РАСЧЕТ ЭНТАЛЬПИИ ОБРАЗОВАНИЯ [1,2,5]ОКСАДИАЗОЛО[3,4-е][1,2,3,4]-ТЕТРАЗИН-4,6-ДИ-N-ДИОКСИДА С ИСПОЛЬЗОВАНИЕМ СОВРЕМЕННЫХ МНОГОУРОВНЕВЫХ КВАНТОВО-ХИМИЧЕСКИХ МЕТОДИК

В. Г. Киселёв^{1,2}, Н. П. Грицан^{1,2}, В. Е. Зарко¹, П. И. Калмыков³, В. А. Шандаков³

¹Институт химической кинетики и горения СО РАН, 630090 Новосибирск, vkis@ngs.ru ²Новосибирский государственный университет, 630090 Новосибирск ³Федеральный научно-производственный центр <Алтай>, 659322 Бийск

Энтальпия образования в стандартном состоянии нового перспективного высокоэнергетического материала [1,2,5]оксадиазоло[3,4-е][1,2,3,4]-тетразин-4,6-ди-N-диоксида (фуразано-1,2,3,4тетразин-1,3-диоксида) была вычислена с использованием теоретически рассчитанной теплоты образования в газовой фазе и экспериментально измеренной теплоты (энтальпии) сублимации. Теоретические расчеты проводились с использованием высокоточных многоуровневых квантово-химических методов G2, G3 и CBS-QB3.

Ключевые слова: фуразано-1,2,3,4-тетразин-1,3-диоксид, энтальпия образования, энтальпия сублимации, квантово-химические расчеты.

ВВЕДЕНИЕ

Создание высокоэнергетических материалов находится в русле современных тенденций поиска веществ и композиций, использование которых дает возможность существенно повысить рабочие параметры газогенерирующих устройств различного назначения. В частности, в работах [1, 2] показано, что использование окислителей с высокой энтальпией образования в составе ракетных топлив позволяет исключить металлическое горючее в качестве компонента топлива и получить предельно высокие значения удельного импульса. Вместе с тем вещества с высокой энтальпией образования, как правило, характеризуются высокими значениями скорости и давления детонации. В работе [3] проведен детальный анализ условий получения и энергетических характеристик современных высокоэнергетических материалов, в том числе DNAF (C₄N₈O₈) и ONC (C₈N₈O₁₆) с расчетными скоростями детонации 10.0 и 10.1 км/с соответственно. Еще более высокие расчетные значения скоростей детонации имеют гипотетические полиазотистые соединения [3], например N₈ (14.86 км/с) и N₆₀ (17.31 км/с).

В действительности, названные выше соединения не получили широкого распространения, поскольку они либо синтезированы в малых количествах (DNAF и ONC), либо существуют пока только на бумаге (N_x) . Тем не менее анализ их свойств представляет интерес, по крайней мере, с точки зрения поиска общих закономерностей связи строения вещества с энергетическими параметрами его физикохимических превращений. К числу перспективных высокоэнергетических соединений относятся тетразиндиоксиды (TDO), синтезированные в ИОХ им. Н. Д. Зелинского РАН [4, 5]. Расчетное значение удельного импульса для ракетного топлива, содержащего 1,2,3,4тетразин-1,3-диоксид, приведено в работе [6]. Оно оказалось заметно выше, чем для других топлив с высокоэнтальпийными окислителями на базе CNO-соединений, равно как и для топлив, содержащих перспективные бесхлорные окислители (динитрамид аммония и нитроформат гидразина) [7].

Фуразано-1,2,3,4-тетразин-1,3-диоксид (ФТДО) — характерный представитель нового типа стабильных полиазотистых соединений, содержащих уникальную комбинацию из двух непосредственно связанных друг с другом диазеноксидных групп. Целый ряд работ посвящен синтезу ФТДО, изучению

Работа выполнена при финансовой поддержке одного из авторов (В. Г. Киселёва) в рамках проекта INTAS № 06-1000014-6324.

