Спектроскопия и кинетика реакций гермиленов и дигерменов при фотогенерации в конденсированной фазе

В.Ф.Плюснин, М.В.Калетина, Т.В.Лёшина

Институт химической кинетики и горения Сибирского отделения Российской академии наук 630090 Новосибирск, ул. Институтская, 3, факс (383)330–7350

Рассмотрено современное состояние проблемы идентификации и кинетического анализа превращений в конденсированной фазе нестабильных производных двухвалентного германия и их димеров с помощью спектроскопических методов. Значительное внимание уделено сравнению результатов, полученных методами лазерного импульсного фотолиза и спиновой химии.

Библиография — 95 ссылок.

Оглавление

Ι.	Введение	994
II.	Предшественники гермиленов	995
III.	Генерирование промежуточных частиц при фотолизе германийсодержащих соединений	996
	в низкотемпературных матрицах	
IV.	Лазерный импульсный фотолиз германийсодержащих соединений в растворах.	997
	Оптические спектры гермиленов	
V.	Флуоресценция гермиленов	1000
VI.	Электронное строение гермиленов и природа оптической полосы поглощения	1000
VII.	Спектроскопия комплексов гермиленов	1001
VIII.	Колебательные спектры гермиленов	1002
IX.	Реакции гермиленов	1003
Х.	Оптические спектры, колебательные частоты и кинетика исчезновения дигерменов	1006
XI.	Оптические спектры гермильных радикалов	1007
XII.	Стабильные гермилены	1008
XIII.	Сравнение данных методов химической поляризации ядер и лазерного импульсного фотолиза	1009
XIV.	Заключение	1011

І. Введение

В настоящее время наиболее важное направление в химии и фотохимии металлоорганических производных связано с установлением механизмов процессов, в которых участвуют эти соединения. Широкое применение современных физических методов исследований (оптической спектроскопии, спектроскопии ЭПР и ЯМР, химической поляризации ядер

В.Ф.Плюснин. Доктор химических наук, профессор, заведующий лабораторией фотохимии ИХКиГ СО РАН.

Телефон: (383)333–2385, e-mail: plyusnin@ns.kinetics.nsc.ru М.В.Калетина. Аспирантка того же института.

Телефон: (383)333–1405, e-mail: kaletina@ns.kinetics.nsc.ru

Т.В.Лёшина. Доктор химических наук, профессор, заведующая

лабораторией магнитных явлений того же института.

Телефон: (383)333-2385, e-mail: leshina@ns.kinetics.nsc.ru

Область научных интересов авторов: фотохимия молекул и координационных соединений, быстрые первичные процессы в фотохимии, фотоперенос электрона, спиновая химия, исследование сложных радикальных реакций, ион-радикальные процессы в биологии и медицине, супрамолекулярные комплексы включения.

Дата поступления 27 февраля 2007 г.

(ХПЯ), импульсного фотолиза, времяразрешенной люминесценции, фотолиза в криогенных матрицах) позволило определить природу короткоживущих промежуточных частиц для многих реакций органических производных кремния и германия. Повышенное внимание химиков к металлоорганическим соединениям, содержащим элементы 14-ой группы, в большой степени связано с их применением в высоких технологиях, в первую очередь в интегральной микроэлектронике.

Определяющую роль в исследованиях процессов с участием короткоживущих интермедиатов играют лазерный импульсный фотолиз и методы спиновой химии — фотоиндуцированная химическая поляризация ядер и магнитный эффект. Использование фотогенерации позволяет создавать высокие концентрации промежуточных частиц и регистрировать их оптические спектры, а также исследовать кинетику их появления и исчезновения.

В литературе опубликовано большое число работ, посвященных идентификации промежуточных частиц, которые образуются при фотолизе в конденсированной фазе различных соединений кремния и германия. Среди этих частиц следует упомянуть аналоги карбенов — органилсилилены и -гермилены, силильные и гермильные свободные радикалы, а также короткоживущие производные трехкоординированных кремния и германия — замещенные силены и гермены. Так, в монографию¹ по химии карбенов включены сведения об их тяжелых аналогах, ряд обзоров^{2–8} и недавно опубликованные сборники^{9,10} обзорных статей обобщают результаты исследований по синтезу, структуре, спектроскопии и реакционной способности гермиленов и станниленов. Однако, несмотря на обилие литературы справочного характера по этой тематике, не было проведено сравнительного анализа кинетических данных, полученных с помощью разных спектроскопических методов и представленных в работах разных авторов.

На наш взгляд, для реальной оценки дальнейшего развития этой области химии необходимо сопоставить результаты исследований, выполненных методами импульсного лазерного фотолиза и химической поляризации ядер. Так, в настоящее время на основании результатов использования методик спиновой химии составлены детализированные схемы процессов, протекающих в растворах с участием гермиленов и дигерменов, включая их взаимные превращения, а также предложены механизмы образования германийсодержащих бирадикалов. Отметим, что последние часто постулировались в качестве участников элементарных стадий на основании анализа продуктов реакции, но никогда не регистрировались физическими методами, за исключением ХПЯ. По этой причине представляется полезным сравнение результатов ХПЯ, содержащих информацию о структурах парамагнитных интермедиатов (свободных радикалов, аналогов карбена, бирадикалов) как предшественников образующихся продуктов, с одной стороны, и кинетических данных о накоплении и гибели короткоживущих производных германия, полученных с помощью методик импульсного лазерного фотолиза, — с другой.

II. Предшественники гермиленов

В данном разделе представлены органические производные германия, при облучении которых генерируются диорганилгермилены. Эффективными источниками гермиленов являются циклические соединения германия типа (R¹R²Ge)_n.^{1,11–20} В 1982 г. был выделен и описан первый циклотригерман — гексакис(2,6-диметилфенил)циклотригерман (**1a**),¹⁶ в настоящее время получены другие циклические три- и полигерманы.

 $Ar = 2,6-Me_2C_6H_3.$

В цикл могут входить и атомы других элементов, например кремния или углерода.²¹

Предшественниками гермиленов служат также линейные германы с алкильными и арильными заместителями, аналоги линейных углеводородов.^{22, 23} Самой многочисленной группой предшественников являются германы типа R¹R²GeX₂, где R¹, R² — алкильные или арильные группы, а X — гетероатомный слабосвязанный заместитель.^{3, 24–28}

$$R^1R^2GeX_2 \xrightarrow{hv} R^1R^2Ge + X - X,$$

 R^1 , $R^2 = Alk$, Ar; $X = SiMe_3$, SePh, N₃ и др.

Возможность генерирования гермиленов из таких соединений часто обусловлена тем, что гетероядерная связь Ge - E(E = Si, Se, N) менее стабильна, чем гомоядерная связь E - E.

В качестве эффективных источников гермиленов могут использоваться стабильные дигермены, содержащие объем-

995

ные заместители. Дигермены с небольшими по размеру заместителями сами являются короткоживущими частицами, которые обычно циклизуются с образованием циклотетрагерманов.

В статье¹⁷ описано образование гермилена из тетраарилдигермена, предварительно полученного фоторазложением соответствующего тригермана.

$$(2,6-\text{Et}_2\text{C}_6\text{H}_3)_2\text{Ge} = \text{Ge}(\text{C}_6\text{H}_3\text{Et}_2\text{-}2,6)_2 \xrightarrow{h\nu} 2 (2,6-\text{Et}_2\text{C}_6\text{H}_3)_2\text{Ge}.$$

В работах ^{29–32} методами лазерного импульсного фотолиза и матричной изоляции исследованы арилзамещенные дигерманы и силилгерманы $R^1R_2^2Ge-GeR_3^2$, $R^1R_2^2Ge-GeR^1R_2^2$ и $R^1R_2^2Ge-SiR_3^2$ (R^1 , $R^2 = Ar$). Установлено, что все соединения такого типа являются предшественниками гермиленов. В отдельный класс предшественников, близкий по свойствам к фенилзамещенным дигерманам, выделяют германийсодержащие нафталины. Так, методами импульсного и стационарного фотолиза изучены ³³ природа промежуточных частиц и состав конечных продуктов при фотохимических превращениях 1-(пентаметилдигерманил)нафталина (PMDGN) (2).

Среди наиболее удобных и часто используемых источников гермиленов особое место занимают бициклические соединения, содержащие в мостике атом(ы) германия, — 7,7-диалкил(диарил или алкиларил)-7-германорборнадиены **3а** – **е** (см.^{24, 25, 34}) и 7,8-дигермабицикло[2.2.2]октадиены **4а,b**. Последние служат предшественниками как гермиленов, так и дигерменов.

Ph (**d**); $R^1 = Me$, $R^2 = Ph$ (**e**).

Впервые фотолиз 7,7,8,8-тетраметил-1,4-дифенил-1,3бензо-7,8-дигермабицикло[2.2.2]окта-2,5-диена (**4a**) был описан авторами статьи ³⁵. В работах ^{36,37} методами импульсного фотолиза, матричной изоляции и ХПЯ исследованы фотоинициированные превращения этого соединения.

В литературе описано также фоторазложение тиагермиранов, например соединения **5**, которое приводит к образованию соответствующих гермилена и дигермена.³⁸

$$Mes = 2,4,6-Me_3C_6H_2.$$

Таким образом, предшественники активных промежуточных частиц двухвалентного германия довольно разнообразны. Широкий выбор молекул с необходимыми и удобными спектроскопическими и фотохимическими параметрами дает возможность проводить различные импульсные и стационарные эксперименты по определению свойств первичных короткоживущих продуктов.

III. Генерирование промежуточных частиц при фотолизе германийсодержащих соединений в низкотемпературных матрицах

В химии и фотохимии германийсодержаших соединений при идентификации полос в оптических спектрах гермиленов и других промежуточных частиц существенной проблемой является сильная зависимость положения максимума полосы поглощения (λ_{max}) от условий эксперимента. Влияние оказывают как способ генерирования частиц и тип предшественника, так и природа растворителя и температура. Согласно современной точке зрения,4 одной из главных причин такого эффекта может быть склонность гермиленов к комплексообразованию с кислотами и основаниями Льюиса. Для регистрации активных частиц их либо стабилизируют в низкотемпературных матрицах, либо используют методы с коротким временным диапазоном регистрации (времяразрешенные методы). Ниже рассмотрены результаты исследований короткоживущих германийсодержащих интермедиатов, возникающих при фотолизе различных предшественников в низкотемпературных матрицах.

В работе¹⁷ впервые был проведен фотолиз германийсодержащего соединения — (2,6-Et₂C₆H₃)₂Ge(SiMe₃)₂, замороженного в матрице. Авторы предположили образование гермилена только на основании анализа конечных продуктов, полученных после размораживания матрицы.

При фотолизе (длина волны источника излучения $\lambda = 254$ нм) 7,7-диметил-1,4,5,6-тетрафенил-2,3-бензо-7-германорборна-2,5-диена (Me₂GNB) (**3a**) в стеклах 3-метилпентана (3-MP) при 77 К в спектрах были зарегистрированы ^{24,25} полосы оптического поглощения с максимумами при 420 и 317 нм. Первая полоса, исчезающая после повышения температуры выше точки плавления матрицы, была отнесена к диметилгермилену (Me₂Ge). Вторую полосу, сохраняющуюся в спектре после отжига образца, авторы приписали 1,2,3,4-тетрафенилнафталину (TPN) (**6**).

Фотолиз производных бис(триметилсилил)германа R₂Ge(SiMe₃)₂ $(R = 2, 6 - Me_2C_6H_3,$ 2,6-Et₂C₆H₃, 2.4.6-Ме₃С₆Н₂) в 3-МР-стеклах позволил получить оптические спектры ряда замещенных гермиленов.²⁵ Спектральные характеристики гермиленов, образующихся из различных соединений-предшественников, приведены в табл. 1. Видно, что максимумы поглощения зарегистрированных полос укладываются в диапазон 400-570 нм. (Природа электронного перехода, отвечающего полосам поглощения гермиленов, обсуждается ниже.) Следует отметить, что коэффициенты поглощения полос в спектрах низкотемпературных матриц не были определены из-за отсутствия внутренних стандартов, неизвестны также квантовые выходы гермиленов, описанных в цитируемых работах.

В «мягких» матрицах[†] молекулы гермиленов, даже содержащих объемные заместители, перемещаются и постепенно димеризуются в дигермены. При температуре жидкого азота этот процесс протекает за десятки и сотни минут. Димеризованные продукты имеют полосы поглощения в более коротковолновой области спектра. Так, для дигермена (Mes₂Ge)₂ характерна полоса поглощения с максимумом при **Таблица 1**. Положения максимумов полос поглощения диорганилгермиленов в матрице 3-метилпентана (*T* = 77 K).

Гермилен	Предшественник	λ _{max} , HM	Ссылки
Me ₂ Ge	$Me_2Ge(N_3)_2$	405	28
	PhMe ₂ GeSiMe ₃	418	29
	3a	420	24, 25
	Me ₂ Ge(SePh) ₂	420	27
	$Me_2Ge(GePhMe_2)_2$	422	12, 22, 23
	Me2Ge GeMe2	430	21
	Ge Me ₂		
	cyclo-Ge ₆ Me ₁₂	430	11, 12
	Me(Me ₂ Ge) ₅ Me	436	12
	cyclo-Ge ₅ Me ₁₀	506	19
Et ₂ Ge	3b	440	25
Bu ₂ ⁿ Ge	3c	440	25
PhMeGe	3e	440	25
	PhMeGe(GeMe ₃) ₂	456	22
Ph ₂ Ge	3d	466	25
	Ph ₂ Ge(SiMe ₃) ₂	466	25
	Ph ₂ Ge(GeMe ₃) ₂	462	22
(4-MeC ₆ H ₄) ₂ Ge	$(4-MeC_6H_4)_2Ge(SiMe_3)_2$	471	25
MesBu ^t Ge	MesBu ^t Ge(SiMe ₃) ₂	508	25
$(2,6-Me_2C_6H_3)_2Ge$	(2,6-Me ₂ C ₆ H ₃) ₂ Ge(SiMe ₃) ₂	543	25
(2,6-Et ₂ C ₆ H ₃) ₂ Ge	(2,6-Et ₂ C ₆ H ₃) ₂ Ge(SiMe ₃) ₂	544	25
Mes ₂ Ge	Mes ₂ Ge(SiMe ₃) ₂	550	25
$(2,4,6-Pr_3^iC_6H_2)_2Ge$	$(2,4,6-Pr_3^iC_6H_2)_2Ge(SiMe_3)_2$	558	25

406 нм, в то время как соответствующий гермилен (Mes₂Ge) поглощает в области 550 нм (см. табл. 1). В «мягких» матрицах 3-MP–IP получен ряд комплексов гермиленов с органическими молекулами.²⁵ Как правило, в результате комплексообразования оптические полосы поглощения существенно смещаются в коротковолновую часть спектра.

В работе ³⁹ фотолиз Me₂GNB (За) в низкотемпературной матрице толуола-d₈ привел к появлению в оптическом спектре полосы поглощения с максимумом при 420 нм, как и в случае многих других германийсодержащих соединений (см. табл. 1). Однако авторы приписали эту полосу не гермилену, а бирадикалу TPN'-'GeMe2, возникающему при разрыве только одной связи Ge-C. Основанием для такого предположения являлось отсутствие заметного разложения германорборнадиена после отжига облученной матрицы. Авторы считают, что при нагреве матрицы гомолиз второй связи Ge-C происходит значительно медленнее, чем рекомбинация первой. При более высоких температурах константа скорости гомолиза второй связи может увеличиваться в большей степени, чем константа скорости рекомбинации. По этой причине фотолиз в растворах, в отличие от фотолиза в матрицах, приводит к разложению германорборнадиена За.

Данные табл. 1 демонстрируют широкий интервал положений максимума полосы поглощения (405-506 нм) в спектрах Me₂Ge, образующегося в низкотемпературных матрицах из различных предшественников. Одной из причин смещения полосы может быть различная геометрия зафиксированного в матрице гермилена. Из табл. 1 видно, что максимумы полос поглощения гермиленов с объемными заместителями смещаются до ~ 560 нм. Ниже будет показано, что для таких гермиленов угол C-Ge-C существенно увеличивается за счет отталкивания заместителей, что и приводит к длинноволновому сдвигу полосы. По-видимому, и Me₂Ge, генери-

[†] Смеси 3-МР и изопентана (IP) при 77 К имеют вязкость в диапазоне $10^{12}-10^7$ пуаз (г·с⁻¹·см⁻¹),²⁵ что позволяет называть их «мяг-кими».

руемый из различных предшественников, в низкотемпературной матрице имеет разные величины угла C-Ge-C.

IV. Лазерный импульсный фотолиз германийсодержащих соединений в растворах. Оптические спектры гермиленов

Матричная изоляция позволяет определять спектроскопические параметры активных частиц, однако с ее помощью нельзя получить кинетическую информацию о процессе их образования. Временное разрешение порядка 10 нс, характерное для метода лазерного импульсного фотолиза, предоставляет возможность для измерения констант скорости самых быстрых бимолекулярных реакций. В настоящее время этот метод широко используется в фотохимии германийсодержащих соединений для исследования промежуточных частиц, с его помощью зарегистрированы оптические спектры и изучены различные каналы превращений многих гермиленов.

