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Abstract

On the basis of the Poisson summation formula, an explicit expression is proposed to evaluate the vibrational partition function for a
mode with either negative or positive anharmonicity. This formula gives numerical values almost identical to exact values over the entire
temperature range from zero to infinity. The developed approximation will also be available in numerical calculations of the whole vibra-
tional partition function for polyatomic molecules.
� 2007 Elsevier B.V. All rights reserved.
1. Introduction

Vibrational contribution to various thermodynamic
functions of a molecular gas is expressed in terms of a par-
tition function and its first two derivatives with respect to
temperature. The partition function can be either calcu-
lated by direct method or evaluated by approximate analyt-
ical approach, provided that molecular energy levels are
known. Calculations of vibrational energy levels and vibra-
tional partition functions for a given potential energy sur-
face are the basic problems in molecular spectroscopy and
statistical mechanics. Harmonic vibrational frequencies are
obtained by normal mode analysis, while anharmonic ones
are calculated by the vibrational self-consistent field
method or by second order perturbation theory [1–4]. It
has been mentioned more than once that the anharmonic-
ity of molecular vibrations can play an important role in
calculations of thermodynamic functions [4].

This raises the question of whether the use of approxi-
mate methods for the calculation of partition functions of
polyatomic molecules. In most cases the common har-
monic approximation is employed for which the energy lev-
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els and partition functions are given by simple functions of
the normal mode frequencies. Unfortunately, this approx-
imation proves to be very inaccurate at high temperatures.
With anharmonic frequencies used in the harmonic
approximation, Truhlar and Isaacson [5] have developed
a simple approximation that provides much better agree-
ment with more rigorous calculations. Independent anhar-
monic mode approximation [6] can also lead to
considerable errors. The situation reverses when the
mode–mode coupling is taken into account by cumulant
expansion [7]. In this case one can apply simple analytical
expressions derived in the present work to the partition
functions of fundamental vibrations. They can be calcu-
lated with extremely high accuracy at any temperatures,
thus we can focus our attention on errors brought about
solely by intermode couplings.

The Morse oscillator is the most simple and realistic
anharmonic oscillator model that has found wide applica-
tion in the description of vibrational motion of diatomic
molecules. On the other hand, as a zero-order approxima-
tion, vibrational modes of polyatomic molecules may be
treated as uncoupled anharmonic ones. They can be
described using the Morse oscillators for stretching vibra-
tions, and Pöschl–Teller oscillators for bending ones. The
calculated partition functions may be then employed as
building blocks to obtain the whole vibrational partition

mailto:strekalov@ns.kinetics.nsc.ru


210 M.L. Strekalov / Chemical Physics Letters 439 (2007) 209–212
function with allowance for intermode couplings. To cor-
rectly estimate the arising errors, the partition functions
of uncoupled modes should be calculated as accurately as
possible.

Recently [7] a simple analytical formula for the partition
function of Morse oscillators has been derived. With cumu-
lant expansion method, the approximation equally suitable
within the whole range of temperatures where a molecule
exists as a bound system has been obtained. The largest dif-
ference did not exceed 8%. This Letter proposes another
approach using the Poisson summation formula. This for-
mula seems to be ideally suited for treating the partition
functions of many simple statistical–mechanical systems,
such as the Morse oscillator and Pöschl–Teller one. Note
that for the characteristic value xe � 0.01 of anharmonicity
constant the newly obtained analytical expression yields
the maximum deviation 0.05% at all temperatures from
zero to infinity.

2. The case of Morse oscillators

Write the Poisson summation formula as [8]

X1
n¼0

f ðnÞ ¼ 1

2
f ð0Þ þ

X1
m¼�1

Z 1

0

f ðxÞe�i2pmxdx ð1Þ

Eq. (1) is exact for well-behaved functions f. For a finite
sum with the upper bound N, Eq. (1) is no longer valid
in this form. An obvious modification of (1) for this case is

XN

n¼0

f ðnÞ ¼
X1
n¼0

f ðnÞ �
X1
n¼0

f ðnþ N þ 1Þ ð2Þ

With Eq. (1) in the right-hand side of (2), we immediately
get

XN

n¼0

f ðnÞ ¼ 1

2
f ð0Þ � f ðN þ 1Þ½ � þ

X1
m¼�1

Z Nþ1

0

f ðxÞe�i2pmxdx

ð3Þ
Let us use the above summation formula for the evaluation
of the partition function of Morse oscillators

Qða; bÞ ¼
XN

n¼0

expðan2 � bnÞ ð4Þ

where a = xeh, b = h(1 � xe) and h = x/kBT. Here x is the
harmonic frequency, xe is the anharmonicity constant; x
and kBT are given in cm�1. There are only N vibrational
energy levels where

N ¼ 1� xe

2xe

� �
ð5Þ

and angular brackets represent the integer part of the
number. The partition function is specified relative to the
zero point energy. This requires multiplying the partition
function by exp(�E0/kBT) where E0 is the zero point
energy.
With Eq. (3), Q(a,b) becomes