его спектроскопических и термохимических свойств [4, 5, 8–10]. При этом достоверные литературные данные для такого важного параметра, как энтальпия образования ФТДО, практически отсутствуют; существуют только некоторые противоречивые оценки (730 и 995 ккал/кг [6]). Этот факт отражает отсутствие в литературе детальных и обоснованных данных по энергетическим характеристикам (энтальпии образования, барьерам реакций) сравнительно недавно синтезированных высокоэнергетических соединений. Учитывая большие трудности экспериментирования с такими веществами (высокая чувствительность, способность реагировать с непредельными углеводородами, основаниями, эпоксидными смолами, свободными радикалами, а также ограниченно доступные количества вещества), представляется целесообразным проводить детальные теоретические исследования, направленные на установление структуры соединений и определение их энергетических характеристик.

В связи с бурным прогрессом вычислительной техники в последнее время стали доступными квантово-химические расчеты высокого уровня, которые дают достаточную информацию (об электронной энергии молекул, частотах нормальных колебаний и т. д.) для вычисления необходимых термодинамических параметров. При этом различные термодинамические характеристики, в том числе энтальпию образования, можно рассчитать с точностью, близкой к экспериментальной. Данная работа посвящена расчету структуры, ИК-спектров и энтальпии образования ФТДО с использованием современных квантово-химических методов и многоуровневых методик.

ЭКСПЕРИМЕНТАЛЬНЫЕ МЕТОДЫ И МЕТОДИКИ РАСЧЕТОВ

Методы теоретических расчетов

Наиболее точные на настоящий момент квантово-химические расчеты энергетических и термодинамических характеристик веществ проводят с использованием так называемых многоуровневых квантово-химических методик. Лучшие из них позволяют рассчитывать такие свойства, как теплота образования, высота потенциального барьера, тепловой эффект реакции, с точностью, близкой к экспериментальной (≈1 ÷ 2 ккал/моль) [11–13].

В ходе таких вычислений, как правило, сначала оптимизируют геометрию молекулы и определяют частоты нормальных колебаний с использованием методов низкого уровня (HF, MP2 или одним из методов теории функционала плотности, DFT), приемлемых в плане затрат компьютерных ресурсов. Затем для оптимизированной геометрии одним из трудоемких пост-хатри-фоковских методов со стандартным базисом вычисляется электронная энергия, к которой добавляется несколько аддитивных поправок на неполноту базиса, вычисление которых также довольно трудоемко. В настоящее время наиболее широко известны предложенные Дж. Поплом методы G1–G3 [11, 12], также неплохие результаты показывает семейство методов CBS-Q [13], разработанных группой Дж. Петерсона.

Полученные таким способом расчета результаты имеют точность, достаточную для расчетов термодинамических характеристик соединений и процессов. Например, расчеты [11], проведенные методом G3 на стандартном наборе тестовых молекул G2, дали среднее абсолютное отклонение 1.02 ккал/моль для энергии атомизации [12]. Согласно расчету методом CBS-QB3 [13] эта величина составляет 0.87 ккал/моль.

Стандартным для ФТДО является твердое состояние, однако описанные выше высокоточные квантово-химические расчеты возможны только для газовой фазы. Поэтому в данной работе проведены расчеты энтальпии образования ФТДО в газовой фазе при температуре 298 К и давлении p = 1 атм ($\Delta H_{f,298}^{gas}$) с использованием наиболее точных на настоящий момент методов G2 [11], G3 [12] и CBS-QB3 [13]. Энтальпия образования ФТДО в стандартном состоянии (ΔH_f^0) была определена с использованием теоретически рассчитанной величины $\Delta H_{f,298}^{gas}$ и экспериментально измеренной теплоты (энтальпии) сублимации ΔH_{subl} :

$$\Delta H_f^0 = \Delta H_{f,298}^{gas} - \Delta H_{subl}.$$
 (1)

