ПРОЧИЕ ВОПРОСЫ ФИЗИЧЕСКОЙ ХИМИИ

УДК 536.758+541.124

ВЫЧИСЛЕНИЕ СТАТИСТИЧЕСКОЙ СУММЫ ОСЦИЛЛЯТОРА МОРЗЕ. КУМУЛЯНТНОЕ ПРИБЛИЖЕНИЕ

© 2005 г. М. Л. Стрекалов

Российская академия наук, Сибирское отделение, Институт химической кинетики и горения, Новосибирск E-mail: strekalov@ns.kinetics.nsc.ru Поступила в редакцию 26.03.2004 г.

Предложен метод приближенной аналитической оценки колебательной статистической суммы, позволяющий получать равномерно пригодное приближение во всем диапазоне температур. Учитено влияние связи колебаний с вращением.

Несмотря на громадный прогресс в компьютерных вычислениях, не уменьшается интерес к приближенному аналитическому описанию термодинамических функций газов во всем диапазоне изменения температуры от нуля и до границы тепловой диссоциации молекул. Колебательный вклад в различные термодинамические функции выражается через величину колебательной статической суммы (Q) и ее первые две производные по температуре; она используется также в расчетах распределения молекул между различными колебательными состояниями и встречается в выражении для интенсивностей колебательно-вращательных переходов. Такое описание необходимо также для оценки влияния ангармоничности колебаний и взаимодействия колебаний с вращением на скорость реакций, которые в статистической теории выражаются через суммы состояний активированной и невозбужденной молекулы [1, 2]. Для оценки таких эффектов можно применить метод эффективных классических статсумм [3] или полуклассическое приближение [4]. В этой работе будет приведена простая аналитическая формула для суммы состояний осциллятора Морзе, которую удается вывести, применяя метод кумулянтного разложения [5]. В рамках этого подхода удается также легко оценить влияние эффектов взаимодействия колебаний с вращением.

При больших амплитудах молекулярных колебаний гармоническое приближение становится непригодным. Для наших целей будем использовать модель осциллятора Морзе, которая хорошо описывает энергетические уровни реальных молекул с учетом конечного числа уровней в колебательном спектре. В этом случае имеем

$$E_n = \hbar \omega_e (n + 1/2) [1 - x_e (n + 1/2)], \qquad (1)$$

где *п* меняется от нуля до $n_{\max} = N$, определяемого условием $E_{N+1} \le E_N$. Это неравенство для осцилля-

тора Морзе дает $N = 1/2x_e$. В этих выражениях x_e – константа ангармонизма для двухатомных молекул.

Будем исходить из определения колебательной части статистической суммы

$$Q = \sum_{n=0}^{N} \exp[-\varepsilon_0 - \theta(1-x_e)n + x_e \theta n^2].$$
 (2)

Ради краткости обозначений положим $\theta = \hbar \omega_e / k_B T$ и через $\varepsilon_0 = \theta (1 - x_e/2)/2$ обозначим энергию нулевых колебаний в единицах $k_B T$. Вначале подробно рассмотрим случай гармонического осциллятора с конечным числом уровней ("обрезанный" осциллятор). Вычисление статистической суммы производится элементарно

$$Q_{h}(\theta) = \sum_{n=0}^{N} e^{-n\theta} = \frac{1 - e^{-(N+1)\theta}}{1 - e^{-\theta}}.$$
 (3)

Введем обозначение для моментов этого распределения

$$m_k(\theta) = \frac{1}{Q_h(\theta)} \sum_{n=0}^N n^k e^{-n\theta}.$$
 (4)

Поскольку каждый момент пропорционален производной соответствующего порядка от выражения (3) по θ , то все они в принципе могут быть рассчитаны аналитически. После элементарных вычислений результат запишем в виде общей формулы (k = 1, 2, ...)

$$m_{k}(\theta) = \frac{e^{-\theta}}{1 - e^{-(N+1)\theta}} \times \left[\frac{f_{k}(\theta)}{(1 - e^{-\theta})^{k}} - e^{-N\theta} \sum_{p=0}^{k} \binom{k}{p} N^{k-p} \frac{f_{p}(\theta)}{(1 - e^{-\theta})^{p}}\right].$$
(5)

Колебательная часть статистической суммы $H_2(Q)$ в зависимости от температуры: 1 – осциллятор Морзе, 2 – гармонический осциллятор, 3 – первое кумулянтное приближение, 4 – предел больших N.