В одном из первых исследований ³⁹ авторы проводили ламповый импульсный фотолиз растворов Me₂GNB (**3a**) с временным разрешением 5 мкс. Были зарегистрированы две полосы поглощения промежуточных частиц с максимумами при 380 и 460 нм. Эксперименты с введением в раствор акцепторов диметилгермилена показали, что этой частице принадлежит первая полоса. Сравнение оптических плотностей полос при 380 нм (измерена сразу после импульса) и 320 нм (через 50 мс) — области поглощения TPN (**6**), второго стабильного продукта фотораспада норборнадиена, — позволило определить коэффициент поглощения полосы диметилгермилена ($\varepsilon^{380} = 1300 \text{ л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$). Вторую полосу в исходном спектре с максимумом при 460 нм авторы приписали гермабензоноркарадиену **7**, продукту последующего замыкания разорванной связи Ge – C.

В более поздней работе ³⁴ описаны результаты лазерного импульсного фотолиза (248 нм) соединения За в метилциклогексане с временным разрешением 10 нс. Найдено, что после лазерного импульса появляются две широкие полосы с максимумами при 330 и 490 нм, которые были отнесены к триплет-триплетному (T-T) поглощению молекулы TPN (6). Эти же полосы появляются, если проводить импульсный фотолиз растворов самого тетрафенилнафталина. В обоих случаях полосы в спектре исчезают при введении в реакционную смесь кислорода, причем реакции протекают с скоростей олинаково высокими константами $(1.5 \cdot 10^9 \text{ л} \cdot \text{моль}^{-1} \cdot \text{с}^{-1})$. Отметим, что такие величины констант скорости являются типичным для тушения триплетных состояний молекул. Таким образом, поглощения, которое в данном эксперименте можно было бы отнести к диметилгермилену, не было обнаружено. Это противоречит как результатам работы³⁹ по импульсному фотолизу, так и данным по фотолизу Me₂GNB (3a) в низкотемпературных матрицах ²⁶ (см. табл. 1).

Авторы работы³⁴ предполагают, что возбужденная молекула **За** после элиминирования гермилена в результате диссоциации превращается в возбужденную молекулу TPN (6). Промежуточно образующийся Me₂Ge не фиксируется, поскольку время его жизни короче нескольких сотен наносекунд. Большой квантовый выход ($\phi \sim 0.4$) превращения

 $^{1}(Me_{2}GNB)^{*} \longrightarrow ^{1}(TPN)^{*}$

указывает на быстрый (в пикосекундном диапазоне времен) гомолитический разрыв двух связей Ge-C. В этом случае наблюдаемую при возбуждении Me₂GNB (**3a**) люминесценцию со временем жизни 3 нс можно объяснить только люминесценцией синглетного состояния ¹(TPN)*. Следует отметить, что это объяснение не согласуется с эффектами ХПЯ, наблюдаемыми при фотолизе соединения **3a**, которые рассматриваются в разделе XIII.

Попытка получить оптический спектр гермилена Ph_2Ge при импульсном фотолизе (248 нм) 7,7-дифенил-7-германорборнадиена **3d** в гексане закончилась неудачей.⁴⁰ Интенсивное T-T-поглощение тетрафенилнафталина **6**, который присутствовал в реакционной смеси в качестве примеси (5%), не позволило зарегистрировать слабый сигнал гермилена.

При фотодиссоциации многих других соединений гермилен возникает без осложнений, связанных с образованием возбужденных триплетных молекул, как это происходит в случае соединений **За,е**. Так, лазерный импульсный фотолиз арилзамещенных линейных тригерманов $R_3^1Ge-GeR^2R^3 - GeR_3^1$ ($R^1-R^3 = Me$, Ph) привел к появлению в спектрах, зарегистрированных после импульса, двух полос поглощения с максимумами в областях 320-330 и 420-450 нм.^{22,23} Обе полосы исчезали по кинетическому закону реакции второго порядка. Использование двухимпульсного возбуждения позволило установить, что гермилен возникает в результате экструзии из возбужденной молекулы

$$R_3^1Ge-GeR^2R^3-GeR_3^1 \xrightarrow{nv} (R_3^1Ge)_2 + R^2R^3Ge$$

Анализ кинетических данных показал, что гермиленам принадлежат длинноволновые полосы поглощения в диапазоне 420–450 нм. Коротковолновые полосы (320-330 нм) в этом случае могли бы принадлежать дигерменам (R_3^1 Ge)₂, однако эти частицы имеют полосы поглощения в области 370–380 нм (см. раздел XI). Авторы работ ^{22, 23} предполагают, что параллельно с экструзией гермилена может происходить гомолитический разрыв связи Ge-Ge с образованием дигермильных радикалов, которым и принадлежит поглощение в области 320–330 нм (см. раздел X). Положения полос поглощения гермиленов (420-450 нм) по данным лазерного импульсного фотолиза хорошо согласуются с результатами исследований фотолиза тригерманов в низкотемпературных матрицах,^{21, 22} в которых обнаружены аналогичные полосы (см. табл. 1).

Лазерный импульсный фотолиз (266 нм) додекаметилциклогексагермана (8) в циклогексане¹¹ приводит к появлению в оптическом спектре полосы поглощения с максимумом при 450 нм.

Исчезновение этой полосы по кинетическому закону реакции второго порядка (эффективная константа скорости $k/\varepsilon = 2.7 \cdot 10^7 \text{ см} \cdot \text{с}^{-1}$, где k — константа скорости реакции, ε — коэффициент поглощения полосы) сопровождается появлением в спектре новой полосы при 370 нм. Первая полоса принадлежит диметилгермилену, вторая — продукту его димеризации, дигермену (Me₂Ge)₂. Фотолиз соединения **8** в низкотемпературной матрице 3-МР также приводит к появлению гермилена (идентифицирован по полосе при 430 нм, см. табл. 1). Смещение максимума полосы на 20 нм в коротковолновую область объясняется, по-видимому, изменением температуры реакции и природы растворителя. Авторы работы¹¹ предполагают, что диметилгермилен генерируется из возбужденного состояния исходной молекулы без образования промежуточных гермильных радикалов.

При возбуждении (266 нм) декаметилциклопентагермана (9) в циклогексане¹⁹ сразу после лазерного импульса в спектре наблюдается полоса поглощения с максимумом при 490 нм, которая исчезает со скоростью, соответствующей кинетическому закону реакции второго порядка $(k/\varepsilon = 3.5 \cdot 10^7 \text{ см} \cdot \text{c}^{-1})$. По мере ее исчезновения возникает новая полоса с максимумом при 370 нм, которая также исчезает по закону реакции второго порядка (k/ε = 4.8 · 10⁶ см · с⁻¹). Первая полоса принадлежит диметилгермилену, вторая — продукту его димеризации, (Me₂Ge)₂. Фотолиз соединения 9 в матрице 3-МР приводит к появлению полосы с максимумом при 506 нм, которая тоже была отнесена к гермилену. Таким образом, по неизвестным причинам в спектрах гермилена, образующегося из циклополигерманов 8 (см.¹¹) и 9 (см.¹⁹) в растворах в циклогексане, полосы поглощения смещены относительно друг друга на 40 нм. Кроме того, в случае гермилена, предшественником которого является соединение 9, максимум полосы в низкотемпературной матрице смещается в длинноволновую часть спектра.

Значительный интерес представляет работа ³³, в которой проведен лазерный импульсный фотолиз (308 и 337 нм) 1-(пентаметилдигерманил)нафталина (2) в циклогексане. После воздействия импульса в спектрах обнаружены две полосы поглощения с максимумами при 440 и 400 нм, а через 10 мкс появляется новая полоса в области 460 нм. Полоса при 440 нм, отнесенная к диметилгермилену, исчезает по кинетическому закону реакции второго порядка $(k/\varepsilon = 2.5 \cdot 10^7 \text{ см} \cdot \text{c}^{-1})$, что указывает на образование дигермена (Me₂Ge)₂, которому, по мнению авторов, принадлежит полоса с максимумом при 400 нм. Сравнение времени появления гермилена и времени жизни флуоресценции соединения 2 позволило авторам сделать вывод о том, что диметилгермилен возникает из синглетного возбужденного состояния исходной молекулы. Последующее появление дополнительной полосы при 460 нм авторы объясняют Т-Т-поглощением исходной молекулы 2. Однако остается неясной причина задержки на 10 мкс образования триплетного состояния ^Т(PMDGN), которое появляется из того же возбужденного синглетного состояния ^S(PMDGN), что и диметилгермилен.

При лазерном импульсном фотолизе (248 и 266 нм) раствора диметил(триметилсилил)фенилгермана (PhMe₂Ge – SiMe₃) в циклогексане в спектре наблюдается широкая полоса поглощения с максимумом при 425 нм, которая была объяснена появлением диметилгермилена.²⁹

$$PhMe_2GeSiMe_3 \xrightarrow{hv} Me_2Ge + PhSiMe_3.$$

Аналогичная интенсивная полоса поглощения с максимумом в области 420 нм (наряду с двумя менее интенсивными полосами при 330 и 490 нм и дополнительным плечом в районе 380 нм) появляется после воздействия лазерного импульса (308 нм) на раствор диметилбис(фенилселено)германа (Me₂Ge(SePh)₂) в циклогексане.²⁷ Для установления происхождения полос поглощения был проведен фотолиз Me₂Ge(SePh)₂ в 3-MP- (77 K) и Аг-матрицах (21 K). После облучения (254 нм) этих матриц наблюдали одинаковые спектры, содержащие те же полосы, что и в экспериментах по импульсному фотолизу. Полоса при 330 нм была отнесена к молекуле дифенилдиселенида, а поглощение в области 490 нм приписано образующемуся из нее радикалу PhSe⁺.

$$Me_2Ge(SePh)_2 \xrightarrow{hv} Me_2Ge + PhSeSePh,$$

PhSeSePh \xrightarrow{hv} 2 PhSe.

Таким образом, оставшаяся полоса (420 нм) может принадлежать диметилгермилену. Спектры ЭПР облученных матриц показали, что плечо при 380 нм связано с появлением радикала PhSe[•].

Гермилен Mes₂Ge является промежуточной частицей, образующейся при лазерном импульсном фотолизе (248 нм) димезитилбис(триметилсилил)германа (Mes₂Ge(SiMe₃)₂) в гексане.¹³ После импульса в спектрах обнаружено поглощение в виде полос при 550 и 320 нм. Полоса в области 550 нм исчезает по закону реакции второго порядка примерно за 10 мкс с одновременным формированием новой полосы с максимумом при 405 нм. Эти спектральные и кинетические превращения были объяснены следующей последовательностью реакций:

$$Mes_2Ge(SiMe_3)_2 \xrightarrow{hv} Mes_2Ge + Me_3SiSiMe_3,$$

 $2 \operatorname{Mes}_2 \operatorname{Ge} \longrightarrow \operatorname{Mes}_2 \operatorname{Ge} = \operatorname{Ge} \operatorname{Mes}_2$.

В соответствии с данными по фотолизу органилгерманов в низкотемпературных матрицах (см. табл. 1), полоса при 550 нм была отнесена к гермилену Mes₂Ge, а при 405 нм — к дигермену Mes₂Ge=GeMes₂. Аналогичная первой полоса была зарегистрирована при фотолизе гексамезитилциклотригермана (cyclo-Ge₃Mes₆, **1b**).¹³ Оптическая плотность полосы при 405 нм, возникающей сразу после импульса, увеличивается в ходе процесса. Эти данные хорошо согласуются со следующей схемой реакций:

 $2 \operatorname{Mes}_2 \operatorname{Ge} \longrightarrow \operatorname{Mes}_2 \operatorname{Ge} \operatorname{Ge} \operatorname{Mes}_2$.

Импульсный фотолиз (266 нм) фенилзамещенных дигерманов (Ph_nMe_{3-n}Ge)₂, где n = 1-3, в тетрагидрофуране³⁰ также приводит к появлению двух полос поглощения в оптическом спектре — в областях 440–470 и 315–330 нм. Длинноволновые полосы поглощения гермиленов исчезали по закону процессов псевдопервого порядка, предположительно в реакции с ТГФ (для n = 2 и 3 константы скорости составляли $1.1 \cdot 10^5$ и $2.0 \cdot 10^5$ с⁻¹ соответственно). Коротковолновая полоса была приписана гермильным радикалам Ph_nMe_{3-n}Ge[•], которые исчезали в результате реакции второго порядка с наблюдаемыми константами скорости (k_{obs}) в диапазоне (1.9–4.3) $\cdot 10^5$ с⁻¹.

Полоса поглощения гермилена Ph₂Ge с максимумом при 445 нм зарегистрирована при импульсном фотолизе (266 нм)

раствора в циклогексане бис(триметилсилил)дифенилгермана (Ph₂Ge(SiMe₃)₂).⁴¹ Поглощение исчезает по кинетическому закону реакции второго порядка ($k_{obs} = 3.7 \cdot 10^5 \text{ c}^{-1}$) с одновременным появлением новой полосы при 320 нм. Эта полоса соответствует дифенилдигермену (Ph₂Ge=GePh₂), который также исчезает в результате реакции второго порядка ($k_{obs} = 1.5 \cdot 10^5 \text{ c}^{-1}$).

$$\begin{array}{l} Ph_2Ge(SiMe_3)_2 \xrightarrow{h\nu} Ph_2Ge + Me_3SiSiMe_3, \\ 2Ph_2Ge \longrightarrow Ph_2Ge = GePh_2, \\ 2Ph_2Ge = GePh_2 \longrightarrow cyclo-Ge_4Ph_8. \end{array}$$

При исследовании раствора дигермана PhMe₂GeGeMe₃ в циклогексане через 200 нс после импульса (266 нм) обнаружено появление в спектре двух полос поглощения с максимумами при 430 и 320 нм.³¹ Авторы считают, что длинноволновая полоса принадлежит диметилгермилену, возникающему при следующих превращениях:

$$PhMe_2GeGeMe_3 \xrightarrow{hv} [PhMe_2Ge' + 'GeMe_3]_{\kappa,netKa} \longrightarrow$$

$$Me_2Ge \xrightarrow{GeMe_3} \xrightarrow{GeMe_2 + PhGeMe_3.}$$

Исчезает диметилгермилен в результате реакции второго порядка ($k/\varepsilon = 3.2 \cdot 10^7 \text{ см} \cdot \text{с}^{-1}$). Коротковолновая полоса в области 320 нм соответствует гермильному радикалу PhMe₂Ge[•], который также димеризуется $(k/\varepsilon = 7.0 \cdot 10^7 \text{ см} \cdot \text{c}^{-1}).$

В табл. 2 представлены данные по положению максимумов полос поглощения диорганилгермиленов, зарегистрированных с помощью метода лазерного импульсного фотолиза. Большое число используемых молекул-предшественников и регулярное появление промежуточных полос поглощения в диапазоне 420-550 нм, а также регистрация аналогичных полос при фотолизе тех же предшественников в низкотемпературных матрицах (см. табл. 1) позволяют сделать вывод о том, что эти полосы действительно принадлежат гермиленам. Следует отметить, однако, что даже в одном растворителе положение максимума полосы может значительно смещаться при генерировании гермилена из разных предшественников. В матрицах максимумы полос поглощения Me₂Ge находятся в более узком интервале — 420-440 нм (см. табл. 1); исключение составляют данные работы¹⁹, в которой диметилгермилену приписана полоса с максимумом при 506 нм.

Положение полос поглощения в растворах гермилена Me₂Ge (см. табл. 2), полученного из различных предшественников, варьируется в интервале 420–470 нм. И в этом случае положение максимума полосы поглощения диметилгермилена (490 нм), приведенное в статье¹⁹, не попадает в указанный интервал. Поскольку в большинстве работ в качестве растворителя использовали циклогексан (см. табл. 2), смещение полосы поглощения гермиленов при генерировании из различных предшественников нельзя объяснить влиянием растворителя.

Таблица 2. Положения максимумов полос поглощения диорганилгермиленов в растворах, зарегистрированные методом лазерного импульсного фотолиза.