Энтальпию образования в газовой фазе вычисляли следующим образом:

$$\Delta H_{f,298}^{gas}(M) = E_{el}(M) + \text{ZPVE}(M) + [H_{298}(M) - H_0(M)] -$$

$$-\sum_{i}^{products} \left\{ E_{el}(X_i) + \text{ZPVE}(X_i) + \left[H_{298}(X_i) - H_0(X_i) \right] \right\} +$$

$$+\sum_{i}^{products} \Delta H^0_{f,298}(X_i),$$

где $E_{el}(M)$ — полная электронная энергия молекулы, вычисленная квантово-химическими методами; $E_{el}(X_i)$ — электронная энергия конечного продукта распада *i*, рассчитанная аналогичным образом; ZPVE — энергия нулевых колебаний молекулы ($\sum h\nu_i/2$, h — постоянная Планка, ν_i — частоты нормальных колебаний молекул); $H_{298}(X) - H_0(X)$ — термическая поправка к энтальпии; $\Delta H^0_{f,298}(X_i)$ — экспериментальное значение энтальпии образования вещества *i*.

Таким образом, для расчета $\Delta H^{gas}_{f,298}(M)$ по указанной методике достаточно из суммарной энтальпии образования продуктов реакции products

 $\sum_{i} \Delta H_{f,298}^{0}(X_{i})$ вычесть теплоту реакции $M \to \sum X_{i}$. Значения $\Delta H_{f,298}^{0}(X_{i})$ взяты из базы данных Национального института стандартов [14].

Обычно в качестве X_i выбираются атомы, из которых состоит данная молекула. В рассматриваемом случае это реакция атомизации

$$\Phi T \square O \to 2C + 6N + 3O.$$
 (2)

Мы также рассчитывали величину $\Delta H_{f,298}^{gas}(M)$, используя расчетные данные для теплоты другой реакции:

$$\Phi T \square O \rightarrow 2 C O + 3 N_2 + 0.5 O_2. \tag{3}$$

Для анализа точности расчета частот, используемых при определении термической поправки к энтальпии, проведено сравнение ИК-спектров ФТДО и его изотопозамещенных производных, рассчитанных методами MP2 и B3LYP [15, 16], с имеющимися литературными данными [4]. Отметим, что именно эти методы расчета термохимических свойств применяют для оптимизации геометрии в многоуровневых методиках. Во всех расчетах использовался пакет программ Gaussian-98 [17].

Определение энтальпии сублимации

Для экспериментального определения энтальпии сублимации ФТДО проводили измерения упругости его паров на манометрической установке с манометром Бурдона. Навеску образца массой 100 мг помещали в реакционный сосуд, который вакуумировали до остаточного давления менее 1 Торр. Зависимость давления паров ФТДО от температуры аппроксимировали уравнением Клапейрона — Клаузиуса

$$\ln p = -\frac{\Delta H_{subl}}{RT} + \text{const.} \tag{4}$$

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Оптимизация геометрии и расчет ИК-спектров

Результаты расчетов геометрии ФТДО представлены на рис. 1, молекула является плоской. Длины связей, рассчитанные методом MP2/6-31G(d) (используется в методах G2 и G3) и методом B3LYP/6-31G(d) (используется в CBS-QB3), достаточно близки друг к другу (наибольшее отклонение не превышает 0.03 Å). Характерные длины связей (рис. 1) находятся также в хорошем согласии с рентгеноструктурными данными [4], расхождения не превышают 0.03 Å. При этом результаты метода B3LYP лучше согласуются с экспериментом.

Было проведено сравнение колебательных спектров и изотопических сдвигов в них, рассчитанных методом B3LYP, с измеренными экспериментально [4]. Для сравнения брали наиболее интенсивные линии, для которых наблюдался существенный изотопический сдвиг

Рис. 1. Рассчитанные методами B3LYP/6-31G(d) и MP2/6-31G(d) (значения в скоб-ках) длины связей (в ангстремах) в молекуле $\Phi T Д O$

при замещении атома азота в тетразиновом фрагменте (отмечен звездочкой на рис. 1) на изотоп ¹⁵N. Результаты сравнения приведены в табл. 1. Как следует из таблицы, расчет колебательных частот демонстрирует хорошее согласие с экспериментальными данными.