При p = 0 полагаем $f_0(\theta) = 1$ и остальные функции $f_p(\theta)$ можно найти из уравнения

$$f_p(\theta) = \sum_{r=0}^{p-1} A_{pr} e^{-r\theta}.$$
 (6)

В справочных целях приведем коэффициенты A_{pr} , достаточные для нахождения первых шести функций этого вида

Выражения для первых двух моментов, которые понадобятся в дальнейшем, таковы:

$$m_{1}(\theta) = \frac{e^{-\theta}}{1 - e^{-(N+1)\theta}} \left[\frac{1}{1 - e^{-\theta}} - e^{-N\theta} \left(N + \frac{1}{1 - e^{-\theta}} \right) \right], (8)$$

$$m_{2}(\theta) = \frac{e^{-\theta}}{1 - e^{-(N+1)\theta}} \left[\frac{1 + e^{-\theta}}{(1 - e^{-\theta})^{2}} - e^{-N\theta} \left(N^{2} + \frac{2N}{1 - e^{-\theta}} + \frac{1 + e^{-\theta}}{(1 - e^{-\theta})^{2}} \right) \right].$$
(9)

Теперь вернемся к определению (2). Последнее слагаемое в экспоненте можно рассматривать как возмущение и, следовательно, законно разложить его в степенной ряд, так что сразу получаем

$$Q = Q_h(\theta_s) e^{-\varepsilon_0} \sum_{k=0}^{\infty} \frac{(x_e \theta)^k}{k!} m_{2k}(\theta_s), \qquad (10)$$

где $\theta_s = \theta(1 - x_e)$, как это видно из (2). Основная идея дальнейшего вывода состоит в следующем: сумму, фигурирующую в (10), представим в виде кумулянтного разложения по степеням $x_e \theta$ [5]

$$\sum_{k=0}^{\infty} \frac{(x_e \theta)^k}{k!} m_{2k}(\theta_s) = \exp\left(\sum_{k=1}^{\infty} \frac{(x_e \theta)^k}{k!} m_k\right), \quad (11)$$

где

μ

$$\mu_1 = m_2(\theta_s),$$

$$\mu_2 = m_4(\theta_s) - m_2(\theta_s)^2, \qquad (12)$$

$$\mu_3 = m_6(\theta_s) - 3m_2(\theta_s)m_4(\theta_s) + 2m_2(\theta_s)^3$$

и т.д. Тогда из (10)–(12) получаем для колебательной статистической суммы выражение тождественное (2), но записанное по-другому:

$$Q = Q_h(\theta_s) \exp[-\varepsilon_0 + x_e \theta m_2(\theta_s) + C_Z].$$
(13)

Если для слагаемого C_Z ограничиться поправкой второго порядка по $x_e \theta$, а именно

$$C_{Z} = \frac{(x_{e}\theta)^{2}}{2} [m_{4}(\theta_{s}) - m_{2}(\theta_{s})^{2}], \qquad (14)$$

то выражение (13) становится приближенным. Однако главное достижение от применения кумулянтного разложения состоит в том, что уже первое приближение дает достаточно высокую точность, позволяя получать равномерно пригодное приближение статистической суммы во всем диапазоне температур (рисунок).

Для почти всех двухатомных молекул параметр N – очень большое число: N = 18 для водорода, т.е. "легкой" молекулы и N = 174 для "тяжелого" йода [6]. Рассмотрим теперь частный случай, когда число колебательных уровней можно формально устремить к бесконечности. Будем считать, что $N\theta \ge 1$ и опустим все зависящие от Nслагаемые в (9). Тогда выражение (13) для коле-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 79 № 3 2005

бательной статистической суммы можно переписать следующим образом

$$Q = \frac{1}{2\operatorname{sh}(\theta_s/2)} \exp\left[-\frac{x_e\theta}{4} + \frac{x_e\theta e^{-\theta_s/2}\operatorname{cth}(\theta_s/2)}{2\operatorname{sh}(\theta_s/2)}\right]. (15)$$

В качестве примера на рисунке приведены результаты расчета статистической суммы водорода с $\omega_e = 4401$ см⁻¹ и $x_e \omega_e = 121$ см⁻¹ [6]. На рисунке приведены точные значения Q, рассчитанные по (2), приближенные значения, найденные согласно уравнений (13) и (15) с $C_Z = 0$, а также данные, соответствующие гармоническому осциллятору с $N = \infty$. Как видно, аналитическая формула (13) дает хорошее согласие во всем исследованном интервале температур с максимальной погрешностью не более 8%. С учетом поправки второго порядка (14) максимальная погрешность уменьшается до 3%. Интересно отметить, что в асимптотическом пределе ($T \longrightarrow \infty$) статистическая сумма стремится к пределу N + 1 для всех моделей, оперирующих с конечным числом колебательных уровней, включая гармонический осциллятор с обрезанием. К этому стоит добавить, что во всей области температур, ограниченной сверху точкой Т_с, где происходит пересечение кривых 1 и 4 (рисунок), приближение (15) дает даже меньшую погрешность, чем исходное уравнение (13), из которого оно было получено. Приведем численные значения температуры T_с для ряда молекул: водород – 29000, азот - 69000, йод - 13000 К. Ясно, что при таких температурах происходит практически полная тепловая диссоциация этих молекул [1, 2, 7]. Следовательно, с практической точки зрения (15) можно применять во всей области температур, где молекула существует как связанная система.

