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Summary. In this chapter we apply a computational geometry technique to investigate the 
structure of packings of hard spheres. The hard sphere model is the base for understanding the 
structure of many physical matters: liquids, solids, colloids and granular materials. The struc-
ture analysis is based on the concept of the Voronoi Diagram (Voronoi-Delaunay tessellation), 
which is well known in mathematics and physics. The Delaunay simplexes are used as the main 
instrument for this work. They define the simplest structural elements in the three-dimensional 
space. A challenging problem is to relate geometrical characteristics of the simplexes (e.g. their 
shape) with structural properties of the packing. In this chapter we review our recent results 
related to this problem. The presented outcome may be of interest to both mathematicians and 
physicists. The idea of structural analysis of atomic systems, which was first proposed in com-
putational physics, is a subject for further mathematical development. On the other hand, 
physicists, chemists and material scientists, who are still using traditional methods for structure 
characterization, have an opportunity to learn more about this new technique and its implemen-
tation. We present the analysis of hard sphere packings with different densities. Our method 
permits to tackle a renowned physical problem: to reveal a geometrical principle of disordered 
packings. The proposed analysis of Delaunay simplexes can also be applied to structural inves-
tigation of other molecular systems. 

2.1   Introduction 

The 3D structure of an atomic or molecular system is a mutual arrangement of atoms 
in space. A way to describe this is clear for crystals. A basic structural element (unit 
cell) and vectors of translation are sufficient for describing the disposition of atoms.  
It is a common crystallographic approach for structure representation. Aside from 
that, the investigation of the structural pattern of atom arrangements is also informa-
tive for structure understanding. For example, the structure of the densest crystals can 
be described as a stacking of two-dimensional layers of closely packed atoms. In this 
case, the distinction between the structure of the hexagonal closed packing (HCP) and 
the face centered cubic (FCC) crystals appears in different sequences of these layers 
[AsteW]. For a more detailed description of local structure, the configuration of close 
groups of atoms is taken into consideration. The crystal packings mentioned above 
contain two specific local configurations – a regular tetrahedron and a regular octahe-
dron [AsteW, Hales5, Conway88]. In the FCC structure the tetrahedra adjoin by edges 
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forming straight chains, and analogous chains of octahedra are situated between them. 
On the contrary, HCP contains pairs of face-adjacent tetrahedra (bipyramids), which 
are absent in FCC. 

However, for non-crystalline structures (liquids, glasses, disordered packings of 
spheres) the question about structural patterns is still open. In these systems there are 
no obvious local structural elements.  Therefore, a way for study the 3D structure is 
not obvious. A method of correlation functions is traditionally used here [phys_liq, 
Croxton, Hansen]. The pair correlation function g(r) is a more popular characteristic 
for structure analysis of non-crystalline materials.  It represents a “probability” to 
meet an atom at a distance r from a given atom. With the increase of r, this function 
tends asymptotically to unit, and at the distances of a few atomic diameters it demon-
strates oscillations meaning a “short distances order” (non-random arrangement of 
atoms) in dense liquids and glasses.  The value of the pair correlation function is that 
it can be obtained by physical experiments by diffraction of x-rays or neutrons.  How-
ever, this function contains information only about pair-wise distances between at-
oms, while the 3D structure of the material is manifested only marginally. 

Over the last years, the 3D structure became the main object of investigation for 
non-crystalline materials. It became possible due to the development of the computer 
simulation for atomic systems. Computer models of materials represent coordinates of 
all atoms of a sample. As a result, they can be utilized for detailed analysis of the 
structure, and not only for calculation of the pair correlation function.  On the other 
hand, experimental methods are developed to obtain coordinates of particles in real 
physical systems, such as colloids [colloid_exp] and packings of beads [Aste_exp]. 
However, the question how to extract significant physical information from the arrays 
of coordinates of atoms remains open.  Recent developments in the computer geome-
try open new possibilities for structure investigation in non-crystalline materials. 

The approach proposed here is based on the concept of Voronoi diagrams, which is 
well known in mathematics and physics [Voronoi, Delaunay, Okabe, Med_book]. For 
any system of points (ordered or disordered) it is possible to construct a mosaic of 
polyhedra, which is related in one-to-one manner to the given system of points.  Thus, 
a system of atoms is represented by a collection of discrete elements: Voronoi poly-
hedra and Delaunay simplexes. One can say that we make a quantization of a system of 
points in a continuous space. As a result, it becomes possible to use geometrical repre-
sentation, which helps in description of a 3D structure of atomic systems. In this chap-
ter we utilize only the Delaunay simplexes. Other structural aspects of the Voronoi-
Delaunay decomposition (Voronoi polyhedra, Voronoi and Delaunay networks) and 
their applications to different physical problems are discussed elsewhere [Med_book, 
Finney70, Malley, Bosticka, Alinchenko, Bryant].  A Delaunay simplex (a quadruple 
of atoms) is the simplest element of the 3D structure.  A cluster of the Delaunay sim-
plexes represents a fragment of the atomic structure. Using this representation one can 
study structural patterns in an atomic system [Med88, Vol95, Naber91]. 

A Delaunay simplex can be characterized by its shape. In Section 2.2 we propose 
different ways to characterize the simplex shape quantitatively. Section 2.3 discusses 
structural problems of hard sphere packings, which are enjoying a renewed interest in 
physics. The hard sphere model is widely used for describing structures and phase 
transitions in simple liquids, amorphous solids and granular materials, but the struc-
ture of hard sphere packings itself is still open question.  Finally, in Section 2.4 we 
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demonstrate an application of the proposed technique to computer models of hard 
sphere pickings, and discuss geometrical principles of disordered packings and the 
phenomenon of crystallization.  

2.2   Mathematical Background 

2.2.1   Delaunay Simplexes 

Delaunay simplexes are derived from a fundamental geometrical concept of Voronoi 
diagram, which is well known in both mathematics and physics [Okabe, Med_book]. 
The concept exploits an evident geometrical fact that for each atom (point) in a sys-
tem of atoms (points) it is always possible to distinguish a part of space closest to a 
given atom. This region is called the Voronoi region (polyhedron, cell) and their set, 
built for all atoms, covering the space without gaps and superposition is called the 
Voronoi tessellation, see Fig.2.1 (thin lines). The Voronoi partitioning defined a dual 
tessellation for this system, called the Delaunay tessellation, which consists of  
simplexes, whose vertices are the atomic centers, see Fig.2.1 (thick lines). Thus, we 
have a unified geometrical substance, which is called Voronoi-Delaunay tessellation  
(Voronoi diagram).   

 

Fig. 2.1. 2D illustration of the Voronoi-Delaunay tessellation for a system of identical atoms. 
Voronoi regions (polygons around the disks, thin lines) determine Voronoi tessellation. Net-
work of edges and vertexes of the Voronoi regions represents Voronoi network of the system 
(thin lines). Incident atoms to a given Voronoi vertex definea Delaunay simplex (triangles, 
thick lines). They determine Delaunay tessellation.  

