CHOH на основании анализа литературных данных по редокс-потенциалам для альдегидов и кетонов можно было ожидать значения, лежащего в диапазоне от -1 до -2 В (см. лит.³¹). В результате равновесие реакции (11) должно быть сдвинуто вправо, что и подтверждается ростом интенсивности полос поглощения катион-радикала MV⁺ (см. начальные участки кинетических кривых на рис. 2. b). Окислительно-восстановительный потенциал пары [Fe^{III}(CH(OH)COO⁻)₂]⁺/ [Fe^{II}(CH(OH)COO⁻)₂] положительный, и равновесие в реакции (12) также должно быть сдвинуто вправо.

Пример расчета кинетической кривой образования и исчезновения катион-радикалов MV^{+} в результате решения системы дифференциальных уравнений, соответствующих реакциям (4), (11), (12), приведен на рисунке 3, *b*. Эти реакции представляют собой минимальный набор, позволяющий описать кинетические кривые. Расчеты проводили в предположении, что константа скорости реакции декарбоксилирования (2) $\geq 10^7$ с⁻¹. В этом случае начальную концентрацию анион-радикалов -OOC—CHOH—·CHOH можно считать равной величине уменьшения концентрации исходного комплекса [Fe^{III}Tart]⁺ под действием лазерного импульса. В литературе отсутствуют данные по константам скорости декарбоксилирования радикалов типа -ООС—СНОН—СНОН—СОО[•], не имеющих поглощения в доступной для регистрации спектральной области. Константы скорости декарбоксилирования различных арилоксильных радикалов, имеющих интенсивное поглощение в видимой области спектра, находятся в диапазоне 10^6 —5 · 10^7 c⁻¹ (см. лит.³²).

Средние значения констант скорости, полученные в результате расчета набора кинетических кривых, соответствующих концентрации $[Fe^{III}Tart]^+ 4.3 \cdot 10^{-4}$ моль · n^{-1} и концентрациям MV²⁺ (1—4) · 10⁻⁴ моль · n^{-1} (рН 3.0, ионную силу раствора изменяли в пределах (3.6—5.4) · 10⁻³ моль · n^{-1}), приведены ниже. При расчетах принимали, что коэффициент поглощения катион-радикала MV⁺⁺ на длине волны 396 нм равен 41500 л · моль⁻¹ · см⁻¹ (см. лит.²⁷).

Реакция	(4)	(11)	(12)
k/π^{-1} •моль•с ⁻¹	$(6\pm 2) \cdot 10^8$	$(4.4\pm0.6)\cdot10^{6}$	$(1.8\pm0.6)\cdot10^8$

Таким образом, регистрация катион-радикала MV^{+} в опытах по лазерному импульсному фотолизу $[Fe^{III}Tart]^+$ однозначно свидетельствует о присутствии в системе радикала с восстановительными свойствами (в нашем случае $^-OOC-CHOH-^+CHOH)$ и под-тверждает механизм фотолиза $[Fe^{III}Tart]^+$ (см. реакции (1)—(8)), предложенный на основании анализа конечных продуктов фотореакций.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 05-03-32474, № 06-03-32110, № 05-03-39007-ГФЕН, № 06-03-90890-Мол) и Программы комплексных интеграционных проектов Сибирского отделения Российской академии наук (грант 4.16, 2006).

Список литературы

- 1. Y. Zuo and J. Hoigne, Environ. Sci. Technol., 1992, 26, 1014.
- 2. W. Feng and D. Nansheng, Chemosphere, 2000, 41, 1137.
- 3. H. B. Abrahamson, A. B. Rezvani, and J. G. Brushmiller, Inorg. Chim. Acta, 1994, 226, 117.
- 4. B. C. Gelbert, J. R. L. Smith, P. MacFaul, and P. Tailor, J. Chem. Soc., Perkin Trans. 2, 1996, 511.
- D. Nansheng, W. Feng, L. Fan, and L. Zan, *Chemosphere*, 1997, 35, 2697.
- D. Nansheng, W. Feng, L. Fan, and X. Mei, *Chemosphere*, 1998, **36**, 3101.