Гермилен	Предшественник	Растворитель	$\lambda_{ex},$ HM a	λ_{\max} , нм	Ссылки
Me ₂ Ge	3a	Гексан	$V\Phi^{b}$	380	4, 39
	3a	Метилциклогексан	248	_	34
	Me ₂ Ge(SePh) ₂	Циклогексан	308	420	27
	PhMe2GeGeMe2GeMe2Ph	»	266	420	22, 23
	PhMe2GeSiMe3	»	248	425	29
	PhMe2GeGeMe3	»	266	430	31
	(PhMe ₂ Ge) ₂	ΤΓΦ	266	440	30
	2	Циклогексан	308	440	33
	8	»	266	450	11
	9	»	266	490	19
	10a °	Гексан	248	470	40
Et ₂ Ge	$(Et_2Ge)_n$ (cm. ^d)	Циклогексан	266	430	14
Bu ⁿ ₂ Ge	$(Bu_2^nGe)_n$	»	266	450	14
PhMeGe	$(PhMeGe)_n$	»	266	440	14
	Me ₃ GeGePhMeGeMe ₃	»	266	440	22, 23
	10b °	Гексан	248	490	42
	(Ph ₂ MeGe) ₂	ΤΓΦ	266	450	31
Ph ₂ Ge	Ph ₂ Ge(SiMe ₃) ₂	Циклогексан	266	445	41
	Me ₃ GeGePh ₂ GeMe ₃	»	266	450	22, 23
	(Ph ₂ Ge) ₂	ΤΓΦ	266	470	30
	10c °	Гексан	248	500	43
$(n-C_6H_{13})_2Ge$	$[(n-C_6H_{13})_2Ge]_n$	Циклогексан	266	460	14
Mes ₂ Ge	Mes ₂ Ge(SiMe ₃) ₂	Гексан	248	550	13
	cyclo-Ge ₃ Mes ₆	»	248	550	13
	cyclo-Ge ₃ Mes ₆	»	248	560	43

 $^{a}\lambda_{ex}$ — длина волны излучения, использованного для возбуждения предшественника; ^ь измерение с помощью лампового импульсного \mathbb{R}^3 \mathcal{R}^1

ротолиза с временны́м разрешением 5 мкс; ^с соединения 10:
$$R^4$$
 $Ge R^2$ ($R^3 = R^4 = Me: R^1 = Ph, R^2 = H(a); R^1 = R^2 = Me: R^3 = Ph, R^2 = R^2$)

 $\mathbf{R}^4 = \mathbf{Me}(\mathbf{b}); \mathbf{R}^3 = \mathbf{R}^4 = \mathbf{Ph}(\mathbf{c}); ^d$ здесь и далее формулой ($\mathbf{R}_2 \mathbf{Ge}$)_n обозначены германийсодержащие полимеры ($\overline{M}_w \sim 10^3$).

Недавно опубликован обстоятельный обзор⁴⁴ по газофазным реакциям гермиленов и диметилстаннилена, в котором отмечен большой разброс значений максимумов полос поглощения, отнесенных к диметилгермилену. По мнению авторов, этот факт указывает на различное строение интермедиатов, в числе которых могут быть и донорно-акцепторные комплексы данной частицы.

Следует отметить, что в последних работах по импульсному фотолизу с лучшим временным разрешением и больчувствительностью (эксперименты с цифровым шей накоплением сигнала) приведены максимумы полос поглощения гермиленов, смещенные в длинноволновую область. Не исключено, что в некоторых ранних исследованиях по причине недостаточного временного разрешения и вследствие высоких скоростей рекомбинации интермедиатов к гермиленам относили более коротковолновые полосы, принадлежащие дигерменам. В газовой фазе кинетику реакций диметилгермилена для разных предшественников регистрировали по поглощению в области 450-510 нм.44 Спектры представляли собой широкую полосу с максимумом при 476.5 нм, что соответствует самой длинноволновой полосе поглощения гермилена, зарегистрированной в жидкой фазе (см. табл. 2).

В растворах гермилены почти всегда образуются в клетке, содержащей растворитель и остаток предшественника. Поэтому можно предположить, что образование комплексов гермиленов с такими остатками является еще одной причиной изменения положения полосы поглощения гермиленов при генерировании из различных предшественников.

В большинстве случаев гермилены вступают в реакции димеризации с образованием дигерменов. Величина $k/\epsilon \sim (1-5) \cdot 10^7$ см $\cdot c^{-1}$ показывает, что рекомбинация протекает с высокой константой скорости. Константа скорости бимолекулярной рекомбинации (k) остается неизвестной, так как ни в одной из цитируемых работ не определен коэффициент поглощения полосы гермиленов. Как отмечалось выше, величина $\varepsilon^{380} = 1300 \text{ л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$, приведенная в работе ³⁹, относится к полосе с максимумом при 380 нм, зарегистрированной с помощью лампового импульсного фотолиза (временное разрешение > 5 мкс). Положение этой полосы в спектре сильно отличается от положения полос гермиленов, полученных в последующих работах с использованием лазерного импульсного фотолиза. Только за последние три года появились работы, в которых сделана попытка определить коэффициент поглощения частиц Me2Ge и Ph₂Ge. В случае диметилгермилена $\lambda_{max} = 470$ нм, $\varepsilon = 730 \text{ л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$ (см.⁴⁰), а для дифенилгермилена $\lambda_{\rm max} = 500$ нм, $\varepsilon = 1850$ л·моль⁻¹·см⁻¹ (см.⁴³). Следовательно, если предположить, что коэффициент поглощения близок к величине 10³ л·моль⁻¹·см⁻¹, димеризация гермиленов происходит с константами скорости в диапазоне (1-5) · 10¹⁰ л · моль - 1 · см - 1. Этот диапазон практически совпадает с диффузионной константой скорости бимолекулярной реакции в гексане $(2.1 \cdot 10^{10} \text{ л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1} (\text{см}^{40})).$

V. Флуоресценция гермиленов

Фотолиз германийсодержащих соединений в низкотемпературных матрицах позволяет зарегистрировать не только оптические спектры поглощения, но и спектры люминесценции промежуточных частиц. Впервые явление люминесценции диметилгермилена было обнаружено после фотолиза додекаметилциклогексагермана (8) в 3-МР-матрице.¹¹ Спектр представлял собой широкую полосу с максимумом при 650 нм и являлся зеркальным отражением спектра поглощения диметилгермилена со стоксовским сдвигом 7870 см⁻¹. Время жизни флуоресценции составляло 1–2 нс. Если предположить, что и поглощение, и флуоресценция

Таблица 3. Максимумы полос флуоресценции и стоксовский сдвиг диорганилгермиленов в 3-МР-матрице (*T* = 77 K).

Гермилен	Предшественник	λ _{max} , HM	Стоксов- ский сдвиг, см ⁻¹	Ссыл- ки
Me ₂ Ge	8	650	7870	11
	Me(Me ₂ Ge) ₅ Me	628	7012	12
	Me2Ge(GePhMe2)2	623	7645	12
	3a	620	7909	12
PhMeGe	PhMeGe(GeMe ₃) ₂	645	6426	12
Ph ₂ Ge	Ph ₂ Ge(GeMe ₃) ₂	651	6285	12

обусловлены переходами между основным (S₀) и первым возбужденным (S₁) синглетными состояниями, положение максимумов полос позволяет определить энергию 0–0-перехода (2.4 эВ). Большой стоксовский сдвиг авторы объяснили значительным увеличением угла C–Ge–C в первом синглетном возбужденном состоянии по сравнению с основным состоянием.

В работе¹² представлены спектры флуоресценции некоторых гермиленов, полученных из различных молекул-предшественников. Все гермилены имеют полосу испускания с максимумом в области 620–650 нм (табл. 3) и значительный стоксовский сдвиг. Спектры возбуждения флуоресценции совпадают со спектрами поглощения этих частиц. Энергия 0–0-перехода для гермиленов составляет 2.04–2.43 эВ.

VI. Электронное строение гермиленов и природа оптической полосы поглощения

В то время как для карбенов характерно триплетное основное состояние, 45, 46 расчетами с использованием различных квантово-химических методов установлено, что основное состояние гермиленов является синглетным (табл. 4). Этот факт подтверждает и отсутствие сигналов в спектрах ЭПР замороженных при температурах 77 и 10К матриц, в которых после облучения был накоплен гермилен.¹¹ Синглет-триплетное расщепление в гермиленах Х2Ge существенно зависит от природы заместителя X (X = H, Me, F, Cl, Br) и находится в диапазоне $84-355 \ \kappa \ Дж \cdot моль^{-1} \ (\sim 1-4 \ эB).^{45} \ Синглетное$ возбужденное состояние по энергии выше основного на >188-209 кДж моль^{-1.46} При возбуждении гермилена длина связи Ge-X изменяется мало, однако угол между связями Х-Ge-Х значительно увеличивается. Детальные обзоры по результатам квантово-химических расчетов строения и энергий электронных состояний тяжелых аналогов карбена, в том числе и гермиленов, представлены в

Таблица 4. Расчетные значения энергий (E, кДж·моль⁻¹), длин связей (r_e , Å) и углов между связями X-Ge-X (q_e , град) для основного ($^{1}A_{1}$) и возбужденных ($^{3}B_{1}$, $^{1}B_{1}$) электронных состояний гермиленов.

Герми-	Пара-	Электронное состояние			
лен	метр	¹ A ₁	${}^{3}B_{1}$	${}^{1}B_{1}$	КИ
H ₂ Ge	Ε	0	43.5-123.1	182.9-199.3	47-55
	re	1.595 ± 0.018	1.543 ± 0.018	1.548 ± 0.005	
	q_{e}	92.3 ± 1.0	119.1 ± 0.5	122.7 ± 0.6	
Me ₂ Ge	Ε	0	57.3-128.3	213.1	45, 47,
	re	2.022 ± 0.005	2.004 ± 0.004	2.021	53, 56
	q_{e}	97.1 ± 1.6	118.0 ± 0.5	122.0	
Ph ₂ Ge	Ε	0	_	_	57
	re	2.006	_	_	
	$q_{\rm e}$	101.6	_	-	

работах ^{8,9}. Расчеты демонстрируют небольшое уменьшение длин связей E-X (E = C, Si, Ge) и значительное увеличение угла X-E-X при переводе всех карбенов и их аналогов в возбужденные состояния.

Оптические полосы поглощения гермиленов, представленные в табл. 1 и 2, обусловлены переходом электрона со связывающей 2a₁-орбитали гермилена X₂Ge (линейной комбинации 4s- и 4p_z-орбиталей атома германия и σ -орбиталей заместителя X) на несвязывающую орбиталь 1b₁, которая является 4p_y-орбиталью атома Ge. Предполагается, что для гермиленов характерна группа симметрии C_{2y} . В данной группе переход между термами ${}^{1}A_{1} \rightarrow {}^{1}B_{1}$ разрешен по симметрии, однако орбитали находятся в разных плоскостях, что уменьшает их перекрывание и снижает интенсивность перехода. По-видимому, по этой причине молярный коэффициент поглощения полосы гермиленов существенно не превышает величину 10³ л моль⁻¹ см⁻¹.

VII. Спектроскопия комплексов гермиленов

Наличие вакантной несвязывающей 4*p_y*-орбитали атома германия в гермиленах обусловливает возможность образования донорно-акцепторных комплексов этих частиц с различными молекулами. Спектроскопические исследования таких комплексов часто проводят в низкотемпературных матрицах. Облучение УФ-светом матрицы, содержащей германиевый предшественник и потенциальный комплексообразователь, приводит к накоплению гермилена. Последующее плавление и повторное замораживание матрицы позволяют получить комплекс гермилена и зарегистрировать его спектр. В работе²⁶ с помощью этой методики наблюдали оптические полосы поглощения комплексов гермилена с органическими молекулами, в том числе содержащими гетероатомы.

Например, в спектре 3-МР – IP-матрицы полоса поглощения димезитилгермилена (Mes₂Ge) с максимумом при 550 нм после отжига исчезает, а в присутствии триэтиламина формируется новая полоса в области 414 нм. Положения максимумов новых полос, возникающих после повторного замораживания матрицы и принадлежащих комплексам гермилена, приведены в табл. 5. Видно, что связывание гермилена в комплекс сдвигает полосу поглощения в более коротковолновую область спектра. Полосы поглощения комплексов гермилена с молекулами, содержащими атомы P, N, S и O, находятся в области 306–376 нм. По-видимому, этот факт объясняется взаимодействием вакантной 4р_у-орбитали атома гермилена с орбиталями гетероатомов органических молекул, которое приводит к изменению энергии соответствующего п – π-перехода.^{3, 25}

Исследованные комплексы гермилен-гетероатомное соединение нестабильны и при повышении температуры матрицы диссоциируют. Гермилены в этом случае либо димеризуются в дигермены, которые имеют полосы поглощения примерно в том же спектральном диапазоне, либо вступают в реакции внедрения по различным связям. Например, в матрице 3-МР-ІР при 334 нм наблюдается полоса комплекса $Bu_3^n P \cdot Ge(C_6H_2Pr_3^1-2,4,6)_2$, которая сохраняется при 153 K,²⁵ однако медленно исчезает при 173 К с появлением сигнала соответствующего дигермена. При 194 К время жизни такого комплекса составляет 48 с. Комплекс гермилена с диметилсульфидом стабилен только при 133 К. Некоторые комплексы такого типа разрушаются при плавлении матрицы. В работе¹² впервые обнаружено небольшое коротковолновое смещение (~10 нм) полосы поглощения гермилена при комплексообразовании с ароматическими молекулами, содержащими π-системы, — бензолом и нафталином (см. табл. 5).

Матрица 3-МР–ІР при 77 К является настолько «мягкой», что гермилены способны к диффузионному перемещению в ней. Если в эту матрицу добавить спирт, то при хранении в ней облученного образца даже при 77 К исчезает полоса поглощения гермилена и появляется новая полоса поглощения с максимумом в области 320–367 нм, которая принадлежит комплексу гермилена со спиртом (см. табл. 5).

Авторы работы ⁵⁸ облучали аргоновую матрицу, содержащую герман (GeH₄) и озон, при температурах 14–18 К.

Таблица 5. Максимумы полос поглощения комплексов гермиленов с молекулами-комплексообразователями в низкотемпературных (*T* = 77 K) матрицах.

Комплексообразователь	$\lambda_{ m max}$, HM					
	Me ₂ Ge	Ph ₂ Ge	Mes ₂ Ge	(2,6-Et ₂ C ₆ H ₃) ₂ Ge	$(2,4,6-Pr_3^iC_6H_2)_2Ge$	
		3-	МР-Матрица			
3-MP	420	466	550	544	558	25, 26
Bu ₃ ⁿ P	_	_	306	314	334	25, 26
1-Азабицикло[2.2.2]октан	_	334	349	356	363	25, 26
Me ₂ S	_	326	348	357	357	25, 26
Тиофен	_	332	352	359	366	25, 26
2-Метилтетрагидрофуран	_	325	360	369	376	25, 26
cyclo-C ₆ H ₁₁ Cl	341	374	495	508	544	25, 26
PhCl	392	403	538	532	553	25, 26
Et ₃ N	_	_	414	_	445	25, 26
EtOH	_	320	333	332	_	25, 26
Bu ^t OH	_	332	363	367	_	25, 26
CH ₂ =CHCH ₂ Cl	_	_	530	_	_	25, 26
(CH ₂ =CHCH ₂) ₂ S	_	_	380	-	-	25, 26
		Mampi	ица 3-МР-ІР (4	:1)		
3-MP-IP	436	_	_	_	_	12
PhH	422	_	_	_	_	12
Нафталин	422.5	_	_	_	_	12

Примечание. Предшественники: для $Me_2Ge - Me_2GeNB$ (3a) ^{25, 26} и $Me(GeMe_2)_5Me$, ¹² для $Ph_2Ge - Ph_2GeNB$ (3d), для остальных гермиленов — $R_2Ge(SiMe_3)_2$.

Анализ многочисленных полос в ИК-спектре, появляющихся при использовании излучения различных спектральных диапазонов, позволил провести идентификацию некоторых частиц, в том числе и комплексов гермилена с молекулой воды. По предположению авторов, этот комплекс образуется в результате реакции

$$\operatorname{GeH}_4 + \operatorname{O}_3 \xrightarrow{hv} \operatorname{H}_2\operatorname{Ge} \cdot \operatorname{OH}_2 + \operatorname{O}_2.$$

В ИК-спектре комплекса $H_2Ge \cdot OH_2$ наблюдаются полосы поглощения с частотами 1586, 3597, 3687 см⁻¹, близкие к колебательным частотам свободной молекулы воды в аргоновой матрице (до облучения воды в матрице не было). Кроме того, для фрагмента H_2Ge данного комплекса характерен триплетный сигнал (1777, 1794, 1814 см⁻¹) и еще одна низкочастотная линия (898 см⁻¹), соответствующие колебаниям связей H - Ge - H. Частота 1794 см⁻¹ близка к удвоенной частоте 898 см⁻¹ и является ее обертоном.

Метод импульсного фотолиза позволяет зарегистрировать комплексы гермиленов с различными молекулами и в растворах. В работах^{4, 59} представлен оптический спектр комплекса диметилгермилена с трифенилфосфином в виде полосы с максимумом при 370 нм и коэффициентом поглощения $7.5 \cdot 10^3$ л · моль $^{-1} \cdot$ см $^{-1}$.

$$Me_2Ge + PPh_3 \longrightarrow Me_2Ge \cdot PPh_3.$$
 (1)

Использование конкурирующей реакции диметилгермилена с CCl₄ позволило авторам определить константу скорости реакции (1) — $k = 6.5 \cdot 10^8 \text{ л} \cdot \text{моль}^{-1} \cdot \text{с}^{-1}$. Комплекс Me₂Ge · PPh₃ исчезает в результате реакции второго порядка, предположительно с образованием дигермена (или комплекса дигермена с трифенилфосфином), с константой скорости $2k = 1.5 \cdot 10^9 \text{ л} \cdot \text{моль}^{-1} \cdot \text{с}^{-1}$. Однако, по нашему мнению, эти результаты нуждаются в проверке, так как ранее при изучении ³⁹ фотолиза германорборнадиена **За** использование такого же временно́го разрешения (5 мкс, метод лампового импульсного фотолиза) не позволило правильно отнести промежуточную полосу поглощения при 380 нм.