Delaunay simplexes were first defined by G. F. Voronoi in his paper [Voronoi] 
where he considered lattice systems of points.  He called them L-polyhedra and their 
tessellation the L-decomposition. Later B. N. Delaunay has shown that main proper-
ties of L-polyhedra that were initially discovered by G. F. Voronoi for lattices, are 
valid for points that are arbitrary distributed in space [Delaunay].  This fundamental 
result of B. N. Delaunay opened further broad applications of this geometrical con-
cept to a vast variety of areas [Okabe, Med_book]. 
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The Delaunay simplexes are “bricks” that form an atomic system. As stated earlier, 
a simplex is the simplest polyhedron in space of a given dimension: it is a tetrahedron 
of general shape in 3D (Fig. 2.2), and a triangle in 2D. Delaunay simplexes subdivide 
an atomic system into quadruples of atoms, so any cluster of Delaunay simplexes 
represents a fragment of the atomic packing (an aggregate of atoms). Thus, if we  
select Delaunay simplexes with a given structural property, the clusters of such sim-
plexes will reveal a structural pattern reflecting this property in the system.  Visuali-
zation of spatial distribution of the selected clusters can be easily accomplished within 
the Voronoi network, which is a network of edges and vertices of the Voronoi  
regions, see Fig. 2.1. Every site of the Voronoi network is assigned to a Delaunay 
simplex (it is a circumcenter of the simplex). Every edge of the Voronoi network con-
necting two neighbor sites corresponds to the two Delaunay simplexes sharing a 
common face (three atoms that are common). As a result, a cluster of selected sim-
plexes can be represented as a cluster of connected sites on the Voronoi network (see 
[Naber91] and Section 2.4).   

Delaunay simplexes can also be applied for analysis of interatomic voids. By defi-
nition of the Delaunay simplex [Delaunay], the inscribed sphere between quadruple of 
its atoms is empty, i.e. this sphere does not contain any other atoms of the system. 
Thus, it determines an elementary interatomic cavity. The application of Delaunay 
simplexes to analysis of empty interatomic space is described elsewhere [Alinchenko, 
Braynt]. 

Note that there are different generalizations of Voronoi diagrams [Okabe]. Three of 
them are used intensively in physics:  (i) the classic Voronoi-Delaunay tessellation, 
which is defined for a set of points (atomic centers) [Voronoi, Delaunay]; (ii) the 
radical tessellation [Gellatly], which takes the radii of atoms into account (also known 
as the power tessellation [Aurenhammer87, Gavrilova97], Laguerre tessellation [Tel-
ley], or “weighted” Voronoi diagram [Edelsbruner84]); and (iii) the additively-
weighted Voronoi diagram [Okabe, Gavrilova]. The latter is also called the Euclidean 
Voronoi diagram [Okabe, Kim] or Voronoi S-tessellation, because it effectively deals 
with the surfaces of atoms [Med95, Med06].  To avoid any misunderstanding, we 
note that in this Chapter we will only deal with the classic Voronoi-Delaunay tessella-
tion, considering the centers of spheres only.  

2.2.2   The Shape of the Delaunay Simplexes 

A measure of shape characterizes its proximity to a given reference shape.  There are 
different ways for estimating such proximity. The mathematical theory of shape 
characterizes a body by a finite set of points.  This theory [Kendall, Small] estimates 
the proximity of an arbitrary set of points to a given reference set by the degree of 
coincidence of corresponding points upon superposition. Delaunay simplexes are 
defined by four points (their vertexes). In this paticular case, a method for shape 
characterization was implemented in [Anik2006]. However, for simplexes one can 
use a simpler approach, particularly, the simplex edges can be utilized. In this case an 
invariant of length edges, which has a zero value for simplex of a reference shape, is 
constructed.  The closeness of this invariant to zero represents the proximity of a 
given simplex to the template. The problem becomes simpler if a regular tetrahedron 
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is used as a template. It has identical  edges and angles. Using this property of the 
tetrahedron, various characterizations were proposed: an average variation of the edge 
lengths [Kimura], the mean of the squares of these variations [Med87], the variation 
of angles  [Debene], the ratio of the circumradius to the volume of the simplex 
[Med86]. Some specialized characterizations were used for mesh adaptation and mesh 
optimisation [Dompierre]. The simplest measure for the tetrahedral form was 
proposed in [Hales97]: it considers the maximum length of the simplex edges. In the 
next Section, we discuss three different measures, which are used in our work.  

2.2.2.1   Edge Length Differences 
The T (tetrahedrisity) and Q (quartoctahedrisity) measures for simplexes were 

proposed years ago in [Med87] and were used until now [Naber91, Anik_Jap, Brov]. 

The following invariants of edge lengths are calculated: 

 

 

 

 

 

 
Where ei,  ej,  em are lengths of simplex edges, and <e> is the mean edge length for a 
given simplex. For a regular tetrahedron (Fig. 2.2a), where all edges are the same, the 
value of T is zero. The value of T close to zero indicates unambiguously that a given 
simplex is close to a regular tetrahedron. A regular quartoctahedron (a quarter of 
regular octahedron) has one edge √2 times longer than the others, see Fig. 2.2b. The 
measure T for this simplex is not zero, it is approximately 0.05. However, this value 
of T does not determine the quartoctahedron unambiguously, because many distorted 
simplexes may have the same measure T. To define an unambiguous measure for 
quartoctahedron, we should take into account its peculiarity. It was proposed to use 
the longest edge em of a simplex with a factor of 1/√2,  see equation (2). In a result the 
perfect quartoctahedron has Q = 0.  For an almost perfect quartoctahedron the value 
of Q approaches zero.  

Another interesting simplex is the flat simplex  (two opposite edges are √2 times 
longer then the others), see Fig. 2.2c. This simplex is important for analysis of dense 
packing of spheres. At a random distortion of a regular octahedron (Fig. 2.2d), it is 
normally subdivided into four quartoctahedra. However, at a certain displacement of 
the vertices, it can be subdivided also into five simplexes [Vol89]: four of them are 
quartoctahedra, while the fifth one, which is determined by four atoms at the middle 
plane of octahedron, looks like a square. Such subdivision is fairly uncommon; it is 
caused by two atoms on each end of the diagonal of the square being elevated above 
the equatorial plane (in [Vol89] such simplex was named the Kizhe simplex). The 
 

Q =  (∑(ei – ej)
2 + ∑(ei – em  /√2)2  ) /15<e>2                    (2)    
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T =  ∑(ei – ej)
2 /15<e>2 .                                                   (1)    
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Fig. 2.2. (a) – a regular tetrahedron; (b) – a regular quartoctahedron (one edge √2 times loner 
then other ones); (c) – a flat simplex with a shape of a square; (d) – a perfect octahedron. The 
octahedron is divided by infinitesimal perturbations on four quartoctahedra or four quartocta-
hedra and one flat simplex [Vol89].  

regular square “simplex” has two opposite edges that are √2 times longer than the 
other four edges. Similarly to (2) we can write: 

 

 

 

 

 

Thus, a degenerate (square) simplex has K = 0, and at small distortions the value K 
is also small. In order to compute this measure, the edges m and n are selected as a 
pair of the longest opposite edges of a simplex. Note these “virtual” simplexes can be 
important for the analysis of clusters of the Delaunay simplexes, for example for 
studying crystalline nuclei. In this case connectivity of the simplexes is taken into 
account.  Neglecting these simplexes can result in a loss of integrity of slightly dis-
torted octahedral configurations. 