- 7. W. Feng, Z. Yuegang, and D. Nansheng, *Chemosphere*, 1999, **37**, 2079.
- 8. J. Shima and J. Makanova, Coord. Chem. Rev., 1997, 160, 161.
- 9. V. Nadtochenko and J. Kiwi, J. Photochem. Photobiol. A, Chem., 1996, 99, 145.
- 10. V. Nadtochenko and J. Kiwi, Inorg. Chem., 1998, 37, 5233.
- 11. Y. Zuo and J. Zhan, Atmospheric Environment, 2005, 39, 27.
- L. Wang, C. Zhang, W. Feng, D. Nansheng, E. M. Glebov, and N. M. Bazhin, *React. Kinet. Catal. Lett.*, 2006, **89**, 183.
- P. Mazellier, M. Sarakha, and M. Bolte, *New J. Chem.*, 1999, 23, 133.
- 14. N. Brand, G. Mailhot, M. Sarakha, and M. Bolte, J. Photochem. Photobiol. A, Chem., 2000, 135, 221.
- I. P. Pozdnyakov, E. M. Glebov, V. F. Plyusnin, V. P. Grivin, Yu. V. Ivanov, D. Yu. Vorobyev, and N. M. Bazhin, *Pure Appl. Chem.*, 2000, **72**, 2187.
- I. P. Pozdnyakov, Yu. A. Sosedova, V. F. Plyusnin, E. M. Glebov, V. P. Grivin, D. Yu. Vorobyev, and N. M. Bazhin, *Int. J. Photoenergy*, 2004, 6, 89.
- V. P. Grivin, I. V. Khmelinski, V. F. Plyusnin, I. I. Blinov, and K. P. Balashev, *J. Photochem. Photobiol. A, Chem.*, 1990, 51, 167.
- Ю. Ю. Лурье, Справочник по аналитической химии, Химия, Москва, 1979, 344.
- 19. C. L. Bird and A. T. Kuhn, Chem. Soc. Rev., 1981, 10, 49.
- M. Venturi, Q. G. Mulazzani, and M. Z. Hoffman, *Radiat. Phys. Chem.*, 1984, 23, 229.
- Q. G. Mulazzani, M. Venturi, and M. Z. Hoffman, J. Phys. Chem., 1985, 89, 722.
- Q. G. Mulazzani, M. D'Angelantonio, M. Venturi, M. Z. Hoffman, and M. A. J. Rodgers, J. Phys. Chem., 1986, 90, 5347.
- 23. N. Chitose, J. A. LaVerne, and Y. Katsumura, *J. Phys. Chem. A*, 1998, **102**, 2087.
- 24. N. Srividya, P. Ramamurthy, and V. T. Ramakrishnan, *Phys. Chem. Chem. Phys.*, 2000, **2**, 5120.
- 25. S. M. B. Costa, P. Lopez-Cornejo, D. M. Togashi, and C. A. T. Laia, J. Photochem. Photobiol. A, Chem., 2001, 142, 151.
- D. M. Togashi and S. M. B. Costa, *Phys. Chem. Chem. Phys.*, 2002, 4, 1150.
- 27. T. Watanabe and K. Honda, J. Phys. Chem., 1982, 86, 179.
- 28. S. Solar, W. Solar, N. Getoff, J. Holcman, and K. Sehested, J. Chem Soc., Faraday Trans. 1, 1985, 81, 1101.
- 29. H. Shiraishi, G. V. Buxton, and N. D. Wood, *Rad. Phys. Chem.*, 1989, **33**, 519.
- J. F. McKellar and P. H. Turner, *Photochem. Photobiol.*, 1971, 13, 437.
- 31. P. Wardman, J. Phys. Chem. Ref. Data, 1989, 18, 1637.
- 32. J. Wang, T. Tateno, H. Sakuragi, and K. Tokumaru, J. Photochem. Photobiol. A, Chem., 1995, 92, 53.

Поступила в редакцию 27 февраля 2007; после доработки — 26 марта 2007