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Abstract

An exact analytical expression has been derived in the framework of an algebraic model of a forced Morse oscillator for average
energy transferred per collision as a function of the initial vibrational state. This model is shown to include the �supercollision� energy
transfer events.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Collisional relaxation of highly vibrationally excited
molecules has long been the subject of much research,
mainly with the purpose of measuring the average amount
of energy transferred per collision with the internal energy
of parent molecules [1–3]. The best results available for an
understanding of energy transfer processes have been
achieved due to theoretical advances in trajectory-based
calculations (see, e.g. [4–8] and references therein).
Although there is a significant progress in numerical cal-
culations, the analytical approaches allow the insight into
the process under investigation, to make general conclu-
sions, and to formulate correctly problems for computer
simulation. For many years, a simple model of vibra-
tional-translational energy exchange between a Morse
oscillator and structureless atoms in collinear collisions
has drawn attention with respect to the analytical calcula-
tions of both transition probabilities [9–13] and the aver-
age transferred energy [14–18]. An algebraic approach to
the vibrational transitions of the Morse oscillator excited
by external force has allowed Levine and Wulfman [9] to
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find an analytical solution for the probabilities of these
transitions. In this Letter, we are going to demonstrate
that in the framework of this model the average energy
transferred per collision can be calculated precisely with-
out any approximations.

2. Theory

The algebraic analysis of vibrational excitation of a
forced Morse oscillator introduced by Levine and Wulf-
man [9] through a dynamical algebra, su(2), leads to a
closed form result for the transition probabilities between
the bound states, 0 6 n,n 0

6 N (there are only N + 1 bound
states):

Pn!n0 ¼ dðN=2Þ
N
2�n;N2�n0

ðbÞ
h i2

; ð1Þ

where d are the matrix elements for finite rotations [19] and
the parameter q ¼ tan2ðb=2Þ is determined by a forcing
function [9,20]. This model describes transitions between
the bound states only. Transitions to the continuum are
completely absent in the algebraic model. The energy levels
correspond to a Morse oscillator are of the form

En ¼ �De þ xe nþ 1

2

� �
� xexe nþ 1

2

� �2

; ð2Þ
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where De = xe/4xe is the dissociation energy; the number
of the bound states N is equal to (1 � xe)/2xe because by
definition, we get EN = 0. The average energy transferred
per collision is defined by

hDEni ¼
XN
n0¼0

ðEn0 � EnÞPn!n0 . ð3Þ

Thus ÆDEnæ as given by Eq. (3) is the first moment of
probabilities (1), i.e., the average over all possible outcomes
of a collision with the initial energy En. In other words, to
calculate ÆDEnæ, it is necessary to evaluate the moments
Æn 0 � næ and Æn 02 � n2æ with probabilities (1).

Let us calculate now these moments. We use the multi-
plication formula with 3j-symbols to put down the product
of two elements of d-matrices [19]

dðjÞ
mm0 ðbÞ

h i2
¼ ð�1Þm�m0 X2j

J¼0

ð2J þ 1Þ
j j J

m �m 0

� �

�
j j J

m0 �m0 0

� �
dðJÞ
00 ðbÞ; ð4Þ

where the angular momentum j is quite arbitrary, i.e., can
be either integer or non-integer. Then we give m 0 and m02

in terms of the particular values of 3j-symbols, namely
[19]:

m0 ¼ ð�1Þm
0�j

2

ð2jþ 2Þ!
ð2j� 1Þ!

� �1=2 j j 1

m0 �m0 0

� �
ð5Þ

and

m02 ¼ ð�1Þm
0�j

3
jðjþ 1Þ ð2jþ 1Þ!

ð2jÞ!

� �1=2 j j 0

m0 �m0 0

� �(

þ 1

2

ð2jþ 3Þ!
ð2j� 2Þ!

� �1=2 j j 2

m0 �m0 0

� �)
. ð6Þ

The orthogonality condition of 3j-symbols reads the
following

Xj
m0¼�j

j j J

m0 �m0 0

� �
j j k

m0 �m0 0

� �
¼ dJk

2J þ 1
; ð7Þ

where k = 0, 1, 2 in our case. Remember that dð1Þ
00 ¼ cos b

and dð2Þ
00 ¼ ð3cos2b� 1Þ=2. We can apply these equations

to give:Xj

m0¼�j
m0½dðjÞ

mm0 ðbÞ�2 ¼ m cosb; ð8Þ
Xj

m0¼�j
m02½dðjÞ

mm0 ðbÞ�2 ¼
jðjþ 1Þ

2
sin2bþm2

2
ð3cos2b� 1Þ. ð9Þ

The equations derived can be used to solve the problem sta-
ted. Thus, for the first moment, we can readily determine a
simple expression

XN
n0¼0

ðn0 � nÞ dðN=2Þ
N
2�n;N2�n0

ðbÞ
h i2

¼ ðN � 2nÞsin2 b
2
. ð10Þ

Expression for the second moment is more complicated
XN
n0¼0

ðn02 � n2Þ dðN=2Þ
N
2�n;N2�n0

ðbÞ
h i2

¼ ðN þ 4nN � 6n2Þsin2 b
2
þ ½NðN � 1Þ � 6nðN � nÞ�sin4 b

2
.