Following the idea of the formula (3), one can define measures to select simplexes 
of other specific shapes. The Delaunay simplex of the body centered cubic lattice 
(BCC) is one of the important simplexes for dense packings.  In this simplex, the two 
opposite edges of the simplex are 2/√3 times longer then the others. 

The proposed measures should be calibrated before their application. A calibration 
of these measures has been done in [Med87, Naber91, Anik_Jap], utilizing models of 
a known structure (slightly distorted FCC crystal). It was proposed to use the value of 
Tb = 0.018 as a boundary to select the class of tetrahedra (simplexes closer to the 
regular tetrahedron),  and  Qb = 0.014 to select the class of quartoctahedra (simplexes 
closer to the regular qurtoctahedron) [Anik_Jap]. These boundary values seem 
reasonable in application to packings of hard spheres as well [Anik2006]. Indeed, the 
value Tb corresponds to a minimum on the T-distribution for crystalline packings of 
 

K = (∑(ei – ej )
2 + ∑(ei – em /√2)2 + ∑ (ei – en  /√2)2 + (em – en)
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Fig. 2.3. T-distributions for packings of hard 
spheres with different packing fractions: 0.70 
(well crystallized); 0.660 (partly crystal-
lized);0.640 (disordered). Dashed vertical 
line (T=0.018) shows a border for the family 
of simplexes with quasi-regular tetrahedral 
shape.  

Fig. 2.4. Q-distributions for the same pack-
ings. Dashed vertical line (Q=0.014) shows a 
border for the family of simplexes with quasi-
regular quartoctahedral shape. 

hard spheres, see Fig.2.3. Similarly, the value Qb corresponds to the minimum in the 
Q-distribution, see Fig.2.4.  

For higher density crystalline structure (0.70), the T- and Q-distributions demon-
strate clear separated peaks. It means, a majority of Delaunay simplexes converges to 
these two perfect forms. The peak at T=0 in the Fig. 2.3 corresponds to the tetrahedra, 
and the peak at T=0.05 corresponds to the quartoctahedra. In much the same manner 
the peak at Q=0.028 in the Fig. 2.4 represents tetrahedra. Disordered packings (0.64) 
have a smoother spectrum of simplex shapes, however, the maxima for T and Q are 
also recognizable. 

2.2.2.2   Procrustean Distance 
In mathematical shape theory, the proximity of an arbitrary simplex to a given refer-
enced shape is estimated by the degree of coincidence upon their superposition 
[Kendall, Small]. Here, the total mean square deviation d2 between the corresponding 
vertices of the optimally superimposed simplexes is calculated. The magnitude of d is 

called the Procrustean distance between the two simplexes. Let { }4321 ,,, xxxx  and 

{ }4321 ,,, yyyy  be the vertices of two simplexes in three-dimensional space. The 

square of Procrustean distance between two simplexes is computed as 
 

 

 

where the minimum is calculated over all 3D rotations R, translations t, and all possi-
ble mappings between vertices of the simplexes P. Despite the seeming complexity of 
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this measure, the problem has been solved analytically, and the computation of the 
Procrustean distance is not much more difficult than the computation of the Т or Q 
measures. There are several algorithms for analytical solution of the least squares 
problem at a defined correspondence between vertices (mapping) [Dryden, Eggert]. 
One of the most efficient methods is based on computing the singular value decompo-
sition of the derived matrix [Umeyama]: 
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and 0321 ≥≥≥ ddd  are singular values of matrix xyΣ . 

 
There is no natural correspondence between vertices of different simplexes. Thus, 

the value d2 is calculated for all possible mappings between vertices of two simplexes 
and the minimal value is taken as the distance between them. The amount of calcula-
tions on this step can be reduced due to the symmetry of the referenced simplex. In 
particular, we may skip permutations of vertices that correspond to the same rota-
tional subgroup of the referenced simplex. 

Table 2.1 shows the Procrustean distances d between regular simplexes inherent to 
FCC, HCP and BCC crystalline structures with unit sphere diameter. 

Table.1. Procrustean distances between regular simplexes of some specific shape. 

Table 1. 

Tetrahedron Quartoctahedron Square bcc simplex 

Tetrahedron 0 0.17936 0.40975 0.10096

Quartoctahedron 0.17936 0 0.28974 0.11360

Square 0.40975 0.28974 0 0.31650

bcc simplex 0.10096 0.11360 0.31650 0
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Note that the Procrustean distance is a well defined distance measure, mathemati-
cally speaking, i.e. the distance between two equivalent simplexes is zero, and the 
distance measured from simplex i to simplex j is the same as the distance from j to i.  

Note if we have a set of reference simplexes, we can compute which shapes of 
simplexes are closer to these reference simplexes. Thus formally, one can define a 
“Voronoi region” for a given reference simplex. This region contains simplexes 
whose Procrustean distances are shorter to a given one then to any other simplex from 
the given set. It is an interesting generalization of Voronoi diagram on the “space of 
simplexes.” However, it is not clear this observation can be utilized for solution of the 
discussed structural problems.  

It was discussed in [Anik2006] that distributions of the Procrustean distances of 
Delaunay simplexes to regular tetrahedron dT

2 and regular quartoctahedron dQ
2 in 

packings of hard spheres are very similar to corresponding distributions of T and Q 
measures shown in Fig. 2.3 and Fig. 2.4. However, the Procrustean distance also re-
quires calibration. It seems natural to take the half of the Procrustean distance be-
tween tetrahedra and quartoctahedra as a boundary between them, see Table 2.1:  

db
T = dTQ /2 = 0.0897.                                          (4) 

Another criterion to select tetrahedra was proposed in [AnikPRL]: 

           dT < dQ.                                                    (5) 

Here, a simplex is considered as a tetrahedral one if its Procrustean distance to the 
regular tetrahedron is shorter than the distance to the regular quartoctahedron. Note 
the condition (5) takes into account more disordered simplexes then the condition (4). 
Fig. 2.5 contains a spot dT - dQ  diagram for the Delaunay simplexes. Every point on 
the diagram represents a Delaunay simplex in a packing of hard spheres. The abscissa 
of the point is the value of Procrustean distance of the given simplex to the regular 
tetrahedron (dT ), and the ordinate is its distance to the regular quartoctahedron (dQ). 
The packing consists of 10000 hard spheres, whose Delaunay decomposition contains 
of approximately 61000 simplexes (see Section  2.4 for details).  