Qða; bÞ ¼ 1

2
ð1� cN Þ þ

X1
m¼�1

Z Nþ1

0

exp½ð
ffiffiffi
a
p

x� cÞ2 � c2�dx

ð6Þ
where

cN ¼ exp½aðN þ 1Þ2 � bðN þ 1Þ� ð7Þ
For brevity we introduce the designation

c ¼ bþ i2pm
2
ffiffiffi
a
p ð8Þ

The integral in the right-hand side of Eq. (6) is expressed in
terms of Dawson’s integral. So

Qða; bÞ ¼ 1

2
ð1� cN Þ

þ 1ffiffiffi
a
p F

b
2
ffiffiffi
a
p

� �
þ cN F

2aðN þ 1Þ � b
2
ffiffiffi
a
p

� �� �

þ 2Reffiffiffi
a
p

X1
m¼1

F ðcÞ þ cN F
ffiffiffi
a
p
ðN þ 1Þ � c

� �	 

ð9Þ

where

F ðxÞ ¼ e�x2

Z x

0

et2

dt ð10Þ

Here F(x) is Dawson’s integral, which is tabulated [9] or
can easily be calculated numerically. At small x its behavior
is given by the expansion

F ðxÞ ¼ x� 2

3
x3 þ � � � ð11Þ

For large x we also write two terms of the asymptotic
expansion

F ðxÞ ¼ 1

2x
þ 1

4x3
þ � � � ð12Þ

The lowest-order approximation which retains only the
term with m = 0 is recognized as the classical partition
function, the terms with m 6¼ 0 give the quantum correc-
tions. Simple estimations show that the argument of the
function F(x) is always large for the terms with m 6¼ 0.
For this reason one can take into account all quantum cor-
rections in Eq. (9) using Dawson’s integral asymptotic
expansion. Note that the use of the first term of asymptotic
expansion for Dawson’s integral is the only approximation
necessary for an analytical derivation. Summation of all
quantum corrections can be made in the explicit form by
the formula

1

2
þ
X1
m¼1

2x
x2 þ 4p2m2

¼ � 1

x
þ 1

1� e�x
ð13Þ

So we have

Qða; bÞ ¼ 1

1� e�b
þ 1ffiffiffi

a
p F

b
2
ffiffiffi
a
p

� �
� 1

b
þ QN ða; bÞ ð14Þ

where all terms depending on N are collected in the
expression
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Fig. 1. Percent difference between the exact and approximate partition
functions of Morse oscillators is plotted against h = x/kBT.
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Fig. 2. Vibrational partition functions for H2 as a function of tempera-
ture. (1) and (2) the exact summation and Eq. (20); (3) the first cumulant
approximation.
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QNða; bÞ ¼ cN
1

e2aðNþ1Þ�b � 1
þ 1ffiffiffi

a
p F

2aðN þ 1Þ � b
2
ffiffiffi
a
p

� ��

� 1

2aðN þ 1Þ � b

�
ð15Þ

This is our principal result. Note that Eq. (14) together
with (15) is valid for all numerical values of the parameters
a and b varying from zero to infinity. At large N the term
QN tends to zero.

Consider some particular cases following from general
formula (14). Let xe = 0, however, the number of the
bound states remains finite and equal to N (‘truncated’
oscillators). In this case, by substituting a = 0 and b = h
into Eq. (14), one obtains

Qð0; hÞ ¼ 1� e�hðNþ1Þ

1� e�h
ð16Þ

This is the exact result for the partition function of trun-
cated harmonic oscillators. The concept of truncated oscil-
lators arises when one uses the harmonic approximation
for vibrations in a system that dissociates above certain en-
ergy. Input Eq. (9) shows that this result can be obtained
only when all quantum corrections with m 6¼ 0 are taken
into account.

Now consider the high temperature limit when the
parameters a and b tend to zero. In view of Eqs. (11) and
(12), we find

Qða; bÞ ¼ N þ 1þ a
3
ðN þ 1Þ3 � b

2
ðN þ 1Þ2 ð17Þ

This is the approximate result. The right answer is obtained
directly from Eq. (4)

Qða; bÞ ¼ N þ 1þ a
6
ðN þ 1ÞNð2N þ 1Þ � b

2
NðN þ 1Þ ð18Þ

As is seen, for large N both equations coincide.
Now examine the low temperature limit when the

parameters a and b are very large but a� b. For clarity
we represent them as a = h/(2N + 1) and b = 2Na, where
h� 1. Thus

Qða; bÞ ¼ 1þ e�b þ 2a

b3
ð19Þ

Eq. (19) holds when h > x�1
e ¼ 2N þ 1. A characteristic fea-

ture of this equation is that it involves the power-behaved
term that varies proportionally with T2. This is due to a
very large but finite number of terms in state sum (4).