Расчеты энтальпии образования в газовой фазе

Результаты расчетов $\Delta H_{f,298}^{gas}(\Phi T \Box O)$ с использованием реакций (2) и (3) приведены в табл. 2. Разброс результатов от ≈ 169 до ≈ 174 ккал/моль. Несколько выбивается из общего ряда результат расчета методом G3 с использованием реакции атомизации (2) (178.5 ккал/моль). Среднее значение энтальпии образования $\Phi T \Box O$ в газовой фазе составляет, таким образом, $\Delta H_{f,298}^{gas} = 172.6$ ккал/моль. Точность определения этой величины можно оценить как разброс результатов, полученных различными методами (±3 ккал/моль).

Как уже отмечалось, нами использованы наиболее точные на настоящий момент расчет-

Таблица 1 Наиболее интенсивные линии ИК-спектра ФТДО и его изотопозамещенного аналога, см⁻¹

Расчет B3LYP/6-31G(d)		Эксперимент [4]		
ФТДО	¹⁵ N (ФТДО)	ФТДО	¹⁵ N (ФТДО)	
1556	1538	1548	1538	
1507	1502	1517	1507	
1 411	1 409	1 4 2 0	1415	
1 1 2 3	1 1 1 6	1 1 4 8	1 141	
1 592	1 583	1 589	1 589	
668	655	676	662	

Примечания. Для расчетных частот использован стандартный масштабирующий множитель 0.9614 [13].

Т	\mathbf{a}	б	л	и	ц	a	2
---	--------------	---	---	---	---	---	----------

Результаты расчетов энтальпии образования ФТДО различными квантово-химическими методами

Реакция	$\Delta H^{gas}_{f,298},$ ккал/моль				
	метод G2	метод G3	метод CBS-QB3		
2	173.9	178.5	170.5		
3	172.2	171.7	168.8		

ные методики. Однако с их помощью не удается рассчитать энтальпию образования более сложных соединений, например производных ФТДО. С целью тестирования точности методов теории функционала плотности и возможности их применения для расчета свойств более сложных систем энтальпия образования ФТДО была рассчитана также по реакции атомизации (2) методом B3LYP/6-311G(d,p). Полученная величина $\Delta H^{gas}_{f,298} = 185.0$ ккал/моль более чем на 10 ккал/моль превышает среднее значение. При использовании расчетной энтальпии реакции (3) получено $\Delta H_{f,298}^{gas}$ 164.4 ккал/моль. Следует отметить, что метод B3LYP значительно завышает энтальпии образования и в случае нитроалканов [18]. Таким образом, разброс данных, вычисленных методом B3LYP, достаточно велик и эти количественные оценки существенно отличаются от результатов наиболее точных методов, поэтому результаты расчетов менее затратными методами теории функционала плотности могут быть использованы только для полуколичественных оценок.

Определение энтальпии сублимации

Температурная зависимость давления паров ФТДО была изучена в диапазоне 40 ÷ 80 °C с шагом 10 °C, и результаты аппроксимированы уравнением (4) (рис. 2). Определенная таким способом энтальпия сублимации

Рис. 2. Зависимость давления паров Φ ТДО от температуры

ФТДО составляет ΔH_{subl} (ФТДО) = 15.1 \pm 0.8 ккал/моль.

ЗАКЛЮЧЕНИЕ

Таким образом, расчет по формуле (1) дает значение энтальпии образования $\Phi TДO$ в стандартном состоянии $\Delta H_f^0(\Phi TДO) = 158 \pm 4$ ккал/моль или 1010 ± 26 ккал/кг. Данное значение в пределах точности совпадает с одной из величин, использованных в работе [6] (995 ккал/кг). Можно ожидать, что удельный импульс топлива на базе $\Phi TДO$ должен быть близок к рассчитанному в [6].