В работе ⁴³ комплексам R₂Ge · NBuⁿH₂ (R = Me, Ph) приписана полоса поглощения с максимумом в области 325 нм. Для комплексов PhMeGe · NR₂¹R² (NR₂¹R² = NH₂Buⁿ и NEt₃) характеристичными являются полосы при 330 нм.⁴² Поглощение комплексов гермилена PhMeGe с молекулами, содержащими двойные связи (изопреном, 2,3-диметилбута-1,3диеном (DMB), 4,4-диметилпент-1-еном), смещено в более коротковолновую область ($\lambda_{max} \sim 275$ нм).⁴² Сравнение этих данных с положением полос поглощения комплексов в низкотемпературных матрицах (см. табл. 5) показывает, что в растворах происходит существенный сдвиг (на ~100 нм) спектра в коротковолновую область. Если природа полос поглощения интерпретирована правильно, этот сдвиг может быть связан с разной геометрией комплексов в растворах и в низкотемпературных матрицах.

Таким образом, гермилены весьма эффективно образуют комплексы с органическими молекулами. В спектрах таких комплексов полосы оптического поглощения значительно смещены по сравнению с сигналами гермиленов. По этой причине для исследования оптических спектров и кинетики реакций гермиленов необходимо удалять из раствора потенциальные комплексообразователи. Данные по комплексам гермиленов представлены в обзоре⁹.

VIII. Колебательные спектры гермиленов

Облучение германа (GeH₄), изолированного в аргоновой матрице при 4 К, светом видимого и УФ-диапазонов приводит к появлению в ИК-спектре линий, которые принадлежат

Таблица 6. Частоты колебаний $(v, см^{-1})$ Me₂Ge, изолированного в аргоновой матрице при 12 K, и стабильного гермилена [(Me₃Si)₂CH]₂Ge в кристаллическом состоянии.

Гермилен	Коле- бание	Эксперимент		Расче	Расчет	
		v	ссыл- ки	v	ссыл- ки	
Me ₂ Ge	v(Ge-C) v(Ge-C)	541 527	28 28	560 497	47 47	
	$\delta(C-Ge-C)$			288	47	
[(Me ₃ Si) ₂ CH] ₂ Ge	v(Ge-C) v(Ge-C)	643 613	61 61	_	_ _	

различным продуктам фотолиза.⁶⁰ Среди многочисленных сигналов были идентифицированы полосы гермиленов H₂Ge и D₂Ge с частотами 1887, 1864, 920 см⁻¹ и 1329, 1325, 662 см⁻¹ соответственно. Эти частоты отвечают двум валентным и одному деформационному колебаниям связей Ge – H(D).

ИК-Спектр диметилгермилена был зарегистрирован в криогенной (12 K) аргоновой матрице после УФ-облучения (254 или 248 нм) диазидодиметилгермана (Me₂Ge(N₃)₂).²⁸ Предварительное облучение Me₂Ge(N₃)₂ в углеводородных матрицах при 77 K в присутствии молекул-ловушек гермиленов и анализ образующихся продуктов показали, что диазид является источником Me₂Ge. В аргоновой матрице большинство зарегистрированных полос в высокочастотной ИК-области принадлежит колебаниям метильных групп, однако в области 600–500 см⁻¹ были обнаружены полосы, соответствующие колебаниям связей Ge–C (табл. 6).

В работах ^{47, 50, 62–64} проведены квантово-химические расчеты частот колебаний связей Ge–C для основного и возбужденных электронных состояний двух гермиленов — H₂Ge и Me₂Ge (табл. 7). Показано,^{28, 60} что частоты, рассчитанные для основного состояния этих частиц, хорошо согласуются с измеренными в аргоновой матрице. Современные

Таблица 7. Рассчитанные и экспериментальные колебательные частоты (*v*, см⁻¹) для основного и возбужденных электронных состояний гермилена и диметилгермилена.

Частица	Метод	Терм	v_1	v_2	<i>v</i> ₃	Ссылки
		Pac	чет			
H ₂ Ge	CF-CI	$^{1}A_{1}$	1857	923	1866	50
	CI	${}^{1}A_{1}$	1887	958	2036	47
		${}^{3}B_{1}$	1855	924	2063	
		${}^{1}B_{1}$	1864	860	2011	
	CASSCF	${}^{1}A_{1}$	1840	913	1840	64
		${}^{3}B_{1}$	1998	801	2054	
		${}^{1}B_{1}$	1809	783	1909	
Me ₂ Ge	SCF	$^{1}A_{1}$	560	288	497	47
		${}^{3}B_{1}$	576	203	611	
		${}^{1}B_{1}$	554	194	607	
		Экспер	имент			
H ₂ Ge	VUV- Фото- лиз в Ar- матрице ^а	$^{1}A_{1}$	1887	920	1864	60
	LOS	${}^{1}A_{1}$	1856	916	_	65
	Jet-cooled LIF	${}^{1}B_{1}$	1798	783	_	64

^a VUV — Vacuum Ultra Violet.

лазерные методы спектроскопии — лазерно-индуцированная флуоресценция в сверхзвуковой струе (Jet-cooled Laser Induced Fluorescence, Jet-cooled LIF)⁶⁴ и лазерная оптогальваническая спектроскопия (Laser Optogalvanic Spectroscopy, LOS)⁶⁵ — позволили экспериментально определить частоты колебаний H₂Ge в основном ⁶⁵ и синглетном возбужденном ⁶⁴ состояниях (см. табл. 7). Эти данные неплохо согласуются как с результатами теоретических методов CFCI (Corrected Full Configuration Interaction)⁵⁰ и CI (Configuration Interaction),47 так и с недавно выполненными квантово-химическими расчетами с использованием метода CASSCF (Complite Active Space Self-Consistent Field).⁶⁴ Деформационное колебание фрагмента С-Ge-С имеет частоту примерно в два раза ниже частоты валентных колебаний связи Ge-C (см. табл. 7), что часто наблюдается в колебательной спектроскопии. Подробная информация о колебательных частотах гермиленов и их комплексов представлена в обзоре⁹.

IX. Реакции гермиленов

Как отмечалось выше, в отсутствие молекул-ловушек гермилены исчезают в результате реакции второго порядка, которая представляет собой димеризацию с образованием дигерменов. Параметр $k_{\rm rec}/\varepsilon$, где $k_{\rm rec}$ — константа скорости бимолекулярной рекомбинации, обычно находится в диапазоне $(1-3) \cdot 10^7$ см \cdot с⁻¹ (табл. 8). Хотя коэффициент поглощения полос гермиленов точно не измерен, выше было отмечено, что он не может существенно превышать величину 10^3 л·моль⁻¹·см⁻¹, так как в противном случае константа рекомбинации будет превышать диффузионную константу скорости.

Гермилены, содержащие в качестве заместителей объемные группы, рекомбинируют со значительно меньшей константой скорости, чем диметилгермилен. Например, замена метильной группы на этильную приводит к уменьшению величины $k_{\rm rec}/\varepsilon$ более чем на порядок (см. табл. 8), а на

В некоторых случаях гермилены исчезают в результате реакции первого порядка. Так, полоса поглощения диизопропилгермилена (Pr₂Ge) с максимумом при 560 нм исчезает по кинетическому закону реакции первого порядка в течение 56 нс.¹⁵ По предположению авторов исследования, Pr₂Ge изомеризуется в 2-гермапропен H₂C=CMeGeH₂Prⁱ так быстро, что димеризация не успевает конкурировать с этой реакцией. В работах 31, 33 обнаружено, что гермилены PhMeGe (длина волны максимума полосы поглощения 450 нм) и Ph₂Ge (470 нм) исчезают примерно за 5-10 мкс в результате реакции первого порядка (см. табл. 8), предположительно с растворителем — тетрагидрофураном. Однако в циклогексане те же гермилены вступают в реакцию димеризации.22,23

Исследования с использованием лазерного импульсного фотолиза продемонстрировали, что гермилены быстро реагируют с кислородом. Константа скорости данной реакции в циклогексане в случае Me₂Ge находится в диапазоне (1-2)·10⁹ л·моль⁻¹·с⁻¹ для разных предшественников (табл. 9). Эти величины в 10-20 раз меньше значения диффузионной константы скорости бимолекулярной реакции в циклогексане, что является следствием стерических эффектов и спиновых запретов для реакции синглетного гермилена с триплетной молекулой кислорода. Стерический эффект заметно проявляется для гермиленов с объемными заместителями — Ph₂Ge и Mes₂Ge, — которые реагируют с кислородом соответственно на один и два порядка медленнее, чем диметилгермилен. Отметим, что на два порядка меньшая по величине константа скорости, полученная в работах^{4,39} для Ме2Ge, относится, скорее всего, к реакции дигермена (см. раздел Х).

В более полярном, чем циклогексан, растворителе тетрагидрофуране — константа скорости уменьшается на порядок, что, возможно, связано с образованием комплекса

Таблица 8. Наблюдаемые константы ско	рости ($k_{\rm rec}/\varepsilon$) исчезновения герм	ииленов в реакциях рекомбинации (Д	T = 293 K)
--------------------------------------	---	------------------------------------	-------------

Гермилен	Предшественник	Растворитель	λ_{\max} , нм	$k_{ m rec}/\varepsilon$, см \cdot с ⁻¹	Ссылки
Me ₂ Ge	(PhMe ₂ Ge) ₂ GeMe ₂	Циклогексан	420	2.5 • 107	22, 23
	8	»	450	$2.7 \cdot 10^{7}$	11
	9	»	490	$3.5 \cdot 10^{7}$	19
	2	»	440	$2.5 \cdot 10^{7}$	33
	PhMe ₂ GeSiMe ₃	»	430	$1.0 \cdot 10^{7}$	31
	PhMe2GeGeMe3	»	430	$3.2 \cdot 10^{7}$	31
	(PhMe ₂ Ge) ₂	ΤΓΦ	440	_	30, 32
	10a	Гексан	470	$5.0 \cdot 10^{7}$	40
	10d ^a	»	480	$7.5 \cdot 10^{7}$	43
Et ₂ Ge	$(Et_2Ge)_n$	Циклогексан	430	1.1 · 10 ⁶ (460 нм) ^b	14
Pr ₂ ⁱ Ge	cyclo-Ge ₄ Pr ⁱ ₈	Гексан	560	1.8 · 10 ⁷ (см. ^с)	15
Bu ₂ ⁿ Ge	$(Bu_2^nGe)_n$	Циклогексан	450	$2.4 \cdot 10^{5}$	14
$(n-C_6H_{13})_2Ge$	$[(n-C_6H_{13})_2Ge]_n$	»	460	1.5 · 10 ⁵ (450 нм) ^b	14
PhMeGe	PhMeGe(GeMe ₃) ₂	»	440	$2.2 \cdot 10^{7}$	22, 23
	(PhMeGe) _n	»	440	4.1 · 10 ⁵ (450 нм) ^b	14
	(Ph ₂ MeGe) ₂	ΤΓΦ	450	1.1 · 10 ⁵ (см. ^с)	30, 32
Ph ₂ Ge	Ph ₂ Ge(GeMe ₃) ₂	Циклогексан	450	$3.0 \cdot 10^{6}$	22, 23
	$(Ph_3Ge)_2$	ΤΓΦ	470	2.0 · 10 ⁵ (см.с)	30, 32
	Ph ₂ Ge(SiMe ₃) ₂	Циклогексан	445	~ 270 ^d	41
	10c	Гексан	500	$6.0 \cdot 10^{6}$	66
Mes ₂ Ge	cyclo-Ge ₃ Mes ₆	»	550	1.1 · 10 ⁵ (см. ^с)	13

^а Соединение 10d — Ме , ^b указана длина волны измерения кинетики процесса, в остальных случаях — λ_{max} ; ^c приведена константа

скорости реакции первого порядка, в с⁻¹; ^d приведен период полупревращения (исчезновения) ($\tau_{1/2}$), в мкс.

Герми- лен	Предшест- венник	Раство- ритель	<i>k</i> , л · моль ⁻¹ · c ⁻¹	Ссыл- ки
Me ₂ Ge	Me ₂ HGeGeMe ₃	См.а	$2.7 \cdot 10^{7}$	44
	3a	Гексан	$2.0 \cdot 10^{7}$	4, 39
	8	Циклогексан	$9.7 \cdot 10^{8}$	11
	PhMe2GeSiMe3	»	$2.0 \cdot 10^{9}$	29
	PhMe2GeSiMe3	»	$2.1 \cdot 10^{9}$	31
	PhMe2GeSiMe3	»	$1.7 \cdot 10^{9}$	31
	9	»	$1.6 \cdot 10^9$	19
	(PhMe ₂ Ge) ₂	ΤΓΦ	_	30, 32
	10a	Гексан	$9 \cdot 10^{7}$	40
PhMeGe	(Ph ₂ MeGe) ₂	ΤΓΦ	$2.3 \cdot 10^{8}$	30, 32
	10b	Гексан	$6 \cdot 10^{7}$	42
Ph ₂ Ge	Ph2Ge(SiMe3)2	Циклогексан	$1.0 \cdot 10^{8}$	41
	(Ph ₃ Ge) ₂	ΤΓΦ	$1.8 \cdot 10^{8}$	30, 32
	10c	Гексан	$2.7 \cdot 10^{7}$	66
Mes ₂ Ge	cyclo-Ge ₃ Mes ₆	»	$7.3 \cdot 10^{6}$	13

Таблица 9. Константы скорости реакций гермиленов с кислородом (T = 293 K).

^а В газовой фазе.

 $2.7 \cdot 10^7$ л · моль $^{-1} \cdot c^{-1}$)⁴⁴ на два порядка меньше констант, измеренных ранее в циклогексане (см. табл. 9).

В опубликованных недавно работах ^{40, 42, 66} по лазерному импульсному фотолизу растворов германийсодержащих соединений определены константы скорости реакций гермиленов Me₂Ge, PhMeGe и Ph₂Ge с кислородом. Они оказались на порядок меньше (см. табл. 9), чем измеренные в более ранних исследованиях (см., например,^{11, 19, 30–33, 41}). Эти данные еще раз демонстрируют влияние комплексообразования гермиленов на их реакционную способность. Структура таких комплексов в каждом конкретном случае может быть разной. Следует отметить, что высокие значения констант скорости получены для реакций в циклогексане, а более низкие — в гексане. Возможно, в гексане кислород образует комплексы с молекулами растворителя, которые уменьшают его диффузионную подвижность и, соответственно, реакционную способность. Не исключено также присутствие в циклогексане неконтролируемых примесей, которые связывают гермилены и ускоряют их исчезновение.

Одним из тестов на присутствие гермилена в фотохимических процессах является реакция его присоединения по двойной связи 2,3-диметилбута-1,3-диена с образованием соответствующего гермациклопентена. Константы скорости этой реакции с Me₂Ge, измеренные при импульсном фотолизе различных молекул-предшественников, находятся в диапазоне $(1.7-4.1) \cdot 10^7$ л · моль⁻¹·с⁻¹ (табл. 10).