The specific border of area occupied by points in Fig. 2.5 and their condensation 
inside the diagram reflect specific features of Delaunay simplexes in packings of hard 
spheres. It can be proven that a straight line between regular tetrahedron and regular 
quartoctahedron (connecting points with coordinates (0.0, 0.17936) and  (0.17936, 
0.0) )  corresponds to simplexes which have five edges equal to 1 (the diameter of a 
hard sphere). The sixth edge is longer, and it changes from 1 to √2 along the given 
segment. Such simplexes were called isopentakmones in [Vol89]. This set of sim-
plexes covered a sufficient part of Delaunay simplexes of dense packings of hard 
spheres. It means the spheres forming Delaunay simplexes are usually touching each 
other in such systems. The continuation of the straight line from point (0.17936, 0.0)  
in direction of increasing dT  also  corresponds to isopentakmones.  However, in this 
case the sixth edge is larger then √2.  As one can see, they are marginal in the dense 
packing. 
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Fig. 2.5. Scatter dT 
- dQ 

diagram for a packing of hard sphere with density η=0.64. Dashed lines 
show border for tetrahedral simplexes according criterion dT 

< dQ 
. Dotted lines show criteria dT 

< 0.897, and dQ < 0.897.  

A narrow “ridge” going to the upper- right corresponds to simplexes that have four 
edges of unit length, and the other two edges are longer. This class of simplexes can 
be called isotetrakmones. The Kizhe simplex mentioned above belongs to this class. It 
corresponds to a point in the diagram with the coordinates (0.40975, 0.28974), see 
Table 2.1. 

The Procrustean distance and the measures T and Q estimate simplexes differently. 
The former uses vertexes, while the latter uses edges, which do not define the simplex 
exactly. Indeed, the same set of edges can be arranged in different manners. Fig. 2.6 
demonstrates an example for set of simplex edges {1, 1, 1, 1, √2, √2}. If the longer 
edges are opposite of each other, then the simplex degenerates to a flat square. If the 
longer edges meet at a common vertex, the simplex gets another shape. The values of 
measure T, obviously, are the same for both simplexes, but the Procrustean measures 
are different. 

 

Fig. 2.6. An example of two different simplexes with the same set of edge lengths {1,1,1,1,√2, 
√2} and different arrangement: the longer edges are opposite (left), and the longer edges have a 
common vertex (right).  
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Thus, simplexes with identical values of T can have various dT, and vice versa. It is 
not surprising since any scalar shape measure of a three-dimensional object cannot be 
well-defined. However, if simplexes are close to a reference shape, then correlation 
between the measures becomes better, i.e. the shape can be recognized by its edges as 
well as by its vertices. 

2.2.2.3   Hales’ Quasi-regular Tetrahedra 
To find out whether a simplex is tetrahedral it may be sufficient to calculate the length 
of the maximal edge emax. This approach seems especially suitable for identical hard 
spheres, where the diameter of the sphere sets the minimal possible length of the sim-
plex edge as 1. A convenient measure of the simplex shape is then the difference be-
tween the lengths of the maximal and the minimal edges: δ = emax – 1. Smaller values 
of δ unambiguously indicate that the shape of the simplex is close to perfect tetrahe-
dron, while larger values mean substantially distorted shapes. This method for select-
ing tetrahedral simplexes was used by Hales in his work on proving the Kepler  
conjecture [Hales5, Hales97]. As a boundary measure for such simplexes, Hales 
chose the maximal edge length of 2.51 of the radius of the sphere. In our notation it 
corresponds to δ = 0.255. He found this boundary by trial, and named the class of 
selected simplexes the “quasi-regular tetrahedra”. We will also use also this boundary, 
i.e. a simplex is considered to belong to the family of tetrahedra if it satisfies condi-
tion [AnikPRL]: 

δ < 0.255                                                      (6) 

Fig 2.7 illustrates the geometrical meaning of the Hale’s tetrahedra. They present 
the most locally dense configurations. The location of the empty inscribed sphere is 
shown for simplexes of different shapes. The hard spheres of unit diameter centered at 
the simplex vertexes are not shown. For the perfect tetrahedron (δ=0) the inscribed 
sphere lies completely inside the simplex. This holds for value up to δ=0.20, and at 
δ=0.255 only 10% of the sphere lies outside the simplex. Thus, the class of Hales’ 
 

=0 =0.20 =0.255 =0.414  

Fig. 2.7. Location of empty inscribed sphere in simplexes of different shape. The sphere is 
inscribed between four hard spheres of unit diameter centered on the vertexes of the simplexes 
(do not shown). For perfect tetrahedron, δ=0, inscribed sphere is in the depth of simplex (left). 
For perfect quartoctadron, δ=0414 the sphere is on 3/4 outside of the simplex (right). For sim-
plex with δ=0.20 the inscribed sphere is still inside the simplex. For simplex with δ=0.255 
(Hales’ border) the inscribed sphere go out only on 10%.  
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Fig. 2.8. Correlation δ-T diagram for packing f hard sphere with density 0.64. Dashed lines 
show borders for simplexes of tetrahedral shape: T<0.018 and δ < 0.255.  

thetrahedra presents compact configurations of spheres. For the perfect quartoctadron 
(δ=0.414) 3/4 of the inscribed sphere lies outside of the simplex. Such the configura-
tions where the simplex does not present “an individual cavity” are typical for disor-
dered simplexes.  

It is interesting to note that in dense packings of hard spheres all of the described 
measures with indicated boundaries classify practically the same Delaunay simplexes 
into the class of tetrahedra. For example, in disordered packing with packing fraction 
of 0.64 the conditions T<0.018  and δ<0.255 classify 90% of simplexes the same 
way. The correlations between the measures are shown in Fig. 2.8. The points 
correspond to Delaunay simplexes, and their coordinates are measures  T and δ of 
every simplex. Unlike of Fig. 2.5, only the region nearby the origin of the coordinate 
system is shown. The vertical and horizontal lines represent the proposed boundaries 
of tetrahedra classification. Note that density of points on the diagram increases to a 
spike, which represents a good correlation between T and δ in this region.  

2.2.3   Structural Types of Delaunay Simplexes 

The structural transformation of matter during crystallization, aging, and relaxation 
processes is an important problem in material science. The structural heterogeneity is 
a feature in such processes. In other words, a sample can contain regions of different 
structures, both crystalline and disordered. It is not an easy task to investigate such 
structures. It requires development of special approaches. In [Anik_LNCS, 
Anik_ZSX] we proposed a method for revealing regions (nuclei) of crystalline struc-
tures, based on the shape of Delaunay simplexes and their mutual arrangement.  

2.2.3.1   A Structural Unit 
The shape of Delaunay simplexes cannot be applied immediately for some particular 
structural problems. First of all, the shape of an individual simplex, as a rule, does not 
characterize the structure uniquely. For example, a tetrahedron can belong to both 
FCC and HCP structures, and it can also be found in amorphous phase. On the other 
hand, a crystal structure is not always represented by one type of simplexes. In  
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Fig. 2.9. Illustration of a structural unit determinated structural type of Delaunay simplex. Four 
face-adjacent simplexes are taken into account (left). The corresponding aggregate of atoms 
(right). The central simplex is show by green atoms, its neighbors are yellow.  

particular, as it was mentioned above, the most dense crystalline structures consist of 
Delaunay simplexes of three different shapes:  tetrahedral, quartoctahedral and sim-
plexes close to a flat square, see Fig. 2.2. The differences between the FCC and HCP 
crystals are characterized by the mutual arrangement of these simplexes.  