При достаточно высоких температурах, когда возбуждены колебания с большими квантовыми числами n, могут стать существенными не только эффекты ангармоничности колебаний, но также взаимодействие колебаний с вращением молекулы. В этом случае внутреннюю статистическую сумму можно представить как произведение вращательной части, колебательной части и поправки ΔQ к статистической сумме. При совместном учете колебательных и вращательных степеней свободы нужно записать для энергии уровней выражение $E_n + E_j + \Delta E_{nj}$, в котором поправка, возникающая из-за взаимодействия колебаний с вращением, выглядит как [6]

$$\Delta E_{nj} = -\alpha_e \left(n + \frac{1}{2} \right) j(j+1), \qquad (16)$$

где α_e – константа взаимодействия колебаний с вращением, *j* – квантовое число вращательного углового момента. Слагаемое – $\alpha_e/2$ можно вклю-

ЖУРНАЛ ФИЗИЧЕСКОЙ ХИМИИ том 79 № 3 2005

чить в определение вращательной постоянной B_0 основного колебательного уровня. Далее поступаем также как при выводе уравнения (13). Добавляя к ангармонической поправке слагаемое (16), сразу находим

$$\Delta Q = \exp\left[\frac{\alpha_e}{B_0}m_1(\theta_s)\beta I_1(\beta)\right], \qquad (17)$$

где $\beta = B_0/k_{\rm B}T$ и

$$I_1(\beta) = \frac{1}{Q_{\text{rot}}} \sum_{j=0}^{\infty} (2j+1)j(j+1) \exp[-\beta j(j+1)].$$
(18)

При высоких температурах, когда $\beta \ll 1$, выражение $\beta I_1(\beta)$ можно представить в виде степенного ряда

$$\beta I_1(\beta) = 1 - \frac{1}{3}\beta - \frac{1}{45}\beta^2 - \frac{8}{945}\beta^3 - \dots$$
(19)

Заметим, что при $\beta \ll 1$ неравенство $N\theta \gg 1$ будет выполняться вплоть до очень высоких температур, и тогда момент $m_1(\theta_s)$ из (8) можно записать приближенным образом, формально устремив Nк бесконечности. Ангармоничность колебаний и взаимодействие колебаний с вращением являются эффектами принципиально одного порядка малости. С учетом обоих эффектов приходим к окончательному результату

$$Q = \frac{1}{2 \operatorname{sh}(\theta_s)} \exp\left[-\frac{x_e \theta}{4} + \frac{e^{-\theta_s/2} (x_e \theta \operatorname{ch}(\theta_s/2) + \alpha_e/B_0)}{2 \operatorname{sh}(\theta_s/2)}\right].$$
(20)

Поскольку нет никаких ограничений снизу по температуре для справедливости уравнения (15), то при необходимости можно повысить точность формулы (20), учитывая поправки по β из (19). Эта аналитическая формула дает оценку статистической суммы с очень хорошей точностью. Например, максимальная погрешность не превышает 1% при температурах меньших 5000, 12000 и 2400 К для водорода, азота и йода соответственно.

В заключение сделаем два замечания. Во-первых, чтобы получить желаемую оценку статистической суммы достаточно знать спектроскопические параметры ω_e и $x_e\omega_e$, а для учета влияния взаимодействия колебаний с вращением еще два параметра B_e и α_e . Так что аналитическая формула (20) действительно очень удобна для использования. Во-вторых, развитый метод может быть очень полезным для случая многоатомных молекул. В частности, для невырожденных колебаний можно сразу использовать формулу (20) с соответствующим изменением обозначений. Для вырожденных колебаний необходимо в выражении для энергии колебательных уровней учитывать добавку, из-за которой происходит расщепление уровней, зависящее от квантовых чисел колебательных угловых моментов и симметрии расщепляемых уровней [8]. Предварительные результаты, полученные в этом направлении, являются обнадеживающими.

СПИСОК ЛИТЕРАТУРЫ

1. Никитин Е.Е. Теория элементарных атомно-молекулярных процессов в газах. М.: Химия, 1970.

- 2. *Кузнецов Н.М.* Кинетика мономолекулярных реакций. М.: Наука, 1982.
- 3. Feynman R.P., Kleinert H. // Phys. Rev. A. 1986. V. 34. № 6. P. 5080.
- 4. Korsch H.J. // J. Phys. A. 1979. V. 12. № 9. P. 1521.
- 5. *Kubo R.* // J. Phys. Soc. Japan. 1962. V. 17. № 7. P. 1100.
- Радциг А.А., Смирнов Б.М. Справочник по атомной и молекулярной физике. М.: Атомиздат, 1980.
- 7. *Hansen C.F.* // J. Chem. Phys. 1991. V. 95. № 10. P. 7226.
- Жилинский Б.И., Перевалов В.И., Тютерев В.Г. Метод неприводимых тензорных операторов в теории спектров молекул. Новосибирск. Наука, 1987.