Finally, let us write the partition function of Morse
oscillators with allowance for the zero point energy

QM ¼ Q½xeh; hð1� xeÞ� exp � h
2

1� xe

2

� �� �
; ð20Þ

where Q(a,b) is given by Eq. (14). Fig. 1 represents the rel-
ative difference between the exact and approximate parti-
tion functions versus h = x/kBT for different values of
the anharmonicity parameter xe = (2N+1)�1. The relative
error is seen to decrease with increasing N (at large N) as
1/N. For diatomic molecules xe � 0.01 (or N � 50) is the
characteristic value. The maximal deviation does not ex-
ceed 0.05% in this case. Commonly, anharmonicity con-
stants for polyatomic molecules are considerably less
than the above value. As an example, Fig. 2 shows the cal-
culations of vibrational partition function of hydrogen
with x = 4401 cm�1 and xex = 121 cm�1; EN = De is the
dissociation energy. At xe = 0.0275 the Eq. (20) gives
numerical values almost identical to exact values with the
difference less than 0.13%. The first cumulant approxima-
tion, Eq. (19) of Ref. [7], provides a reasonably accurate
behavior of QM at temperatures below the dissociation en-
ergy with the difference less than 7.5%. Nevertheless, this
approximation proves to be very inaccurate near the disso-
ciation limit.

3. The case of Pöschl–Teller oscillators

Formally the Pöschl–Teller Hamiltonian with trigono-
metric type potential [10] has the same eigen-spectrum as
the Morse Hamiltonian
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Fig. 3. Percent difference between the exact and approximate partition
functions of Pöschl–Teller oscillators is shown versus h = x/kBT.
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En ¼ E0 þ xð1þ xeÞnþ xexn2 ð21Þ
Fundamental difference is that the anharmonicity constant
is positive, while the Morse oscillator constant is negative.
For this reason bending vibrations (with xii > 0) can be
modeled by the Pöschl–Teller oscillators.

The partition function is of the form

Q0ða; bÞ ¼
X1
n¼0

expð�an2 � bnÞ ð22Þ

In this case a = xeh and b = h(1 + xe). There is no necessity
of calculating this partition function again, since the de-
sired result is easily given by general formula (14) with neg-
ative a and N =1. The integral F(x) is transformed into
the error function for complex values of the argument [9]

�iffiffiffi
a
p F

�ib
2
ffiffiffi
a
p

� �
¼ 1

2

ffiffiffi
p
a

r
exp

b2

4a

� �
erfc

b
2
ffiffiffi
a
p

� �
ð23Þ

The error function is tabulated in [9] and is easy to calcu-
late numerically. Using this equality in Eq. (14) and taking
into account that QN ða; bÞ ¼ 0 at N =1, we immediately
find

Q0ða; bÞ ¼ 1

1� e�b
þ 1

2

ffiffiffi
p
a

r
exp

b2

4a

� �
erfc

b
2
ffiffiffi
a
p

� �
� 1

b
ð24Þ

Consider some particular cases following from Eq. (24).
The harmonic oscillator limit is obtained at a = 0 and b = h

Q0ð0; hÞ ¼ 1

1� e�h
ð25Þ
The partition function is represented as the sum of infinite
series in (22); therefore the high temperature limit is equal
to

Q0ða; bÞ ¼ 1

2

ffiffiffi
p
a

r
ð26Þ

instead of Eq. (17). The low temperature limit for Q 0(a,b) is
found in perfect analogy to Eq. (19)

Q0ða; bÞ ¼ 1þ e�b � 2a

b3
ð27Þ

Eq. (27) is derived based on two terms in the asymptotic
expansion of the error function, thus the range of
applicability of this equation is severely limited. At low
temperatures one should use Eq. (24) without any approx-
imations. Fig. 3 shows the relative difference between the
exact and approximate partition functions versus h at dif-
ferent values of the anharmonicity parameter xe. As is seen,
there is a good agreement between Q 0 and the exact sum-
mation of (22) even in the case of speculative anharmonic-
ity xe = 0.33.

4. Concluding remarks

For diatomic molecules the vibrational partition func-
tion is given by Eq. (14) (or more general Eq. (20)), and
is easily calculated at any temperatures, given the parame-
ters x and xe. Analytical formula makes it possible to study
the partition function behavior in the range of high and
low temperatures for arbitrary number N of the sum terms.
Due to a finite number of terms, only analytical approach
(Eq. (19)) could be employed to study its behavior at low
temperatures. Thus formula (14) is actually very conve-
nient to use. The above analysis can be extended easily to
the case of polyatomic molecules when the mode–mode
coupling is taken into account by cumulant expansion.
Studies in this direction are presently under way.
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[10] G. Pöschl, E. Teller, Z. Phys. 83 (1933) 143.


	An accurate closed-form expression for the partition function of Morse oscillators
	Introduction
	The case of Morse oscillators
	The case of P ouml schl-Teller oscillators
	Concluding remarks
	References