In [Anik_LNCS] we suggested to characterize the relationship of simplexes to the 
structure by considering the shape of a given simplex together with the shapes and  
the arrangement of its neighbors. We refer to this process as the identification of the 
structural type of a Delaunay simplex. When considering neighbors we only look at 
simplexes with adjacent faces. In this case, the structural unit is an aggregate of eight 
atoms: four atoms of a given simplex and four atoms at its faces. Fig. 2.9 is an exam-
ple of a tetrahedral simplex (located in the center) inside FCC structure, i.e. this  
simplex has the FCC type. The face-adjacent neighbors of this simplex are quartocta-
hedra, see below. 

Note that our method, which only accounts the four face-adjacent neighbors, is a 
first order approximation. In principle, it can be expanded to consider also edge-
connected simplexes. However, the simplest variant turns out to be very productive.   

2.2.3.2   Crystal types 
It is easy to see that in FCC crystal every tetrahedral configuration is adjacent over 
faces only to octahedra, and every octahedral configuration is adjacent only to the 
tetrahedra. In terms of the Delaunay simplexes, this represents the following combina-
tions of the neighboring simplexes:  
 

(I)  T:  Q Q Q Q 

(II)  Q:  T T Q Q 

(III)  Q:  T T Q K  

(IV)  K:  Q Q Q Q. 
 

Thus, a tetrahedral Delaunay simplex may be adjacent to four quartoctahedra (I). A 
quartoctahedron can be adjacent to two tetrahedra and two quartoctahedra (II) or to 
two tetrahedra, one quartoctahedron and one flat simplex (III). The flat simplex can 
be adjacent only to four quartoctahedra (IV). 

(7) 
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Thus, a given Delaunay simplex can identify the FCC structure if it satisfies one of 
the conditions (7). Cases (III) and (IV) arise when the division of an octahedron into 
Delaunay simplexes contains flat simplexes Kizhe, see Fig. 2.2.  

The HCP structure contains pairs of adjacent tetrahedra (trigonal bipyramids), and 
the octahedra are organized in chains, where they are also adjacent by faces. Thus, 
one can derive the following set of neighborhoods of the Delaunay simplexes: 

 

 (I)  T:  T Q Q Q 

(II) Q:  T Q Q Q 

(III) Q:  T Q Q K 

(IV)  Q:  T T Q Q 

(V)  Q:  T T Q K 

(VI)  K:  Q Q Q Q 
 

Combinations (I)-(III) are new ones, while (IV)-(VI) are the same as for FCC, see 
Fig.2.6. The similarity of some combinations is not surprising due to the genetic prox-
imity of the most dense crystalline structures. Thus, the classification of crystalline 
simplexes into FCC and HCP may be somewhat ambiguous. The classification of the 
“disputed” Delaunay simplexes requires additional consideration. The number of 
these questionable Delaunay simplexes can be decreased by some further analysis of 
the model. Indeed, if for instance a disputed simplex is adjacent to simplexes of a 
given type, then it can also be classified into this type. This consideration can help to 
reduce the number of disputed simplexes. Thus, if a simplex only has the FCC type 
simplexes among its neighbors, and does not have any HCP-type neighbors, then it is 
assigned to the FCC type. Analogously, if a disputed simplex is surrounded by sim-
plexes of the HCP type and none of the FCC type, then it is classified as HCP type. 
However, if a disputed simplex is adjacent both to FCC and HCP types, it is still con-
sidered as disputed. Such case can be observed at the border between FCC and HCP 
nuclei. Note that the disputed simplexes, nevertheless, represent the “crystalline 
phase.” We keep simplexes as disputed also if they do not have neighbors of either 
FCC or HCP types, which can happen for small aggregates in the disordered phase.  

We can also define another structural type, e.g. BCC (body centered cubic). Here, 
we should first select a class of simplexes with shapes close to the shape of Delaunay 
simplex of the BCC lattice. Let us mark such simplexes as B. Since the BCC lattice 
consists of only one type of simplexes, the rule to assign the BCC type to a simplex is 
very simple: 

(I)  B:  B B B B                                              (9) 

Thus, after selecting such Delaunay simplexes in the model we obtain information 
about the presence of BCC structures in the sample. 

 

(8) 
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2.2.3.3   Non-crystal Types 
This approach can be also applied to extraction of non-crystal local structures. Aggre-
gates of face-adjacent tetrahedra that is typical for dense amorphous phase 
[Bernal64], are of particular interest. The arrangement of more than two tetrahedra is 
extraneous to lattices, since they are incompatible with translational symmetry. Thus 
for selecting such configurations, one should extract Delaunay simplexes with a tetra-
hedral shape having at least two tetrahedra in its neighborhood: 

T:  T T *  *.                                               (10) 

The other neighboring simplexes can have an arbitrary shape in general. Polytetra-
hedral clusters, and, particularly, five-membered rings of tetrahera (pentagonal 
bipyramids), can be identified by this structural type. 

2.3   Structural Problems in Hard Sphere Packings 

The structure and the degree of disorder in hard spheres packings depend heavily on 
the density. The maximal packing fraction of identical hard spheres (π/√18 = 0.74) is 
attained only in a perfect crystalline structure (FCC, HCP or their mixture [AsteW]). 
This fact (the Kepler conjecture) was known for many years, but it was proven only 
recently [Hales5]. Another famous value of density is Bernal’s limiting density, which 
is approximately 0.64. It is a limit for non-crystalline packings (which is also called 
“close random packing” in the literature). This phenomenon was discovered experi-
mentally almost a half century ago [Bernal59, Bernal60, Bernal64], but it did not re-
ceive a compelling explanation until now. The density at around 0.55 is a low limit 
for disordered packings of spheres (loose random packing) [Onoda]. It corresponds to 
a rigidity percolation threshold for disordered packings of spheres: the non-crystalline 
packing cannot exist at a lower density. However, these values of density do not ex-
haust all possible changes of the packing structure. Modifications of the structure, 
which happen at intermediate densities, are also very interesting. Experimentally, the 
following properties of packings of identical spheres are established [Aste05]. Re-
versible structures can be created at 0.61–0.62 density by pouring grains into a con-
tainer and tapping for sufficiently long time. To reach the density 0.63–0.64, not only 
tapping but also some combined compression must be added. More dense packings 
contain crystalline regions inevitably. 

The structure of hard sphere packings at different densities is a broad field of re-
search for physicists and mathematicians alike. Below, we discuss some recent struc-
ture problems in more details. 