Из-за быстрого взаимодействия Me₂Ge с растворителем константа скорости его реакции с DMB в тетрагидрофуране

Таблица	10.	Константы	скорости	реакций	гермиленов	с непредельными	соединениями	(T =	= 293 K)).
---------	-----	-----------	----------	---------	------------	-----------------	--------------	------	----------	----

Гермилен	Предшественник	Растворитель	Реагент	k, л·моль ⁻¹ ·с ⁻¹	Ссылки
Me ₂ Ge	Me ₂ HGeGeMe ₃	См. ^а	Бута-1,3-диен	6.6 · 10 ⁹	44
	Me ₂ HGeGeMe ₃	См.а	3,3-Диметилбут-1-ен	$5.9 \cdot 10^{9}$	44
	Me ₂ Ge(GePhMe ₂) ₂	Циклогексан	DMB	$2.4 \cdot 10^{7}$	22, 23
	9	»	DMB	$2.2 \cdot 10^{7}$	11
	PhMe2GeSiMe3	»	DMB	$1.7 \cdot 10^{7}$	29
	PhMe2GeSiMe3	»	DMB	$4.1 \cdot 10^{7}$	31
	PhMe ₂ GeSiMe ₃	»	Бута-1,3-диен	$1.24 \cdot 10^{7}$	29
	PhMe ₂ GeSiMe ₃	»	Бут-1-ен	< 10 ⁵	29
	PhMe ₂ GeSiMe ₃	»	Изопрен	$1.63 \cdot 10^{7}$	29
	PhMe ₂ GeSiMe ₃	»	<i>цис</i> -Пиперилен	$9.2 \cdot 10^{6}$	29
	PhMe ₂ GeSiMe ₃	»	транс-Пиперилен	$2.9 \cdot 10^{6}$	29
	PhMe ₂ GeSiMe ₃	»	иис, иис-Гекса-2, 4-диен	$1.2 \cdot 10^{6}$	29
	PhMe ₂ GeSiMe ₃	»	<i>цис, транс</i> -Гекса-2,4-диен	$3.5 \cdot 10^{6}$	29
	PhMe ₂ GeSiMe ₃	»	транс, транс-Гекса-2,4-диен	$< 5 \cdot 10^{5}$	29
	PhMe ₂ GeSiMe ₃	»	Гекс-1-ен	$< 10^{4}$	29
	PhMe ₂ GeSiMe ₃	»	Гекс-1-ин	$3.0 \cdot 10^4$	29
	PhMe ₂ GeSiMe ₃	»	Проп-1-ин	< 10 ⁵	29
	PhMe ₂ GeGeMe ₃	Циклогексан	DMB	$2.1 \cdot 10^{7}$	31
	(PhMe ₂ Ge) ₂	ΤΓΦ	DMB	_	30, 32
	10d	Гексан	DMB	$12.5 \cdot 10^{9}$	40
	3a	»	11 ^b	$5.0 \cdot 10^{8}$	4, 39
	3a	»	Стирол	$7 \cdot 10^{7}$	4, 39
Et ₂ Ge	$(Et_2Ge)_n$	Циклогексан	DMB	$8.4 \cdot 10^{7}$	14
Bu ⁿ ₂ Ge	$(Bu_2^n Ge)_n$	»	DMB	$3.1 \cdot 10^{7}$	14
$(n-C_6H_{13})_2Ge$	$[(n-C_6H_{13})_2Ge]_n$	»	DMB	$4.0 \cdot 10^{7}$	14
PhMeGe	(PhMeGe),	»	DMB	$22.0 \cdot 10^{7}$	14
	$(Ph_2MeGe)_2$	ΤΓΦ	DMB	$4.5 \cdot 10^{6}$	30, 32
	PhMeGe(GeMe ₃) ₂	Циклогексан	DMB	$2.2 \cdot 10^{6}$	22, 23
	10b	Гексан	DMB	$4 \cdot 10^{9}$	42
Ph ₂ Ge	(Ph ₃ Ge) ₂	ΤΓΦ	DMB	$1.0 \cdot 10^{6}$	30.32
2	Ph ₂ Ge(GeMe ₃) ₂	Циклогексан	DMB	$0.72 \cdot 10^{6}$	22, 23
	Ph2Ge(SiMe3)2	»	DMB	$2.75 \cdot 10^4$	41
	10c	Гексан	Изопрен	5.5 · 10 ⁹	64

^а В газовой фазе. ^ь 3,3,6,6-Тетраметил-1-тиациклогепт-4-ин (11).

не была измерена. В циклогексане константа скорости реакции с DMB гермиленов Et2Ge и PhMeGe увеличивается соответственно в 2 и 5 раз по сравнению с константой скорости в случае Me₂Ge (см. табл. 10). Следует отметить, что в работах^{22,23} для реакции PhMeGe с DMB приведено значение константы скорости, ровно на порядок меньшее, чем в статье 14 (оба измерения сделаны в циклогексане, но с участием разных предшественников). Для реакции Ph₂Ge с DMB в циклогексане данные по константам скорости значительно отличаются друг от друга, например в 26 раз (см. работы^{22,23} и статью⁴¹). Измерения в газовой фазе показали,⁴⁴ что в пределе (при больших давлениях) константа скорости присоединения Me₂Ge по двойным связям бута-1,3диена и 3,3-диметилбут-1-ена близка к диффузионному пределу $(1.1 \cdot 10^{11} \text{ см}^3 \cdot \text{мол}^{-1} \cdot \text{с}^{-1} = 6.6 \cdot 10^9 \text{ см}^3 \cdot \text{мол}^{-1} \cdot \text{с}^{-1})$ и на два порядка превышает константы скорости, характерные для этой реакции в циклогексане (см. табл. 10). В недавних работах 40, 42, 66 приведены константы скорости присоединения гермиленов к непредельным соединениям, на два порядка превышающие данные более ранних исследований (см. табл. 10). Возможно, что в последнем случае авторы наблюдали реакции не гермиленов, а дигерменов. Таким образом, развитие техники и усовершенствование методик регистрации реакций в жидкой фазе, а также использование новых предшественников приближает измеренные в растворах константы скорости реакций гермиленов к значениям, полученным в газовой фазе.

Одной из эффективных ловушек гермиленов является четыреххлористый углерод. Константы скорости реакций гермиленов с CCl₄ составляют $(1-10) \cdot 10^8 \text{ л} \cdot \text{моль}^{-1} \cdot \text{с}^{-1}$ (табл. 11). Исследования спектров ЯМР¹Н и ¹³С продуктов реакции показали,²⁷ что гермилен внедряется в молекулу CCl₄ по связи C-Cl.

Таблица 11. Константы скорости реакций гермиленов с четыреххлористым углеродом в циклогексане (T = 293 K).

Гермилен	Предшественник	Раство- ритель	kл·моль ⁻¹ ·с ⁻¹	Ссыл- ки
Me ₂ Ge	3a	Гексан	$0.12 \cdot 10^{8}$	4, 39
	Me ₂ Ge(GePhMe ₂) ₂	Цикло- гексан	Нет реакции	22, 23
	8	»	$4.9 \cdot 10^{8}$	11
	PhMe2GeSiMe3	»	$3.2 \cdot 10^{8}$	29
	10d	Гексан	$8 \cdot 10^{7}$	40
Et ₂ Ge	$(Et_2Ge)_n$	Цикло-	$10 \cdot 10^{8}$	14
		гексан		
Bu ₂ ⁿ Ge	$(Bu_2^nGe)_n$	»	$9.2 \cdot 10^{8}$	14
$(n-C_6H_{13})_2Ge$	$[(n-C_6H_{13})_2Ge]_n$	»	$13 \cdot 10^{8}$	14
PhMeGe	(PhMeGe) _n	»	$1.6 \cdot 10^{8}$	14
	Me2Ge(GePhMe2)2	»	$0.65 \cdot 10^{8}$	22, 23
	10b	Гексан	$1.7 \cdot 10^{7}$	42
Ph ₂ Ge	Ph ₂ Ge(GeMe ₃) ₂	Цикло-	$1.5 \cdot 10^{8}$	22, 23
		гексан		
	10c	Гексан	$4.8 \cdot 10^{6}$	66

 $Me_2Ge + CCl_4 \longrightarrow Cl_3CGeMe_2Cl.$

Для этой реакции литературные данные по константам скорости также варьируются в зависимости от природы предшественника. Однако разброс значений (для одного и того же гермилена) существенно меньше, чем для реакций гермиленов с DMB (см. табл. 10 и 11). В газовой фазе константа скорости реакции Me₂Ge с CCl₄ не была измерена,⁴⁴ так как излучение (193 нм), использованное в большинстве работ, поглощается четыреххлористым углеродом.

Таблица 12. Константы скорости реакций гермиленов с некоторыми органическими молекулами (T = 293 K).

Гермилен	Предшественник	Растворитель	Реагент	k, л·моль ⁻¹ ·c ⁻¹	Ссылки
Me ₂ Ge	PhMe2GeSiMe3	Циклогексан	ДМСО	< 10 ⁷	29
	PhMe ₂ GeSiMe ₃	»	ΤΓΦ	$< 10^{4}$	29
	PhMe ₂ GeSiMe ₃	»	Et ₃ SiH	< 10 ⁴	29
	PhMe2GeSiMe3	»	EtOH	$1.86 \cdot 10^{4}$	29
	PhMe2GeSiMe3	»	EtOH	Нет реакции	31
	PhMe ₂ GeGeMe ₃	»	EtOH	То же	31
	Me ₂ Ge(GePhMe ₂) ₂	»	Et ₃ SiH	$4.2 \cdot 10^{6}$	22, 23
	Me ₂ Ge(GePhMe ₂) ₂	»	EtOH	Нет реакции	22, 23
	(PhMe ₂ Ge) ₂	ΤΓΦ	EtOH	То же	32
	3a	Гексан	Me ₃ SnCl	$3.5 \cdot 10^8$	4, 39
	3a	»	3a	$1.2 \cdot 10^{7}$	4, 39
	3a	»	MeOH	$3 \cdot 10^{7}$	4, 39
PhMeGe	PhMeGe(GeMe ₃) ₂	Циклогексан	Et ₃ SiH	$4.1 \cdot 10^{6}$	22
	PhMeGe(GeMe ₃) ₂	»	Et ₃ SiH	$6.5 \cdot 10^{7}$	23
	PhMeGe(GeMe ₃) ₂	»	EtOH	Нет реакции	22, 23
Ph ₂ Ge	$Ph_2Ge(SiMe_3)_2$	»	EtMe ₂ SiH	$1.0 \cdot 10^{4}$	41
	$Ph_2Ge(SiMe_3)_2$	»	MeOH	Нет реакции	41
	Ph ₂ Ge(SiMe ₃) ₂	»	Me ₂ EtBr	$1.0 \cdot 10^4$	41
	Ph ₂ Ge(SiMe ₃) ₂	»	Bu ^t Br	$6.4 \cdot 10^5$	41
	$Ph_2Ge(SiMe_3)_2$	»	MeSSMe	$5.0 \cdot 10^{6}$	41
	$Ph_2Ge(SiMe_3)_2$	»	Me ₂ EtBr	$1.0 \cdot 10^{4}$	41
	Ph ₂ Ge(GeMe ₃) ₂	»	Et ₃ SiH	6.6 · 10 ⁵	22, 23
	Ph ₂ Ge(GeMe ₃) ₂	»	EtOH	Нет реакции	22, 23
	10c	Гексан	MeOH	$6.1 \cdot 10^{9}$	66
	10c	»	Bu ^t OH	$4.8 \cdot 10^9$	66
	(Ph ₃ Ge) ₂	Циклогексан	EtOH	Нет реакции	32
Mes ₂ Ge	cyclo-Ge ₃ Mes ₆	Гексан	Et ₃ SiH	$1.1 \cdot 10^{5}$	13
	cyclo-Ge ₃ Mes ₆	»	EtOH	Нет реакции	13
	cyclo-Ge ₃ Mes ₆	»	1-Бромгексан	$5.4 \cdot 10^{5}$	13

Реакции внедрения по связям H – X (X = C, N, O, F, Si, P, S, Cl) характерны для карбенов, силиленов и гермиленов. Квантово-химические расчеты показали,^{45, 56, 67–69} что энергии активации таких реакций в случае диметилгермилена значительно выше, чем для карбенов и силиленов. Тем не менее такие процессы с участием гермиленов часто протекают с высокими константами скорости (табл. 12).

X. Оптические спектры, колебательные частоты и кинетика исчезновения дигерменов

Выше отмечалось, что отжиг низкотемпературных матриц, в которых накоплен гермилен, и импульсная фотогенерация гермиленов в растворах во многих случаях приводят к димеризации этих частиц с образованием дигерменов. В табл. 13 приведены положения полос поглощения некоторых дигерменов, образующихся при использовании различных предшественников. Данные, полученные при 293 К, относятся к экспериментам по лазерному импульсному фотолизу. Температура 77 К соответствует опытам, в которых проводили отжиг и повторное замораживание облученных матриц. Видно, что полосы поглощения дигерменов смещены в коротковолновую область спектра по сравнению с полосами гермиленов (см. табл. 1 и 2). Отметим, что коэффициенты поглощения полос дигерменов также не определены. Только в работе ⁴³ для полосы Ph₂Ge=GePh₂ с максимумом при 440 нм измеренный коэффициент поглощения составил 5970 л · моль - 1 · см - 1.

При фотолизе (254 нм) диметилдиазидогермана ($Me_2Ge(N_3)_2$) в аргоновой матрице при 12–18 К был получен ²⁹ ИК-спектр диметилгермилена (см. табл. 6). Подогрев матрицы до 36 К приводил к изменению спектра — исчезновению линий Me_2Ge и появлению новых сигналов, которые авторы отнесли к тетраметилдигермену (табл. 14). Аналогичные результаты были получены при термолизе кристаллического соединения **За** с изоляцией газообразных продуктов в аргоновой или азотной матрицах при 5 К.⁷⁰

В некоторых случаях поглощение дигерменов исчезает в соответствии с кинетическим законом реакции второго

Таблица 14. Расчетные и экспериментальные частоты колебаний (cm^{-1}) связей Ge-C и Ge-Ge тетраметилдигермена,⁷⁰ зарегистрированные в аргоновой (Ar) и азотной (N₂) матрицах при 5 K.

Колебание	Спект	ры КР		ИК-Спектры			
	эксперимент		эксперимент расчет		эксперимент		
	Ar	N ₂		Ar	Ar ^a		
v(Ge-C)	591	589	588	598	594	593	
	580	580	576	568	569	564	
v(Ge-Ge)	404	405	401	_	_	_	
$\delta(C - Ge - C)$	235	234	232	_	_	_	
	200	198	206				

^а По данным работы ²⁸.

порядка, что предполагает образование циклотетрагерманов.11 Для этого процесса определена только величина эффективной константы скорости k/ε (табл. 15). Ввиду того что изменение оптических плотностей полос при 450 (гермилен) и 370 нм (дигермен) сопоставимы, 11 коэффициенты поглощения этих частиц близки друг к другу и, по-видимому, составляют ~10³ л·моль⁻¹·см⁻¹. В этом случае константа скорости димеризации дигерменов приблизительно равна $k \sim 3.9 \cdot 10^6 \varepsilon \sim 4 \cdot 10^9$ л моль⁻¹ см⁻¹, что достаточно близко к диффузионному пределу. В работе ³⁷ для димеризации Me₂Ge=GeMe₂ в циклогексане с использованием соединения 4а в качестве предшественника гермилена найдено значение константы, меньшее примерно в 6 раз. В случае дигерменов с более объемными заместителями (Еt- и Phгруппами) также найдены меньшие константы скорости рекомбинации (см. табл. 15). Отметим, что дигермен с мезитильными группами¹³ исчезает в результате реакции псевдопервого порядка (т ~ 300 мкс) с не установленным пока механизмом процесса.

Таким образом, проведенный анализ показывает, что димеризация сначала гермиленов, а затем и дигерменов может приводить к образованию циклических германов.

Таб	лица	13. (Спектроскопические хар	актеристики диге	рменов в раство	pax (T	= 293 K	и низкотемперату	рных 3-МР-мат	рицах (Т	= 77 k	().
			1 1	1	1 1			1 2	1	1		

Дигермен	Предшественник	Растворитель	$\lambda_{\rm max}$, нм	Ссылки
	Растворы			
$Me_2Ge = GeMe_2$	8	Циклогексан	370	11
	4a	»	380	37
$Et_2Ge = GeEt_2$	4b	»	380	37
$Pr_2^iGe = GePr_2^i$	cyclo-Ge ₄ Pr ⁱ ₈	»	390	15
Ph ₂ Ge=GePh ₂	Ph ₂ Ge(SiMe ₃) ₂	»	320	41
	10c	Гексан	440	43
$Mes_2Ge = GeMes_2$	cyclo-Ge ₃ Mes ₆	»	405	13
	Mes ₂ Ge(SiMe ₃) ₂	»	405	13
$(2,6-Me_2C_6H_3)_2Ge = Ge(C_6H_3Me_2-2,6)_2$	cyclo-Ge ₃ (C ₆ H ₃ Me ₂ -2,6) ₆	Циклогексан (см. ^а)	~ 410	16
	Матрицы			
$Me_2Ge=GeMe_2$	4a	_	370	37
$Et_2Ge=GeEt_2$	4b	_	380	37
$Pr_{2}^{i}Ge = GePr_{2}^{i}$	cyclo-Ge ₄ Pr ⁱ ₈	_	390	15
MesBu ^t Ge=GeMesBu ^t	MesBu ^t Ge(SiMe ₃) ₂	_	378	25
$(2,6-Me_2C_6H_3)_2Ge = Ge(C_6H_3Me_2-2,6)_2$	$(2,6-Me_2C_6H_3)_2Ge(SiMe_3)_2$	_	406	25
$(2,6-Et_2C_6H_3)_2Ge = Ge(C_6H_3Et_2-2,6)_2$	(2,6-Et ₂ C ₆ H ₃) ₂ Ge(SiMe ₃) ₂	_	400	25
$Mes_2Ge = GeMes_2$	Mes ₂ Ge(SiMe ₃) ₂	_	406	25
$Mes_2Ge = GeMes_2$	15	_	406	38
$(2,4,6-Pr_3^iC_6H_2)_2Ge = Ge(C_6H_2Pr_3^i-2,4,6)_2$	$(2,4,6-Pr_3^iC_6H_2)_2Ge(SiMe_3)_2$	_	416	25

^а Использован дейтерированный циклогексан.