ð11Þ
Based on these results, the average energy transferred per
collision from Eq. (3) is of the form

hDEni ¼ xe

q
1þ q

� �
ðN � 2nÞ � 2xexe

q
1þ q

� �

� ½ðN � nÞð2nþ 1Þ � n2� � xexe

q
1þ q

� �2

� ½NðN � 1Þ � 6nðN � nÞ�; ð12Þ

where sin2b=2 is substituted by q/(1 + q) according to the
definition of the parameter q, which can be computed from
the equations of motion for the group parameters in terms
of forcing functions [20] (cf. [10]).

3. Results and discussion

Eq. (12) represents our central result. It is seen that the
total energy transfer can be written as a sum of three con-
tributions with a different order of magnitude. When
q � 1, these contributions are of the order Deq, xeq and
Deq

2, respectively. The nonlinear dependence on the vibra-
tional quantum number n arises from the effect of vibra-
tional anharmonicity. In the limit of vanishing
anharmonicity (N ! 1) the parameter q goes to zero,
whereas Nq stays finite. In this limit, one can recast Eq.
(1) to read [21]

dðN=2Þ
N
2�n;N2�n0

ðbÞ
h i2

� J 2
n0�n 2

Nqðnþ n0 þ 1Þ
2

� �1=2 !
; ð13Þ

where Jn is the ordinary Bessel function and q � b2/4. The
linearly perturbed harmonic-oscillator problem has been
solved in the Bessel uniform approximation [22,23] and
the transition probability is

Pn!n0 ¼ J 2
n0�n½2ðe�nÞ

1=2�; ð14Þ
where �n is the �mean� quantum number, e the phase aver-
aged classical energy (in units xe) transferred to the oscilla-
tor initially at rest. A direct comparison gives Nq = e in the
case of vanishing anharmonicity, hence, ÆDEnæ = xee as is
obvious from Eq. (12) under these conditions. Numerous
analytical approaches are available in the literature
[14–18] for an understanding of the behavior of e as a func-
tion of the collision energy for an arbitrary ratio of masses.

Two important particular cases follow immediately
from the general equation:

(i) The oscillator is in the ground state before collision

hDE0i ¼ xeð1� 2xeÞ
Nq
1þ q

� xexeNðN � 1Þ q
1þ q

� �2

.

ð15Þ
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(ii) The oscillator comes into collision in the state n = N

(near the continuum)

hDEN i¼�xeð1�2xeNÞ Nq
1þq

� xexeNðN �1Þ q
1þq

� �2

.

ð16Þ
It is clear that the transferred energy ÆDENæ (being negative)
is of the order xeÆDE0æ. Once again, we point out that tran-
sitions to the continuum were neglected in the algebraic
model. Thus, in lower vibrational states, there is the posi-
tive change in energy per collision whereas the highly
excited oscillator, on the average, only loses energy on
every collision. The position of zero is given by the
equation
nzero ¼
N
3

1þ q
4

� �
2� 1þ 2xe þ ð1� xeÞð1þ q=2Þq=2

ð1� xeÞð1þ q=4Þ2

" #1=28<
:

9=
;.

ð17Þ
For further n, the energy transfer reaches a negative maxi-
mum at

nmax ¼
2N
3

1þ q
4

� �
. ð18Þ

For small q the positions of zero and a maximum are actu-
ally independent of this parameter and are given as N/3
and 2N/3. This is a distinctive feature of energy transfer
intrinsical to the Morse oscillator perturbed by external
force.

Fig. 1 illustrates a characteristic behavior of the trans-
ferred energy as a function of the vibrational state using
hydrogen molecule with xe = 4401 cm�1 and xexe =
121 cm�1 as an example. The value q = 0.019 approxi-
mately represents the collisions H2 + He at the total energy
8xe [24].
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Fig. 1. The average vibrational energy transfer as a function of the initial
vibrational quantum number.
Classical trajectory calculations have confirmed the exis-
tence of collisions that transfer unusually large amounts of
energy (�supercollisions�) [5–8]. For example, in the case of
excited azulene colliding with Xe atoms [6], supercollision
events are observed that are not connected with any partic-
ular range of impact parameters or initial kinetic energies
but permanently involve the approach of the Xe atom
toward a hydrogen atom which is compressed against the
carbon backbone of azulene. This close approach then
results in an impulsive kick from the azulene to the Xe
atom accompanied a large amount of transferred energy.
Let us assume that the Morse oscillator is deactivated by
means of such impulsive supercollision events. These events
leading to large amounts of transferred energy are charac-
terized by large values of the parameter q. When q � 1,
using Eq. (12) one obtains

hDEni ¼ Deð1� xeÞ2 1� 2n
N

� �
�xeð1� xeÞ

2q
1þ 4n� 6n2

N

� �
.

ð19Þ
In this limiting case, the vibrational relaxation becomes
highly efficient. Suffice it to say that when n = N (or 0);
the energy lost (or gained) by the oscillator per collision
is approximately equal to the dissociation energy. For these
collisions, ÆDEnæ depends only slightly on the square of
vibrational quantum number.

A comparison with classical trajectory calculations also
indicates a limited applicability of the algebraic model. In
particular, in this model, the energy transferred from the
levels located near the dissociation limit is always negative
(energy losses) whereas taking transitions to the continuum
into account makes this value positive although not large
[4]. As mentioned in [4], for n � N, about 80% of the trajec-
tories lead to dissociation. However, the negative maxi-
mum position in the dependence of ÆDEnæ on n at 2N/3 is
predicted by the model with much success because for these
n no trajectories leading to dissociation were observed.

Thus, the algebraic model of a forced Morse oscillator
provides a simple and instructive framework for the inter-
pretation of the important trends in the numerical calcu-
lations of energy transfer from highly excited molecule
states.
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