2.3.1   The Principle of Structural Organization of Non-crystalline Pickings 

J. Bernal was the first to study the structure of disordered hard sphere packings 
[Bernal64].  An important outcome of his research was a realization that dense disor-
dered packing of spheres is an independent structural object: it cannot be considered 
random, as it demonstrates substantial correlations, but on the other hand, it is not a 
perturbed crystal. Bernal has shown that disordered packings contain a large fraction 
of tetrahedral configurations of spheres. In such packings, the tetrahedra tend to unite 
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in aggregates by their faces. A further study of computer models confirmed that the 
tetrahedra have a tendency to make branched lineal clusters of face-adjacent tetrahe-
dra and to form 5-member rings, which are absent in crystal structures [Finney70, 
FinneyW, Med90]. The recent results obtained on large computer models verify this 
and advance our understanding of the nature of disordered structure [AnikPRL, Anik-
PRE]. Now, one can say definitely that the main feature of dense disordered packing 
of spheres is the existence of polytetrahedral clusters, i.e. aggregates of face-adjacent 
tetrahedral configurations of spheres. These aggregates present nuclei with high local 
density atypical for crystal structures. It can explain as the comparative stability of 
supercooled  liquids [Frank], as well as the results of diffraction experiments on sim-
ple liquids [Reichert, Schenk]. Thus, one can speak about a “polytetrahedral” princi-
ple of structure of dense disordered packings. We illustrate this conclusion below. 

However, the nature of the non-crystalline structure is not yet completely under-
stood. Polytetrahedral aggregates occupy not more than one-third of the sample, while 
the other 2/3 of the packing are out of consideration. Complementarities of these re-
gions with polytetrhedral aggregates are a subject of further investigation. 

2.3.2   The Origin of the Bernal’s Limiting Density 

Physical experiments provide an estimate of 0.637 - 0.64 for the Bernal’s limiting 
density [Bernal64, Aste05, Scott69]; and various computer simulations provide ap-
proximately the same values [Jodrey, Clarke, Rintoul]. Recently, this density was 
estimated as ~0.646 using sensitive structure parameters based on Delaunay sim-
plexes [Med2006, AnikPRL]. It is an important fact that these values are substantially 
lower than the maximum packing fraction attainable in the most dense crystalline 
structures 0.74. The origin of the Bernal’s limiting density and its precise value are 
not known today despite the substantial effort that has been put into this research. A 
complexity of the problem lies in the difficulty of mathematical formulation of the 
problem, and until now no adequate quantitative definition of the densest disordered 
packing was proposed [Torquato2000]. This problem seems as engaging and impor-
tant as the Kepler conjecture on the most dense crystalline packing of spheres 
[Hales5]. 

A step to understanding the reason of Bernal’s limiting density was made recently 
in [AnikPRL, AstePRE], where the following question was raised: which characteris-
tic of the packing is exhausted to the limiting density when it becomes impossible to 
make a denser packing while keeping a principle of non-crystalline structure. We dis-
cuss it in more detail below. 

2.3.3   Are There Other “Critical” Densities Besides 0.74, 0.64, and 0.55? 

Are there other values of density (besides the above-mentioned “critical” densities) 
where some non-trivial structural changes take place? Until now, the question is open. 
Note we consider only the mathematical aspect of the sphere packing problem. Any 
physical reasons like friction coefficient between the spheres, gravitation, which can 
influence the structure, are not considered here. A packing fraction 0.60 arouses sus-
picion. Indeed, it is difficult to obtain packing of spheres with densities less than 0.60 
experimentally [Scott69, Aste05, Onoda]. A loose random packing with density of 
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0.555 was obtained using glass spheres immersed in liquids with adjusted densities 
[Onoda]. One can think that the specific value of 0.60 relates only to gravitation. 
However, this value is also noticed in computer simulation. In particular, it is impos-
sible to get denser packing using standard methods of computer simulation like mo-
lecular dynamics [Richard99]. The specifics of this density value may relate to the 
additional structural correlations in the packing, which arise to surmount this value of 
density [ZSX07]. 

Another interesting value (0.66) was mentioned in [Med2006, Kristin]. It concerns 
the problem of filling the space by crystalline nuclei. Note that crystal areas appear in 
the packing once it passes Bernal’s density. Densities in the interval 0.64-0.66 are 
achieved by inclusion of crystal nuclei, which are independent from each other. With 
the increase of density, crystalline areas occupy more and more volume in the packing 
and cohere into total crystal at around 0.66. This value of packing fraction was also 
notes in [AstePRE]. The structural entropy of the packing begins a linear decay to 
zero toward the densest crystalline packing after this point. The quantitative analysis 
of this phenomenon needs further investigations. 

2.3.4   Statistically Preferable Configurations 

The structure of a packing depends on its density. However, a given density can be 
realized in an infinite number of ways. Even the maximal packing fraction 0.74 is 
realized not only by HCP and FCC structures, but also by an uncountable set of pack-
ings where the basic 2D close packed planes are stacked randomly [AsteW]. For dis-
ordered packings the situation aggravates, as any density can be  realized by massive 
set of various configurations. Besides homogeneous packings, inhomogeneous pack-
ings are also possible. It is known that liquid phase can coexist with crystal, glasses 
can contains crystal nuclei, and conversely,  disordered regions can exist in a crystal. 
In physics such structures are usually unstable and turn with time into a crystal, which 
is more preferable from thermodynamics point of view. Moreover, formally any value 
of density can be obtained easily from the densest crystal packing. It is enough to re-
move the required number of atoms from the crystal. Furthermore, one can envision a 
large number of other specific ways to arrange atoms in space with a given density. 
This indicates that we should understand clearly which kind of structures we study. 
Obviously, any peculiar configurations are not too interesting for physics.  

In this work we deal with a class of models, which can be called statistically pref-
erable models for a given density. We do not try to give a mathematical definition for 
this notion and use it as intuitively understood. Pouring of balls into a container and 
computer generated packing, starting from a random configuration of spheres, belong 
to this class of packings. In our previous research we called such kind of packings as 
“more disordered at a given density” [Kristin, AnikPRL]. The “disorder jammed” 
packings discussed in [Torquato2000] are also close to this class of models. 

Thus, we are passing over theoretical manifolds of possible configurations realiz-
ing a given value of density and only considering a more preferable filling of space by 
spheres. Thus, it is not so important how such packing is created. A crucial problem is 
to understand which kinds of the more statistically probable configurations corre-
spond to a given density. 
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2.4   Analysis of Hard Sphere Packings 

The hard sphere model is used widely in structure studies of liquids, glasses, colloids, 
and granular materials. It successfully reproduces the main properties of the con-
densed phase, such as crystallization of liquids [Hoover, Auer] and glass transition 
[Clarke, Rintou]. The wide applicability of this simple model reflects the fact that the 
structure of dense matter is determined primarily by mutual impenetrability of atoms, 
and ultimately comes from geometric properties of the packings of spheres in three-
dimensional space [Bernal64]. However, the structure of hard sphere packings itself is 
still open question. Here we present results of our recent investigations of computer 
modes of hard sphere packings at different densities. 