ЛИТЕРАТУРА

- 1. Лемперт Д. Б., Нечипоренко Г. Н., Долганова Г. П. Зависимость между химическим составом, теплосодержанием и удельным импульсом смесевого твердого ракетного топлива в оптимизированных по энергетике составах // Хим. физика. 1998. Т. 17, № 7. С. 87–94.
- 2. Комаров В. Ф., Шандаков В. А. Твердые топлива, их особенности и области применения // Физика горения и взрыва. 1999. Т. 35, № 2. С. 30–34.
- 3. Талавар М. Б., Сивабалан Р., Астана Ш. Н., Сингх Х. Новые сверхмощные энергетические материалы // Физика горения и взрыва. 2005. Т. 41, № 3. С. 29–45.
- 4. Резчикова К. И., Чураков А. М., Шляпочников В. А., Тартаковский В. А. Спектроскопическое исследование конденсированных 1,2,3,4-тетразин-1,3диоксидов // Изв. АН. Сер. хим. 1995. № 11. С. 2187–2189.
- Rezchikova K. I., Churakov A. M., Shlyapochnikov V. A., Tartakovskii V. A. 1,2,3,4-Tetrazine 1,3-di-N-oxides. Novel high nitrogen compounds: vibrational spectra and structure // Mend. Comm. 1995. N 3. P. 100–102.
- Лемперт Д. Б., Нечипоренко Г. Н., Согласнова С. И. Зависимость удельного импульса композиций ракетных топлив, содержащих окислители на базе атомов С, N и О, от энтальпии образования и элементного состава окислителя // Хим. физика. 2004. Т. 23, № 5. С. 75–81.

- Талавар М. Б., Сивабалан Р., Аннияппан М. и др. Новые тенденции в области создания перспективных высокоэнергетических материалов // Физика горения и взрыва. 2007. Т. 43, № 1. С. 72–75.
- Churakov A. M., Ioffe S. L., Tartakovskii V. A. Synthesis of [1,2,5]oxadiazolo[3,4-e] [1,2,3,4]tetrazine 4,6-di-N-oxide // Mend. Comm. 1995. N 6. P. 227–228.
- Зеленов В. П., Сысолятин С. В., Лобанова А. А Получение и свойства диазен-N-оксидов на основе 3-амино-4нитрофуразана // Материалы всерос. конф. <Энергетические конденсированные системы>, Черноголовка. М.: Янус-К, 2002.
- системы>, Черноголовка. М.: Янус-К, 2002. 10. Зеленов В. П., Сысолятин С. В., Лобанова А. А. Критерии формирования 1,2,3,4-тетразин-1,3-диоксидного цикла // Материалы II всерос. конф. <Энергетические конденсированные системы>, Черноголовка. М.: Янус-К, 2004.
- Curtiss L. A., Raghavachari K., Trucks G. W., Pople J. A. Gaussian-2 theory for molecular energies of first- and secondrow compounds // J. Chem. Phys. 1991. V. 94. P. 7221–7331.
- Curtiss L. A., Raghavachari K., Redfern P. C., et al. Gaussian-3 theory for molecules containing first- and second-row atoms // J. Chem. Phys. 1998. V. 109. P. 7764–7786.
- Montgomery J., Frisch M., Ochtersky J., Peterson G. A complete basis set model chemistry. VI. Use of density fuctional geometries and frequencies // J. Chem. Phys. 1999. V. 110. P. 2822–2827.
- 14. **База** данных Национального института стандартов (www.nist.gov).
- Becke A. D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. V. 98. P. 5648–5652.
- Lee C., Yang W., Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. B. 1988. V. 37. P. 785–789.
- Frisch M. J., et al. Gaussian 98, Revision A.6. Pittsburgh, PA: Gaussian, Inc., 1998.
- 18. Киселев В. Г., Грицан Н. П. Теоретическое исследование влияния химической структуры нитроалканов на механизм и кинетику их термического разложения // Хим. физика. 2006. Т. 25, № 10. С. 54–61.

Поступила в редакцию 25/XI 2006 г.