Дигермен	Предшественник	λ_{\max} , нм	Растворитель	k/ε , см · с ⁻¹	Ссылки
Me ₂ Ge=GeMe ₂	8	370	Циклогексан	$3.9 \cdot 10^{6}$	11
	9	370	»	$4.8 \cdot 10^{6}$	19
	4 a	380	»	$6.5 \cdot 10^{5}$	37
$Et_2Ge = GeEt_2$	4b	380	»	$4.2 \cdot 10^{5}$	37
Ph ₂ Ge=GePh ₂	Ph ₂ Ge(SiMe ₃) ₂	320	»	$\sim 8.0 \cdot 10^4$	41
	10c	440	Гексан	$\sim 2.5 \cdot 10^4$ (см. ^а)	43
$Mes_2Ge = GeMes_2$	cyclo-Ge ₃ Mes ₆	405	Циклогексан	3.4 · 10 ³ (см. ^b)	13

Таблица 15. Эффективные константы скорости реакций второго порядка (k/ε) , в результате которых исчезают дигермены (T = 293 K).

^а Реакция первого и второго порядков, приведена k_{ij} в с⁻¹; ^b реакция первого порядка, приведена k в с⁻¹.

При стационарном фотолизе органических производных германия возникающие гермилены и дигерманы могут взаимодействовать с циклическими продуктами по мере их накопления, что в конечном итоге приводит к появлению в растворе германийсодержащих полимеров.

Кроме димеризации дигермены могут исчезать в результате конкурирующих реакций с другими молекулами. Константы скорости некоторых из таких процессов представлены в табл. 16. Видно, что эффективной ловушкой для дигерменов является молекула кислорода. Однако в литературе приведены значения константы скорости этой реакции, отличающиеся на три порядка (см. табл. 16). Отметим, что гермилены реагируют с кислородом и четыреххлористым углеродом со скоростью, примерно на порядок большей, чем дигермены. Реакция дигермена с 2,3-диметилбута-1,3диеном медленнее на два порядка по сравнению с аналогичной реакцией с участием гермилена (ср. данные табл. 12 и 16). Константа скорости реакции дигермена с триэтилсиланом также существенно меньше константы скорости, зарегистрированной для гермилена. В то же время для реакции метилзамещенных дигерменов со спиртами характерна обратная ситуация. Если гермилены практически не реагируют со спиртами, то для дигерменов константы скорости достигают величин ~ $5 \cdot 10^7$ моль $\cdot n^{-1} \cdot c^{-1}$. Несмотря на последний факт, можно заключить, что в целом реакционная способность дигерменов значительно ниже, чем гермиленов.

XI. Оптические спектры гермильных радикалов

Наряду с гетеролитическим разрывом связи Ge – C при фотолизе и термолизе германийсодержащих соединений могут происходить и гомолитические процессы с образованием гермильных радикалов. В работе²² показано, что фотолиз тетраметилфенилдигермана PhMe₂GeGeHMe₂ в низкотемпературной 3-MP-матрице приводит к появлению в спектре полосы поглощения с максимумом при 320 нм, которая была отнесена к дигермильному радикалу. При плавлении матрицы полоса исчезала.

Габлица	16.	Константы	скорости	реакций	дигерменов	(T =	= 293 K) e	в растворах.
---------	-----	-----------	----------	---------	------------	------	------------	--------------

Дигермен	Предшественник	Растворитель	Реагент	k, л · моль ⁻¹ ·c ⁻¹	Ссылки
Me ₂ Ge=GeMe ₂	cyclo-Ge ₄ Me ₈	Циклогексан	O ₂	$2.3 \cdot 10^{5}$	13
	8	»	O_2	$2.8 \cdot 10^8$	11
	4 a	»	O_2	$4.0 \cdot 10^{8}$	37
	10e	Гексан	O_2	$5.0 \cdot 10^{7}$	40
	8	Циклогексан	CCl ₄	< 107	11
	4a	»	CCl ₄	$1.2 \cdot 10^{7}$	37
	10c	Гексан	CCl ₄	$2.3 \cdot 10^{7}$	40
	4 a	Циклогексан	DMB	$5.3 \cdot 10^5$	37
	4 a	»	EtOH	$4.9 \cdot 10^{7}$	37
	4 a	»	EtOD	$4.8 \cdot 10^{7}$	37
	4 a	»	Pr ⁱ OH	$2.0 \cdot 10^{7}$	37
	4 a	»	Bu ^t OH	$2.0 \cdot 10^{7}$	37
	10e	Гексан	MeOH	$2.7 \cdot 10^{6}$	71
	10e	Циклогексан	Bu ^t OH	$5.2 \cdot 10^5$	71
Et ₂ Ge=GeEt ₂	4b	»	O_2	$3.3 \cdot 10^8$	37
	4b	»	CCl ₄	$3.7 \cdot 10^{7}$	37
	4b	»	DMB	$1.7 \cdot 10^{5}$	37
	4b	»	EtOH	$9.4 \cdot 10^{7}$	37
Ph ₂ Ge=GePh ₂	10c	Гексан	O_2	$4.8 \cdot 10^{6}$	40
	10c	»	CCl ₄	$2.0 \cdot 10^{6}$	40
	Ph ₂ Ge(SiMe ₃) ₂	Циклогексан	MeOH	$7.1 \cdot 10^{3}$	41
	10c	Гексан	MeOH	$1.9 \cdot 10^{7}$	71
	10c	»	Bu ^t OH	$2.1 \cdot 10^{6}$	71
$Mes_2Ge = GeMes_2$	cyclo-Ge ₃ Mes ₆	Циклогексан	O_2	$2.3 \cdot 10^5$	13

При лазерном импульсном фотолизе растворов перарилзамещенных тригерманов $R_3^1Ge-GeR^2R^3-GeR_3^1$ ($R^1-R^3=Ar$) также наблюдались ^{22, 23} полосы поглощения с максимумами в области 320–330 нм, которые авторы связывали с возникновением арилзамещенных дигермильных радикалов. Коэффициенты поглощения этих полос не были определены. Показано, что частицы, которым соответствует данное поглощение, не взаимодействуют с 2,3-диметилбута-1,3-диеном, но с высокими константами скорости ($k = (1.3-7.2) \cdot 10^8 \text{ л} \cdot \text{моль}^{-1} \cdot c^{-1}$) реагируют с четыреххлористым углеродом.

В работе ¹⁴ провели лазерный импульсный фотолиз растворов полигерманов (R₂Ge)_n в циклогексане. Наряду с поглощением гермиленов (430–460 нм) в спектре были обнаружены полосы в области 350–370 нм, которые приписали полигермильным радикалам (R₂Ge)_m. Последние исчезали в результате реакции рекомбинации с эффективными константами скорости в диапазоне $k/\varepsilon = 2.3 \cdot 10^4 - 5.1 \cdot 10^5 \text{ л} \cdot \text{моль}^{-1} \cdot \text{с}^{-1}$. Следует отметить, что идентификация полос, отнесенных к гермильным радикалам, осложняется тем, что дигермены имеют полосы поглощения в той же спектральной области (см. табл. 13) и исчезают в результате реакции второго порядка с близкими параметрами k/ε (см. табл. 15).

Лазерный импульсный фотолиз арилзамещенных дигерманов ($Ph_nMe_{3-n}Ge$)₂ (n = 1, 2) приводит к образованию гермиленов (максимумы полос поглощения в области 440-470) и гермильных радикалов Ph_nMe_{3-n}Ge[•] (315-330 нм).³⁰ Радикалы исчезали в результате реакции рекомбинации С наблюдаемыми константами $k_{\rm obs} =$ $(1.9-4.3) \cdot 10^5 c^{-1}$. Импульсный фотолиз раствора PhMe₂GeGeMe₃ позволил зарегистрировать³¹ оптический спектр гермильного радикала PhMe2Ge' в виде полосы с максимумом при 320 нм. Радикал вступал в реакцию димеризации с параметром $k/\varepsilon = 7.0 \cdot 10^7$ см \cdot с⁻¹.

Таким образом, имеющиеся данные по лазерному импульсному фотолизу германийсодержащих соединений показывают, что гермильные или дигермильные радикалы поглощают в области 315-330 нм и исчезают в результате реакции рекомбинации с эффективными константами скорости порядка $10^4 - 10^8$ л моль $^{-1} \cdot c^{-1}$.

XII. Стабильные гермилены

Диорганилгермилены R₂Ge обычно являются короткоживущими активными частицами, однако введение в молекулу предшественника объемных групп R (см.⁵⁷) либо лигандов, являющихся п- или π -донорами и способных переносить электронную плотность на вакантную орбиталь центрального атома германия, позволяет получить долгоживущие аналоги карбена. В настоящее время известно около 30 стабильных гермиленов.⁷² Опубликован подробный обзор⁷³, посвященный стабильным германиевым аналогам карбенов, иминов, кетонов и тионов.

В некоторых случаях удается выделить гермилены в кристаллическом виде и изучить их строение. Авторами работы⁶¹ выделены кристаллы стабильного гермилена [(Me₃Si)₂CH]₂Ge и получен его раствор в гексане. В спектре раствора обнаружено три полосы оптического поглощения с максимумами при 414, 302 и 227 нм с коэффициентами соответственно 970. 1450 поглощения И 19 600 л моль -1 см -1. Положение длинноволновой полосы (414 нм) хорошо согласуется с максимумами поглощения нестабильных гермиленов, полученных с помощью лазерного импульсного фотолиза (см. табл. 2). Коэффициент поглощения ($\varepsilon \sim 10^3$ л моль⁻¹ см⁻¹), оцененный исходя из параметра рекомбинации нестабильных гермиленов $2k_{\rm rec}/\varepsilon$, также близок к аналогичной характеристике длинноволновой полосы [(Me₃Si)₂CH]₂Ge.

Авторами работ ^{74, 75} синтезирован стерически затрудненный стабильный дигермен **12**.

Отталкивание объемных групп приводит к существенному увеличению длины связи Ge – Ge (2.416 Å) в этом соединении. В растворе при повышении температуры дигермен 12 обратимо диссоциирует на две молекулы стабильного гермилена ${2,4,6-[(Me_3Si)_2CH]_3C_6H_2}$ MesGe. Соединение 12 имеет полосу поглощения с максимумом при 439 нм (ε = $2 \cdot 10^4$ л · моль⁻¹ · см⁻¹), а гермилен {2,4,6-[(Me₃Si)₂CH]₃. .С₆H₂}MesGe — при 575 нм ($\varepsilon = 1.6 \cdot 10^3 \text{ л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$). Термодинамические параметры обратимой диссоциации составляют: $\Delta H = 61.5$ кДж · моль⁻¹, $\Delta S =$ 177.5 Дж·моль $^{-1} \cdot K^{-1}$. Энергия связи Ge-Ge (61.5 кДж моль⁻¹) существенно понижена[‡] из-за растяжения связи вследствие отталкивания объемных заместителей.

Коэффициент поглощеия длинноволновой полосы гермилена MesBu¹Ge также согласуется с оценками этой величины для нестабильных гермиленов. Сама полоса смещена в длинноволновую область аналогично полосам поглощения нестабильных гермиленов, содержащих объемные заместители.

Стабильный гермилен (2,4,6-Ви₃^tC₆H₂)₂Ge может храниться при температуре - 30°С несколько месяцев.⁷⁷ При комнатной температуре он разлагается за несколько недель с выделением 1,3,5-трис(трет-бутил)бензола. Рентгенографический анализ показал, что две арильные группы в пространстве расположены по-разному, а длина связи Ge-C равна 2.053 Å. Угол С-Gе-С близок к 108° и существенно превышает значения 91-93°, рассчитанные для Me₂Ge (см. табл. 4). Несмотря на искаженную геометрию, гермилен $(2,4,6-Bu_3^tC_6H_2)_2$ Ge в растворе имеет полосу поглощения с максимумом при 430 нм, положение которой практически совпадает с положением полосы поглощения Me₂Ge (см. табл. 1, 2). Еще большая величина угла С-Ge-С (111.3°) обнаружена в стабильном гермилене (Me₃Si)₃CGeCH. .(SiMe₃)₂,⁷⁸ при этом длины связей Ge-C равны 2.012 и 2.067 Å. К сожалению, оптический спектр этого гермилена в работе 78 не представлен. Отметим, что в гермилене (2,6-Mes₂C₆H₃)₂Ge угол С-Ge-С равен 114.4°, а длина связи Ge-C — 2.033 Å.⁷⁹

В работе ⁸⁰ описан стабильный циклический диалкилгермилен — 2,2,5,5-тетракис(триметилсилил)-1-гермациклопентан-1,1-диил (13), который в твердом состоянии является мономером и для которого усредненная длина связи Ge-C равна 2.015 Å, а угол C-Ge-C составляет 91°.

В спектре поглощения длинноволновая полоса гермилена лена 13 с небольшим коэффициентом поглощения расположена при 450 нм. Его нестабильный аналог — 1-гермацикло-

[‡]Квантово-химические расчеты показали,⁷⁶ что для незамещенного дигермена (H₂Ge=GeH₂) величина энергии связи Ge−Ge значительно больше (125.6–188.4 кДж·моль⁻¹).

ритель нм моль- π^{-1} см ⁻¹ ки Стабильные гермилены [2,4,6-(CF ₃) ₃ C ₆ H ₂] ₂ Ge Гексан 374 1300 72 MesBu'Ge » 575 1600 74, [(Me ₃ Si) ₂ CH] ₂ Ge » 414 970 61, » 312 1450 61,	ыл-
Стабильные гермилены [2,4,6-(CF ₃) ₃ C ₆ H ₂] ₂ Ge Гексан 374 1300 72 MesBu'Ge » 575 1600 74. [(Me ₃ Si) ₂ CH] ₂ Ge » 414 970 61. » 312 1450 61.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, 75
» 312 1450 61,	, 82
	, 82
» 227 19600 61.	, 82
(2,4,6-Ви ^t ₃ С ₆ H ₂) ₂ Ge Гексан, 430 520 77	
ΤΓΦ	
$(2,6-Mes_2C_6H_3)_2Ge$ Et ₂ O 578 79	
(2,4,6-Pr ¹ ₃ C ₆ H ₂)Bu ^t Ge Гексан, 580 83	
ΤΓΦ	
13 » 450 320 80	
» 280 1300 80	
(Bu ^t ₂ N) ₂ Ge Цикло- 445 420 84	
гексан 310 плечо 84	
» 227 7000 84	
Нестабильные гермилены	
Рh2Ge Гексан 500 1650 43	
Mes ₂ Ge » 550 1440 43	

Таблица 17. Положение максимумов и коэффициенты поглощения полос в спектрах гермиленов (T = 293 K).

пент-3-ен-1,1-диил — в аргоновой матрице при 12 К имеет широкую полосу поглощения с максимумом в области 400–410 нм, длина связи Ge–C составляет 2.017 Å и угол C–Ge–C равен 88.1° (см.⁸¹). В табл. 17 представлены параметры оптических спектров некоторых стабильных гермиленов. Следует отметить, что стабильный гермилен ($Bu_2^1N)_2$ Ge имеет длинноволновую полосу поглощения с максимумом при 445 нм, длина связи Ge–N составляет 1.88 Å и угол N–Ge–N — 111.4° (см.⁸⁰).

Недавно появилась работа ⁴³, в которой были определены коэффициенты поглощения длинноволновых полос в спектрах некоторых короткоживущих гермиленов (см. табл. 17). Видно, что значения $\varepsilon \sim 1000 - 2000 \text{ л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$ находятся в том же диапазоне, что и для стабильных гермиленов.

XIII. Сравнение данных методов химической поляризации ядер и лазерного импульсного фотолиза

Анализ эффектов химической поляризации ядер в термических и фотохимических реакциях предоставляет ценную информацию о процессах с участием короткоживущих (с временами жизни от нано- до микросекундного диапазона) радикалов и бирадикалов. Регистрация ХПЯ позволяет установить мультиплетности радикальных пар, их предшественников, а также реагирующих состояний карбенов и их тяжелых аналогов — силиленов и гермиленов.⁸⁵ Отметим, что наносекундный лазерный фотолиз с временным разрешением порядка 10 нс не позволяет зарегистрировать интермедиаты со временем жизни в несколько наносекунд.

Результаты исследований по фотохимии германийсодержащих соединений с пико- и фемтосекундным временным разрешением, к сожалению, в литературе отсутствуют. Это связано, по-видимому, с небольшими коэффициентами поглощения полос в спектрах как исходных соединений, так и промежуточных частиц. Для изучения фотодиссоциации производных германия также до сих пор не использовали времяразрешенную ИК-спектроскопию пикосекундного диапазона. Следовательно, ХПЯ в настоящее время является единственным методом, позволяющим получать информацию о процессах с участием частиц, время жизни которых составляет наносекунды. На сегодняшний день опубликован единственный обзор⁸⁶, посвященный применению методик спиновой химии к исследованию короткоживущих интермедиатов фотохимических превращений германорборнадиенов и дигермабициклооктадиенов.

Эффекты XПЯ зарегистрированы^{87,88} при термическом разложении Me₂GeNB (**3a**). После нагревания (85°С) раствора этого соединения в хлорбензоле в присутствии бензилбромида были выделены два германийсодержащих продукта.

 \rightarrow PhCH₂GeMe₂Br + Me₂GeBr₂ + ...