2.4.1   Computer Models of Hard Spheres 

We consider a set of hard sphere packings obtained in our recent research [Kristin, 
AnikPRL]. Each packing contains 10000 identical hard spheres in a model box with 
periodic boundary conditions. More than 200 packings with density from 0.53 to 0.71 
were obtained using a modified Jodrey-Tory algorithm that employs “repulsion” of 
overlapping spheres with gradual reduction of their radii [Jodrey, Kristin]. This  
algorithm can easily produce disordered packings with densities up to the limiting 
value ~0.64, as well as denser systems containing crystalline structures. To test the 
 

=0.60 =0.64

=0.70=0.66  
Fig. 2.10. Computer packings of hard spheres with different packing fraction. 10000 identical 
spheres with the periodic boundary conditions. 
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independence of structure on the packing generation algorithm we also constructed a 
series of 70 packings in the range of densities from 0.54 to 0.67 using the 
Lubachevsky-Stillinger algorithm [Skoge]. This algorithm employs a different proce-
dure for raising the density: a molecular dynamics of non-overlapping spheres with 
gradual increase of their radii. 

All our packings can be considered to be “statistically preferable at a given den-
sity” (see Section 2.3.4). To generate these packings, we start from a random initial 
configuration of spheres, and using the quickest way to “lead” it to the desired den-
sity. This is fairly easy to achieve by an appropriate choice of algorithm parameters 
[AnikPRL, AstePRE]. As a result, for densities below the limiting value 0.64 the dis-
ordered packings are always produced. Crystallization naturally begins at higher den-
sities, see Fig. 2.10. 

Additional analysis shows that independent packings with the same density dem-
onstrate similar structure, i.e. the pair correlation functions and standard statistical 
characteristics of the Voronoi polyhedra and Delaunay simplexes are practically iden-
tical for such packings. The representativeness of our models is further illustrated by a 
fairly good coincidence of points for each given density value in figures below, where 
each point represents an independent packing. 

2.4.2   Pair Correlation Function 

Before considering Delaunay simplexes, let’s examine the traditional structure char-
acteristic, the pair correlation function g(r). Fig. 2.11 demonstrates this function for 
packings at different densities. For dense disordered packings, it depends only weakly 
on density: for packing density 0.62 to 0.64 the pair correlation function looks almost 
identical, see Fig. 2.11, at the bottom.  
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Fig. 2.11. Pair correlation function of hard sphere packings with different densities 
bottom — 0.62 (dots), 0.64 (solid);  
middle — 0.65 (dots), 0.66 (solid);  
top — 0.67 (dots), 0.70 (solid).  
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At the density 0.65 the pair correlation function still looks like disordered. Never-
theless, as we will show below, this packing contains a visible amount of crystalline 
embryos. This g(r) has low sensitivity to the beginning of crystallization. At density 
0.66 the sharp peaks pop up. One can see a clear maximum at r ~1.41 (the diagonal of 
the quadrangle configuration of atoms), which is commonly believed to be the first 
signature of the crystalline structure. The second peak at r~1.73 is also attributed to 
the HCP and FCC structures, see Fig. 2.11, middle. At higher densities the crystal 
structure of the packings is cogent, with many crystalline distances become very pro-
nounced; see Fig.2.11, on the top.  

Thus, the pair correlation function reveals fundamental changes occurring during 
densification. However, many features of the structure transformation remain concealed. 

2.4.3   Tetrahedra and Quartoctahedra 

For each packing of our set of models we calculated Delaunay simplexes and picked 
those that had a given specific shape. Here we consider classes of tetrahedra and quar-
toctahedra, which are determined according the conditions discussed in Section 2.2.  

Fig. 2.12 shows how the fraction of tetrahedra nT depends on the density of the 
packing. It can be seen that the general behavior of the curves is similar for all three 
measures that can be used to characterize select simplexes of this family, as proposed 
in Section 2.2.   

The fraction of tetrahedra grows rapidly with increasing density, reaching ~30% 
when approaching the critical value of ~0.64. Thus, we confirm the accepted qualita-
tive conclusions that the dense disordered packings of spherical atoms contain many 
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Fig. 2.12. Fraction of Delaunay simplexes with tetrahedral shape in packings of hard spheres as 
a function of packing density. Different curves correspond to different methods for selecting 
tetrahedra, see Section 2. Vertical dashed line corresponds to the Bernal’s limiting density η = 
0.645. Нorizontal dashed line marks the value of 1/3 that corresponds to the fraction of tetrahe-
dra in the densest fcc and hcp crystals.  
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tetrahedral configurations [Bernal64, FinneyW]. The further increase in density has 
little effect on the fraction of tetrahedra. Note that the supremum value is close to 1/3, 
which corresponds to the fraction of tetrahedra in the densest crystalline structures. 
The fact that the conditions used for characterizing tetrahedra yield the “crystalline” 
fraction of tetrahedra at Bernal’s limiting density remains unexplained.  

Note the Procrustean distances with condition dt<dq select a somewhat overesti-
mated fraction of tetrahedra at lower densities. This is because this criterion can pick 
rather distorted simplexes that are far away from perfect tetrahedron, and are even 
farther from perfect quartoctahedron. 

Fig. 2.13 shows the fraction of Delaunay simplexes selected as quartoctahedra, nQ. 
The number of these simplexes is greater than of that of tetrahedra at any density. It 
can seem strange for disordered packings because quartoctahedra are not an “optimal” 
configuration contrary to the tetrahedron, which is locally a denser and more “stable” 
configuration. The high population of quartoctahedra can be explained by a statistical 
reason. Indeed, a simplex with one edge longer than others appears more probable 
(can be realized by more ways) then a simplex with approximately identical edges. 
However, the quartoctahedron becomes a preferred configuration at the beginning  
of crystallization. Indeed, the crystal structure contains tetrahedra adjacent by edges, 
and just this arrangement of the tetrahedra begets quartoctahedra between them,  
see Fig. 2.13, right. Thus, the appearance of crystal nuclei in the packings results  

 

 
Fig. 2.13. Fraction of Delaunay simplexes with quartoctahedral shape in packings of hard 
spheres as a function of packing density. Different curves correspond to different methods of 
selecting quartoctahedra: upper curve: Q < 0.14, lower curve: d

Q 
< 0.897, see Section 2. 

Нorizontal dashed line marks the value of 2/3 that corresponds to the fraction of quartoctahedra 
in the densest hcp and fcc crystals. At right: a fragment of fcc structure. It illustrates edge-
adjacent tetrahedra and quartoctahedral gaps between them.  
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inevitably in increase of quartoctahedra ratio. One can see the fastest growth of the 
curves in Fig.2.13 is observed at the interval 0.645 - 0.66, where intensive appearance 
of crystalline phase takes place, see below and [AstePRE]. 

The above-mentioned structural changes become much more expressive if ratio of 
tetrahedra and quartoctahedra is examined, see Fig. 2.14. In disordered packings, the 
value of nT/nQ grows with density and reaches approximately 2/3 at the limiting den-
sity. This ratio is much greater than that in the densest crystal packings, where it is 
equal to 1/2. Thus the densification of disordered packings is realized predominantly 
by increasing the ratio of tetrahedral simplexes. Past the limiting density, the ratio 
drops sharply and reaches the crystalline value somewhere at packing fraction of 
0.66-0.67. Past that density, the ratio does not change, which indicates that a “total” 
crystalline structure has appeared. 