Предполагается, что в реакции образуется первичная радикальная пара {PhCH₂····GeMe₂Br}, рекомбинация которой и приводит к появлению поляризованной молекулы PhCH₂GeMe₂Br. При отрыве атома брома от PhCH₂Br радикалом 'GeMe₂Br, вышедшим в объем растворителя, образуется второй германийсодержащий продукт — Me₂GeBr₂. Анализ знаков XПЯ указывает на синглетное основное состояние гермилена, что хорошо согласуется с квантовохимическими расчетами (см. табл. 4). Отметим, что эффектов XПЯ для исходного соединения **За** не было обнаружено, что может быть связано с синхронным разрывом обеих связей Ge – C при термическом разложении.

Методом ЯМР изучен^{89,90} термолиз германорборнадиенов, содержащих другие заместители при атоме германия и в органическом фрагменте. Авторы работы⁸⁹ предполагают, что термолиз происходит в две стадии с первоначальным образованием промежуточного бирадикала TPN^{•••••} GeR₂. Регистрация эффектов ХПЯ в работах^{89,90} не производилась, а вывод об участии в реакции бирадикала сделан на основании увеличения термической стабильности германорборнадиенов при введении метильных заместителей в нафталиновый фрагмент.

При фотохимическом разложении соединения За также были зарегистрированы эффекты ХПЯ.91 Наличие сигналов ХПЯ для метильных протонов исходного норборнадиена позволило авторам предположить последовательный разрыв связей Ge-C с образованием промежуточного бирадикала. Согласно предложенной авторами схеме, из синглетного состояния бирадикала получается исходный норборнадиен, тогда как триплетное состояние служит источником других продуктов — 1,2,3,4-тетрафенилнафталина (6) и диметилгермилена. В качестве ловушки для диметилгермилена использовали 3,3,6,6-тетраметил-1-тиациклогепт-4-ин (11). Из анализа знаков ХПЯ продукта присоединения диметилгермилена по тройной связи С≡С соединения 11 был сделан вывод о том, что гермилен вступает в реакцию в триплетном состоянии. Это первая работа, в которой показано участие триплетного диметилгермилена в химической реакции.

Аналогичные результаты были получены при использовании молекулы CCl₄ в качестве ловушки диметилгермилена.⁸⁶ Фотолиз соединения **За** в растворе, содержащем CCl₄ и C₆D₆ (соотношение 1:1 или 1:3), приводит к появлению в спектрах ЯМР, записанных во время облучения, сигналов поляризованных молекул Me₂GeCl₂ и Me₂ClGeCCl₃, которые возникают из первичной радикальной пары ClMe₂Ge⁻···CCl₃. Анализ знаков ХПЯ показывает, что радикальная пара возникает при реакции триплетного диметилгермилена с четыреххлористым углеродом.

В более поздней работе³⁴, однако, не было обнаружено сигналов ХПЯ при исследовании Me₂GNB (3a) и TPN (6), что позволило авторам предложить одностадийный механизм генерирования диметилгермилена. С помощью лазерного импульсного фотолиза в этой работе была сделана попытка зарегистрировать промежуточные частицы при разложении соединения За. Показано, что в результате возбуждения молекулы За образуется TPN (6) в триплетном возбужденном состоянии. Авторы предполагают, что германорборнадиен За диссоциирует из синглетного состояния в одну стадию, при этом происходит разрыв обеих связей Ge-C в пикосекундном диапазоне времени. Молекула TPN (6) образуется в синглетном возбужденном состоянии, из которого быстро переходит в триплетное состояние ($S_1 \rightarrow T_1$). К сожалению, в работе³⁴ не был измерен коэффициент поглощения для полосы, отвечающей триплет-триплетному переходу, поэтому относительный выход триплетного состояния TPN (6) определен не был. Следовательно, существует вероятность, что образование TPN в S1-состоянии и последующий переход в триплетное состояние не являются основным каналом фотодиссоциации Me₂GNB (3a).

Авторами работы ⁹² проведен тщательный анализ кинетики изменения промежуточного поглощения при лазерном импульсном фотолизе соединения **3a** в гексане. После лазерного импульса образуются две промежуточные частицы, которые исчезают с существенно различающимися скоростями. Полоса в спектре поглощения, локализованная в области 400–550 нм ($\lambda_{max} = 480$ нм), которая исчезает за 300 нс, была отнесена к гермилену Ме₂Ge. Другую широкую полосу, которая исчезала гораздо медленнее (за несколько микросекунд) авторы приписали триплет-триплетному поглощению TPN (**6**). Правильность этого вывода подтверждена регистрацией T – T-поглощения при лазерном импульсном фотолизе раствора TPN в гексане.

При фоторазложении германорборнадиена За молекула TPN (6) может образоваться в основном (S_0), триплетном (Т₁) и синглетном (S₁) возбужденных состояниях. Для определения относительных выходов (у) этих состояний необходимо знать коэффициент T-T-поглощения и квантовый выход интеркомбинационной конверсии (ϕ_T для процесса $S_1 \to T_1$). В работе ⁹² для измерения коэффициента поглощения использован процесс передачи Т-Т-энергии с молекулы тетрафенилнафталина на антрацен и получена величина $\varepsilon_{\text{TPN}}^{421} = 12\,700\,\,\text{л}\cdot\text{моль}^{-1}\cdot\text{см}^{-1}$. Измерение интенсивности лазерного импульса при фотолизе растворов TPN (возбуждение в S₁-состояние) и величина груп позволили определить квантовый выход интеркомбинационной конверсии $\varphi_{\rm T} = 0.13$. Отметим, что квантовый выход флуоресценции $S_1 \rightarrow S_0 (\varphi_F)$ для TPN составляет 0.09.³⁴ С использованием этих параметров и кинетических кривых, полученных при импульсном фотолизе растворов соединения За, найдено, что выходы S₀- и T₁-состояний TPN следующие: $\gamma_{S_0} = 0.66$ и $\gamma_{T_1} = 0.34.^{92}$

Величина $\gamma_{S_0} = 0.66$ может определяться как образованием TPN непосредственно в основном состоянии, так и релаксацией возбужденного S₁-состояния (S₁ \rightarrow S₀). Параметр $\gamma_{T_1} = 0.34$ также может быть обусловлен как прямым формированием триплетного состояния, так и интеркомбинационной конверсией (S₁ \rightarrow T₁). Анализ показал, что прямой выход триплетного состояния TPN при фотодиссоциации соединения **3а** находится в диапазоне 0.24–

0.34. Таким образом, образование только S₁-состояния, как это предположено в работе ³⁴, из-за небольшого квантового выхода интеркомбинационной конверсии не может обеспечить появления значительного количества молекул TPN в триплетном состоянии. Молекула TPN в триплетном состоянии может возникнуть в результате фотодиссоциации молекулы Me₂GNB (**3a**) в триплетном состоянии. Авторы работы ³⁴ показали, что этот механизм не реализуется, так как при сенсибилизированном фотолизе (используемые триплетные сенсибилизаторы — бензофенон и 9*H*-ксантен-2-он) не возникает промежуточного поглощения, которое можно было бы отнести триплетному состоянию германорборнадиена **3a**.

При фотодиссоциации соединения За из состояния S₁ появление триплетной молекулы TPN можно объяснить только образованием бирадикала ^S(TPN'-'GeMe₂), в котором разорвана одна связь Ge-C и который способен переходить из первоначального синглетного состояния в триплетное ^т(ТРN'-'GeMe₂). В этом случае при распаде бирадикала (при разрыве второй связи Ge-C) один из компонентов (Me2Ge или TPN) может оказаться в триплетном состоянии. Анализ знаков эффектов ХПЯ ¹Н при фотолизе соединения За в присутствии акцепторов электрона подтвердил, что гермилен образуется в триплетном состоянии.90,91,93 К сожалению, метод ХПЯ не позволяет проводить количественные оценки, поэтому относительный выход частиц ^Т(Me₂Ge) остался неопределенным, хотя он может варьироваться в диапазоне от 0 до 66%. Нижний предел (0%) достигается в случае диссоциации триплетного состояния ^T(TPN'-'GeMe₂) с образованием только TPN в триплетном состоянии. Этот случай маловероятен, так как ХПЯ подтверждает существование диметилгермилена в триплетном состоянии. 86, 91, 93 Верхний предел выхода триплетного Me₂Ge ограничен величиной $\gamma_{Me_2Ge} = 1 - \gamma_{T_1} = 0.66$.

Таким образом, совокупность результатов, полученных методами лазерного импульсного фотолиза и ХПЯ, показывает, что фотодиссоциация диметилгерманорборнадиена **За** и образование диметилгермилена могут происходить в результате нескольких конкурирующих реакций. Первичным процессом является возбуждение молекулы Me₂GNB (**3a**) в первое синглетное возбужденное состояние.

$$S_0(Me_2GNB) \xrightarrow{n_V} S_1(Me_2GNB).$$
 (2)

Поскольку квантовый выход фоторазложения соединения **За** значительно меньше единицы ($\varphi \sim 0.4^{34}$), а флуоресценция практически отсутствует, то для этой молекулы существенную роль играет безызлучательная релаксация в основное состояние. Из возбужденного состояния $^{S_1}(Me_2GNB)$ может диссоциировать с разрывом двух связей Ge – C и образованием TPN и диметилгермилена. Молекула TPN, в свою очередь, может находиться в основном или возбужденном синглетных состояниях.

$$s_1(Me_2GNB)$$

 $s_1(Me_2GNB)$
 $s_1(TPN) + s(GeMe_2).$ (3)

Длинноволновая полоса поглощения соединения **За** локализована в области ~275 нм, что соответствует энергии поглощенного кванта ~4.5 эВ. Эффективное термическое разложение Me₂GNB при температуре около 100°C показывает,^{87,88} что энергия разрыва первой связи Ge – C составляет 1.0-1.2 эВ⁹⁴ (после этого процесса на разрыв второй связи требуется значительно меньше энергии). Таким образом, на формирование возбужденной молекулы ^{S1}(TPN) остается ~3.3-3.5 эВ, чего явно недостаточно, так как максимум длинноволновой полосы поглощения TPN расположен при 300 нм (следовательно, энергия S_1 (TPN) ≥ 4.1 эВ).

Появление одного из компонентов (TPN или Me₂Ge) в триплетном состоянии при диссоциации синглетного состояния запрещено согласно правилу сохранения полного спина. Хотя это правило не запрещает одновременного формирования двух частиц в триплетном состоянии

$$S_1(Me_2GNB) \longrightarrow T_1(TPN) + T(GeMe_2),$$
 (4)

вероятность такого процесса значительно меньше (1:9) вероятности появления частиц в синглетных состояниях. Кроме того, в первом случае существует также проблема дефицита энергии, так как запаса в 3.2-3.5 эВ недостаточно для появления частиц T_1 (TPN) (с энергией 2.8-3.0 эВ) и T(GeMe₂) (1.2 эВ ^{45, 53}).

Выше рассматривались процессы, в которых фотодиссоциация Me₂GNB (**3a**) происходит за один элементарный акт, включающий разрыв обеих связей Ge-C. Более вероятной может быть реакция, в которой конечные продукты появляются в синглетных состояниях. Предположение об единичном акте означает, что временной интервал между разрывом первой и второй связей Ge-C значительно короче временно́го разрешения метода регистрации, и кратковременное существование бирадикала (разрыв первой связи)

$$S_1(Me_2GNB) \implies S(TPN \cdots GeMe_2)$$
 (5)

не приводит к существенным изменениям выхода и электронного состояния конечных продуктов. Однако регистрация эффектов ХПЯ^{86,91,93} указывает на то, что времени жизни бирадикала достаточно для перехода в триплетное состояние

$$\mathbf{F}(\mathsf{TPN}^{\prime}\cdots^{\prime}\mathsf{GeMe}_2) \implies \mathsf{T}(\mathsf{TPN}^{\prime}\cdots^{\prime}\mathsf{GeMe}_2).$$
 (6)

Из этого состояния бирадикал может диссоциировать с появлением одного из компонентов в триплетном состоянии.

$$^{T}(\text{TPN}^{\bullet} \cdots ^{\bullet} \text{GeMe}_{2}) \xrightarrow{T_{1}(\text{TPN}) + S(\text{GeMe}_{2}),} (7)$$

Время S–T-перехода бирадикала определяется величинами сверхтонкого взаимодействия (СТВ) в радикальных центрах, разностью *g*-факторов и величиной магнитного поля. При параметрах, характерных для многих радикальных пар, время перехода в триплетное состояние находится обычно в диапазоне 1-10 нс. Наносекундный лазерный импульсный фотолиз имеет временное разрешение 5-10 нс, поэтому оптический спектр бирадикала ни в триплетном, ни в синглетном состояниях пока не зарегистрирован.

Конечный продукт — молекула TPN (6) в различных электронных состояниях — может появляться как минимум в пяти представленных выше реакциях (см. реакции (3), (4) и (7)). Относительная доля каждого канала остается неизвестной, и только величина $\gamma_{T_1} = 0.34$ показывает, что диссоциация триплетного бирадикала может давать вклад величиной примерно в 1/3 суммарного выхода фотореакции. Регистрация с помощью метода ХПЯ реакций (4), (7) свидетельствует о существовании частицы ^т(GeMe₂), однако вклад каждого продукта можно определить только после измерения его относительного выхода. Существующие в литературе разногласия по поводу механизма фотодиссоциации Me₂GNB^{34,91,93} могут быть связаны с тем, что каждый канал вносит значительный вклад в суммарный выход продуктов фотореакции. Отсутствие количественных измерений выходов приводит к различным выводам о механизме фотопревращений диметилгерманорборнадиена За. Полная количественная характеристика всех процессов станет возможна

только после определения относительного выхода диметилгермилена в триплетном состоянии.

Аналогичные проблемы возникают при исследовании фотохимии 7,7,8,8-тетраметил-1,4-дифенил-1,3-бензо-7,8-дигермабицикло[2.2.2]окта-1,5-диена (**4a**). Это соединение было изучено методами лазерного импульсного фотолиза³⁷ и ХПЯ.³⁶ После лазерного импульса (через 300 нс) в растворе соединения **4a** в циклогексане зарегистрированы две полосы поглощения с максимумами в области 380 и 430 нм. Полосу при 430 нм, которая исчезала через 3 мкс, авторы работы ³⁷ приписали T-T-поглощению дифенилнафталина (^T(DPN), $\varepsilon^{430} = 3.2 \cdot 10^4 \text{ л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$ (см.⁹⁵)). Полоса при 380 нм, отнесенная к дигермену Me₂Ge=GeMe₂ (см. табл. 13), исчезала по кинетическому закону реакции второго порядка ($k/\varepsilon = 6.5 \cdot 10^5 \text{ см} \cdot \text{с}^{-1}$).

Регистрация эффектов ХПЯ для протонов метильной группы исходной молекулы 4а и для протонов конечного продукта (DPN) позволила авторам статьи ³⁶ предположить, что первичным процессом является разрыв одной из связей Ge-C с образованием бирадикала DPN-Me₂Ge[•]- 'GeMe₂ в синглетном состоянии. Обратимый переход бирадикала в триплетное состояние и замыкание разорванной связи приводят к появлению ХПЯ для протонов исходного соединения 4а. В работе ³⁶ обсуждаются два возможных канала превращения триплетного бирадикала. Первое направление — диссоциация оставшейся связи Ge-C с образованием дигермена и триплетной молекулы DPN. Второе — диссоциация связи Ge-Ge с образованием диметилгермилена и триплетного бирадикала (DPN'-'GeMe₂). Последний может либо перейти в синглетное состояние и образовать связь Ge-C с оставшимся атомом германия (получится германорборнадиен), либо диссоциировать с появлением триплетного DPN и второй частицы диметилгермилена. Анализ эффектов ХПЯ и кинетического поведения промежуточного поглощения не позволили сделать окончательного выбора между этими двумя механизмами превращения триплетного 1,6-бирадикала, однако его участие в формировании сигналов ХПЯ не вызывает сомнений.

Таким образом, для полного описания процессов фотодиссоциации соединения **4a** в работах ^{36, 37} не хватает количественного анализа относительного выхода дифенилнафталина в триплетном и синглетном состояниях. Эта информация была бы полезной при определении вкладов различных возможных каналов фотодиссоциации молекулы 4а (диссоциации бирадикала из синглетного и триплетного состояний, диссоциации без образования промежуточного бирадикала с одновременным разрывом обеих связей Ge-С и появлением дигермена). Поскольку авторами работ ^{36, 37} использованы разные длины волн лазерного излучения (266 и 308 нм соответственно), не исключена возможность того, что механизмы фотолиза различные. Например, при возбуждении соединения 4а светом с длиной волны 266 нм реализуется один канал фотопревращения (образование дигермена $Me_2Ge=GeMe_2$ без участия бирадикала),³⁷ а при фотолизе в более длинноволновой области происходит разрыв только одной связи Ge-C и генерируется бирадикал.36

XIV. Заключение

Анализ литературных данных показывает, что диметилгермилен в оптическом спектре имеет полосу поглощения в области 420–490 нм. Для этой частицы, находящейся в газовой фазе, максимум полосы наблюдается при 480 нм. Повидимому, поглощение в более коротковолновой области (405–420 нм) принадлежит донорно-акцепторным комплексам гермиленов. Полосы в диапазоне 370–380 нм обусловлены быстрым образованием дигерменов за счет димеризации гермилена. Поглощение гермиленов, содержащих объемные заместители или группы с π -системами, смещается в длинноволновую область (450–550 нм), что связано, скорее всего, с увеличением угла С-Gе-С. Смещение полос поглощения гермиленов в спектрах низкотемпературных матриц по сравнению со спектрами растворов может объясняться влиянием температуры, природы растворителя и геометрией гермилена.

Обычно гермилены исчезают в результате реакций димеризации с образованием дигерменов. Для определения констант скорости рекомбинации необходимо определить значения коэффициентов поглощения полос в спектрах нестабильных гермиленов. На сегодняшний день эти параметры измерены только для двух гермиленов — Ph₂Ge и Mes₂Ge. Определение указанных величин для других гермиленов является актуальной задачей в фотохимии германийсодержащих соединений. Дигермены также исчезают в результате реакций второго порядка с образованием циклических и далее полимерных структур. Полосы поглощения дигерменов смещены на 40-50 нм в коротковолновую область по сравнению с полосами гермиленов. Для дигерменов также не определены коэффициенты поглощения полос. Важной проблемой является большой разброс (иногда до 2-3 порядков величин) литературных данных по константам скоростей реакций гермиленов, полученных из различных предшественников. Скорее всего, этот разброс связан с неправильным отнесением полос промежуточного поглощения. Например, полосы, которые ранее приписывали гермиленам, на самом деле принадлежат дигерменам или германийсодержащим радикалам. Причиной может быть также образование промежуточных комплексов гермиленов с продуктами разложения германийсодержащих соединений, возникающих одновременно с гермиленами.

В большинстве работ по фотохимии органических производных германия предполагается, что в возбужденном состоянии этих молекул происходит гетеролитический разрыв связей Ge – C с образованием гермиленов. Однако в некоторых случаях авторы считают, что происходит конкурирующий процесс гомолитического разрыва связи Ge – Ge с образованием гермильных радикалов. Относительная вероятность этих каналов при фотопревращениях германийсодержащих соединений остается неизвестной, поскольку для радикалов, имеющих полосы поглощения в еще более коротковолновой области спектра, также неизвестны коэффициенты поглощения. По этой же причине нельзя определить квантовые выходы различных промежуточных частиц.

Очень интересным направлением в фотохимии является использование метода ХПЯ, позволяющего получать информацию о короткоживущих частицах, наблюдение за которыми невозможно даже с использованием лазерного импульсного фотолиза с наносекундным временным разрешением. При исследовании ХПЯ германийсодержащих соединений впервые предложен более детальный механизм фотолиза с образованием промежуточных бирадикалов. Однако в настоящее время не опубликованы работы, в которых была бы установлена количественная связь между результатами ХПЯ и данными лазерного импульсного фотолиза производных германия. Для этого необходимо сдвинуть временное разрешение лазерного импульсного фотолиза в пико- и фемтосекундный диапазоны. Для регистрации короткоживущих промежуточных бирадикалов перспективным представляется также использование наносекундного фотолиза охлажденных растворов и низкотемпературных матриц.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 05-03-32474, 06-03-32110, 05-03-39007-ГФЕН, 06-03-90890-Мол, 07-02-91016-АФ), а также междисциплинарных и международных интеграционных грантов СО РАН (проекты № 77 и 4.16).

Литература

- О.М.Нефедов, А.И.Иоффе, Л.Г.Менчиков. Химия карбенов. Химия. Москва, 1990
- 2. J.Barrau, J.Escudie, J.Satge. Chem. Rev., 90, 283 (1990)
- 3. W.P.Neumann. Chem. Rev., 91, 311 (1991)
- 4. М.П.Егоров, О.М.Нефедов. Металлоорг. химия, 5, 106 (1992)
- M.B.Taraban, O.S.Volkova, A.I.Kruppa, T.V.Leshina. In *The* Chemistry of Organic Germanium, Tin and Lead Compounds. Vol. 2. (Ed. Z.Rappoport). Wiley, New York, 2002. P. 579
- 6. A.Sekiguchi, V.Y.Lee. Chem. Rev., 103, 1429 (2003)
- 7. M.Driess, H.Grützmacher. Angew. Chem., Int. Ed. Engl., **35**, 828 (1996)
- 8. М.Харгиттан, Т.Шульц, И.Харгиттан. Изв. АН. Сер. хим., 1817 (2001)
- S.E.Boganov, M.P.Egorov, V.I.Faustov, O.M.Nefedov. In *The* Chemistry of Organic Germanium, Tin and Lead Compounds. Vol. 2. (Ed. Z.Rappoport). Wiley, New York, 2002. P. 749
- C.Long, M.T.Pryce. In *The Chemistry of Organic Germanium, Tin* and Lead Compounds. Vol. 2. (Ed. Z.Rappoport). Wiley, New York, 2002. P. 1521
- K.Mochida, N.Kanno, R.Kato, M.Kotani, S.Yamauchi, M.Wakasa, H.Hayashi. J. Organomet. Chem., 415, 191 (1991)
- K.Mochida, S.Tokura, S.Murata. J. Chem. Soc., Chem. Commun., 250 (1992)
- N.P.Toltl, W.J.Leigh, G.M.Kollegger, W.G.Stibbs, K.M.Baines. Organometallics, 15, 3732 (1996)
- K.Mochida, K.Kimijima, H.Chiba, M.Wakasa, H.Hayashi. Organometallics, 13, 404 (1994)
- 15. K.Mochida, S.Tokura. Organometallics, 11, 2752 (1992)
- S.Masamune, Y.Hanzawa, D.J.Williams. J. Am. Chem. Soc., 104, 6136 (1982)
- S.Collins, S.Murakami, J.T.Snow, S.Masamune. *Tetrahedron Lett.*, 26, 1281 (1985)
- 18. K.M.Baines, J.A.Cooke. Organometallics, 11, 3487 (1992)
- 19. K.Mochida, S.Tokura. Bull. Chem. Soc. Jpn., 65, 1642 (1992)
- T.Tsumuraya, S.A.Batcheller, S.Masamune. Angew. Chem., Int. Ed. Engl., 30, 902 (1991)
- 21. H.Sakurai, K.Sakamoto, M.Kira. Chem. Lett., 13, 1379 (1984)
- 22. K.Mochida, I.Yoneda, M.Wakasa. J. Organomet. Chem., **399**, 53 (1990)
- M.Wakasa, I.Yoneda, K.Mochida. J. Organomet. Chem., 366, C1 (1989)
- 24. W.Ando, T.Tsumuraya, A.Sekiguchi. Chem. Lett., 16, 317 (1987)
- 25. W.Ando, H.Itoh, T.Tsumuraya. Organometallics, 8, 2759 (1989)
- W.Ando, H.Itoh, T.Tsumuraya, H.Yoshida. Organometallics, 7, 1880 (1988)
- S.Tomoda, M.Shimoda, Y.Takeuchi, Y.Kajii, K.Obi, L.Tanaka, K.Honda. J. Chem. Soc., Chem. Commun., 910 (1988)
- J.Barrau, D.L.Bean, K.M.Welsh, R.West, J.Michl. Organometallics, 8, 2606 (1989)
- K.L.Bobbitt, V.M.Maloney, P.P.Gaspar. Organometallics, 10, 2772 (1991)
- K.Mochida, M.Wakasa, Y.Nakadaira, Y.Sakaguchi, H.Hayashi. Organometallics, 7, 1869 (1988)
- K.Mochida, H.Kikkawa, Y.Nakadaira. J. Organomet. Chem., 412, 9 (1991)
- K.Mochida, M.Wakasa, Y.Sakaguchi, H.Hayashi. Bull. Chem. Soc. Jpn., 64, 1889 (1991)
- K.Mochida, H.Ginyama, M.Takahashi, M.Kira. J. Organomet. Chem., 553, 163 (1998)
- H.Görner, M.Lehnig, M.Weisbeck. J. Photochem. Photobiol., A: Chem., 94, 157 (1996)
- 35. H.Sakurai, Y.Nakadaira, H.Tobita. Chem. Lett., 11, 1855 (1982)
- M.B.Taraban, O.S.Volkova, V.F.Plyusnin, Y.V.Ivanov, T.V.Leshina, M.P.Egorov, O.M.Nefedov, T.Kayamori, K.Mochida. J. Organomet. Chem., 601, 324 (2000)
- K.Mochida, T.Kayamori, M.Wakasa, H.Hayashi, M.P.Egorov. Organometallics, 19, 3379 (2000)
- 38. T.Tsumuraya, S.Sato, W.Ando. Organometallics, 8, 161 (1989)
- С.П.Колесников, М.П.Егоров, А.С.Дворников, В.А.Кузьмин, О.М.Нефедов. *Металлоорг. химия*, 2, 799 (1989)

- W.J.Leigh, F.Lollmahomed, C.R.Harrington. Organometallics, 25, 2055 (2006)
- S.Konieczny, S.J.Jacobs, J.K.Braddock-Wilking, P.P.Gaspar. J. Organomet. Chem., 341, C17 (1988)
- 42. W.J.Leigh, H.G.Dumbrava, F.Lollmahomed. *Can. J. Chem.*, 84, 934 (2006)
- W.J.Leigh, C.R.Harrington, I.Vargas-Baca. J. Am. Chem. Soc., 126, 16105 (2004)
- 44. С.Е.Боганов, М.П.Егоров, В.И.Фаустов, И.В.Крылова, О.М.Нефедов, Р.Бесерра, Р.Уолш. Изв. АН. Сер. хим., 477 (2005)
- 45. M.-D.Su, S.-Y.Chu. J. Phys. Chem. A., 103, 11011 (1999)
- Y.Apeloig, R.Pauncz, M.Karni, R.West, W.Steiner, D.Chapman. Organometallics, 22, 3250 (2003)
- 47. J.C.Barthelat, B.S.Roch, G.Trinquier, J.Satge. J. Am. Chem. Soc., 102, 4080 (1980)
- 48. G.Olbrich. Chem. Phys. Lett., 73, 110 (1980)
- 49. K.G.Dyall. J. Chem. Phys., 96, 1210 (1992)
- P.R.Bunker, R.A.Phillips, R.J.Buenker. Chem. Phys. Lett., 110, 351 (1984)
- 51. L.G.M.Petterson, P.E.M.Siegbahn. Chem. Phys., 105, 355 (1986)
- 52. A.Selman, D.R.Salahub. J. Chem. Phys., 89, 1529 (1988)
- 53. M.-D.Su, S.-Y.Chu. J. Am. Chem. Soc., 121, 4229 (1999)
- 54. K.Balasubramanian. J. Chem. Phys., 89, 5731 (1988)
- C.J.Cramer, F.J.Dulles, J.W.Storer, S.E.Worthington. Chem. Phys. Lett., 218, 387 (1994)
- 56. M.-D.Su, S.-Y.Chu. J. Am. Chem. Soc., 121, 11478 (1999)
- 57. G.L.Wegner, R.J.F.Berger, A.Schier, H.Schmidbaur. Organometallics, **20**, 418 (2001)
- 58. R.Withnall, L.Andrews. J. Phys. Chem., 94, 2351 (1990)
- М.П.Егоров, А.С.Дворников, М.Б.Ежова, В.А.Кузьмин, С.П.Колесников, О.М.Нефедов. *Металлоорг. химия*, 4, 1178 (1991)
- 60. G.R.Smith, W.A.Guillory. J. Chem. Phys., 56, 1423 (1972)
- P.J.Davidson, D.H.Harris, M.F.Lappert. J. Chem. Soc., Dalton Trans., 2268 (1976)
- 62. R.C.Binning Jr., L.A.Curtiss. J. Chem. Phys., 92, 1860 (1990)
- R.A.Phillips, R.J.Buenker, R.Beardsworth, P.R.Bunker, P.Jensen, W.P.Kraemer. *Chem. Phys. Lett.*, 118, 60 (1985)
- 64. J.Karolczak, W.W.Harper, R.S.Grev, D.J.Clouthier. J. Chem. Phys., 103, 2839 (1995)
- T.C.Smith, D.J.Clouthier, W.Sha, A.G.Adam. J. Chem. Phys., 113, 9567 (2000)
- 66. W.J.Leigh, C.R.Harrington. J. Am. Chem. Soc., 127, 5084 (2005)
- M.W.Heaven, G.F.Metha, M.A.Buntine. Aust. J. Chem., 54, 185 (2001)
- M.W.Heaven, G.F.Metha, M.A.Buntine. J. Phys. Chem. A, 105, 1185 (2001)
- 69. M.-D.Su, S.-Y.Chu. J. Chin. Chem. Soc., 47, 135 (2000)
- P.Bleckmann, R.Minkwitz, W.P.Neumann, M.Schriewer, M.Thibud, B.Watta. *Tetrahedron Lett.*, 25, 2467 (1984)

- W.J.Leigh, F.Lollmahomed, C.R.Harrington, J.M.McDonald. Organometallics, 25, 5424 (2006)
- J.E.Bender IV, M.M.Banaszak Holl, J.W.Kampf. Organometallics, 16, 2743 (1997)
- 73. J.Barrau, G.Rima. Coord. Chem. Rev., 178-180, 593 (1998)
- 74. K.Kishikawa, N.Tokitoh, R.Okazaki. *Chem. Lett.*, **27**, 239 (1998) 75. N.Tokitoh, K.Kishikawa, R.Okazaki, T.Sasamori, N.Nakata,
- N.Takeda. Polyhedron, 21, 563 (2002) 76 C. Trianuira, I.B. Malrian, P.Biniana, I. Am. Cham. Soc. 104, 452
- G.Trinquier, J.P.Malrieu, P.Riviere. J. Am. Chem. Soc., 104, 4529 (1982)
- P.Jutzi, H.Schmidt, B.Neumann, H.-G.Stammler. Organometallics, 15, 741 (1996)
- P.Jutzi, A.Becker, H.-G.Stammler, B.Neumann. Organometallics, 10, 1647 (1991)
- 79. R.S.Simons, L.Pu, M.M.Olmstead, P.P.Power. *Organometallics*, 16, 1920 (1997)
- M.Kira, S.Ishida, T.Iwamoto, M.Ichinohe, C.Kabuto, L.Ignatovich, H.Sakurai. *Chem. Lett.*, 28, 263 (1999)
- V.N.Khabashesku, S.E.Boganov, D.Antic, O.M.Nefedov, J.Michl. Organometallics, 15, 4714 (1996)
- D.H.Harris, M.F.Lappert, J.B.Pedley, G.J.Sharp. J. Chem. Soc., Dalton Trans., 945 (1976)
- N.Tokitoh, K.Manmaru, R.Okazaki. Organometallics, 13, 167 (1994)
- M.F.Lappert, M.J.Slade, J.L.Atwood, M.J.Zaworotko. J. Chem. Soc., Chem Commun., 621 (1980)
- K.M.Salikhov, Y.N.Molin, R.Z.Sagdeev, A.I.Buchachenko. Spin Polarization and Magnetic Effects in Radical Reactions. Akademiai Kiado, Budapest, 1984
- Т.В.Лёшина, О.С.Волкова, М.Б.Тарабан. Изв. АН. Сер. хим., 1830 (2001)
- 87. J.Kocher, M.Lehnig. Organometallics, 3, 937 (1984)
- J.Kocher, M.Lehnig, W.P.Neumann. Organometallics, 7, 1201 (1988)
- 89. W.P.Neumann, M.Schriewer. Tetrahedron Lett., 21, 3273 (1980)
- 90. G.Billeb, W.P.Neumann, G.Steinhoff. *Tetrahedron Lett.*, **29**, 5245 (1988)
- M.P.Egorov, M.B.Ezhova, S.P.Kolesnikov, O.M.Nefedov, M.B.Taraban, A.I.Kruppa, T.V.Leshina. *Mendeleev Commun.*, 143 (1991)
- M.V.Kaletina, V.F.Plyusnin, V.P.Grivin, V.V.Korolev, T.V.Leshina. J. Phys. Chem. A, 110, 13341 (2006)
- S.P.Kolesnikov, M.P.Egorov, A.M.Galminas, M.B.Ezhova, O.M.Nefedov, T.V.Leshina, M.B.Taraban, A.I.Kruppa, V.I.Maryasova. J. Organomet. Chem., 391, C1 (1990)
- A.J.Shusterman, B.E.Landrum, R.L.Miller. Organometallics, 8, 1851 (1989)
- I.Carmichael, W.P.Helman, G.L.Hug. J. Phys. Chem. Ref. Data, 16, 239 (1987)

SPECTROSCOPY AND KINETICS OF GERMYLENE AND DIGERMENE REACTIONS ON PHOTOGENERATION IN THE CONDENSED PHASE

V.F.Plyusnin, M.V.Kaletina, T.V.Leshina

Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences 3, Ul. Institutskaya, 630090 Novosibirsk, Russian Federation, Fax +7(383)330-7350

The state-of-the-art of the problem of identification and kinetic analysis of transformations of unstable divalent germanium derivatives and their dimers in the condensed phase by spectroscopic methods is considered. Much attention is given to comparison of the results obtained by laser pulse photolysis and spin chemistry.

Bibliography — 95 references.

Received 27th February 2007