In [Med2006] we estimated the maximum of nT/nQ at 0.6455 ±0.0015 using meas-
ures T and Q for selecting families of Delaunay simplexes. Now we can see that Pro-
crustean distance gives practically the same value of the maximum. It can be clearly 
seen that limiting  density is greater than the widely used value 0.64 and definitely 
less than 0.65. In [AnikPRL] it was estimated at 0.646. 

Every point in Figures 2.12-2.14 represents an individual packing from our set of 
packings. The fact that one can see more points in Fig.2.14 than in Figs. 2.12 and 2.13 
has a trivial explanation that the ratio is more sensitive to fluctuations then the values 
themselves. Variations of values nT and nQ for our packings with the same density are 
rather small and many points in Figs. 2.12 and 2.13 overlap.   
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2.4.4   Crystallization in Hard Sphere Packings 

Here we study crystalline structures in our packings of hard spheres. For this purpose 
we use structural types of Delaunay simplexes discussed in Section 2.3 (Delaunay 
simplexes with their surroundings). 

Fig.2.15 shows the fraction of volume occupied by the simplexes of crystalline 
structural types as a function of packing density. Separate curves for FCC and HCP 
structures, and also the aggregate curve (together with disputed crystalline simplexes, 
see Section 2.3), are presented. The aggregate curve demonstrates the total volume 
fraction of “crystalline phase” in packings. Starting from the Bernal’s limiting density 
the fraction of crystal types simplexes increases drastically, which is a direct conse-
quence of crystallization process. In the densest packing (at packing fraction ~0.71) 
the crystalline phase reaches 95%. The remaining volume belongs to defects in the 
crystal structure.  

One can see a large spread of points on curves for FCC and HCP structures at 
higher densities. It indicates that these structures may be present in different propor-
tions in packings at the same density. They can exist as separated areas as well as a 
common crystal with different stacking of layers [AsteW]. In contrary,  the aggrega-
tion curve is sufficiently smooth at these densities, Fig. 2.15.  

Note an inflection of curves at density around 0.66. This peculiarity indicates that 
the nature of structure transformation is changed. Specifically, at this density the total 
crystalline order arises replacing independent crystalline nuclei.  

At lower densities the fraction of Delaunay simplexes of FCC-type is negligible, 
up to Bernal’s density. At the same time the simplexes of HCP-type are present in 
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Fig. 2.15. Volume fraction occupied by Delaunay simplexes of different structural types as a 
function of packing density. From bottom to top: fcc-type, hcp-type, accumulative (fcc+hcp+ 
disputed), see Section 2.3.  
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small amount (a few percent) in disordered packings. However, this does not indicate 
the presence of the HCP nuclei. Additional analysis has shown that these simplexes 
are distributed over the packing without forming compact clusters [Anik_ZSX].  The 
appearance of HCP-type simplexes in disordered packings can be explained by the 
existence of face-adjacent tetrahedra which are present in large numbers in these 
packings (see the next Section). 

Fig. 2.16 demonstrates the location of Delaunay simplexes of FCC-type in our 
models at different densities. As was discussed in Section 2.2.1, the points show the 
centers of the selected simplex, and the segments connect neighboring centers. Thus, 
a separated segment represents a pair of adjacent simplexes of FCC-type, and a more 
complex cluster indicates an aggregate proper to the FCC structure.  

The center of a Delaunay simplex is a site of a Voronoi network, and the men-
tioned segments are edges of this network [Med_book, Naber91, Med88]. Thus, 
speaking mathematically, we construct an “FCC-coloring” of the Voronoi network. 
The colored clusters represent patterns of the FCC-structures in the packings. 

 

Fig. 2.16. Spatial distribution of Delaunay simplexes of fcc-type in packing of hard spheres 
with different density 
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One can see that the transformation of the structure takes place at a narrow interval 
of densities. Indeed, in the interval from 0.60 to 0.64 there are only a few clusters of 
simplexes of the FCC-type, while at 0.65, the crystal nuclei become clearly visible, 
and past 0.66, the “crystal phase” dominates. 

The analysis of the crystalline structure types of the Delaunay simplexes indicates 
that our disordered packings do not contain crystalline regions. The small clusters 
visible at up to Bernal’s density are rather random events, and cannot be  consider as 
crystal nuclei.   

Per Fig. 2.11, the pair correlation function g(r) for packing with 0.65 density had 
no visible demonstrations of crystallization. Yet Fig. 2.16 clearly shows crystal nuclei 
at this density.  

2.4.5   Polytetrahedra 

In this Section we consider structure of disordered packings in more detail. A signifi-
cant feature of such packings is the large fraction of tetrahedral configurations, see 
Section 2.4.3. They comprise approximately one third of a sample in the densest dis-
ordered packings. It is also known that tetrahedral configurations tend to join by 
faces, forming polytetrahedral aggregates incompatible to lattices [Bernal64, Fin-
neyW, AnikPRL]. We present the analysis of such structures in this Section.  

The class of polytetrahedral aggregates (polytetrahedra) includes clusters compris-
ing three or more face-adjacent tetrahedra, see Fig. 2.17. Isolated tetrahedra and pairs 
of tetrahedra (bipyramids) are omitted as they are found in FCC and HCP crystalline 
structures. The polytetrahedra can form branching chains, five-member rings, and, in 
general, a great number of complex aggregates combining such chains and rings.  

Fig. 2.18 shows the fraction of tetrahedra involved in the polytetrahedra as a func-
tion of packing density. The behavior of these curves is quite different from the 
 

 
Fig. 2.17. Examples of polytetrahedral aggregates (clusters of face-adjacent tetrahedra). (a) –
three tetrahedra, b) – a ring of five tetrahedra, c) – a cluster typical for dense disordered pack-
ing. The lower row shows the motives of tetrahedra in these aggregates: the points mark the 
centers of tetrahedra and the lines indicate that they are adjacent through a common face.  
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curves for total tetrahedra shown in Fig. 2.12. For disordered packings a similarly 
rapid growth is observed. Upon approaching the limiting Bernal’s density they also 
account for about 30% of the sample volume. Thus, practically all tetrahedra in the 
packing have coalesced into polytetrahedral aggregates by this density.  However, 
past the limiting density the fraction of polytetrahedra sharply decreases. This is an 
obvious consequence of forming FCC and HCP nuclei, where tetrahedra tend to have 
neighbors through their edges or form bipyramids. The Lambda-like behavior of the 
curves in Fig.2.18 reminds of the ratio of tetrahedra and octahedra (see Fig. 2.14). 
Both these figures reflect the same fact: the beginning of intensive crystallization just 
past the limiting density. However, now we can say more about the nature of these 
structural transformations. 

Thus, at limiting density ~0.645 the fraction of tetrahedra reaches its maximum and 
the polytetrahedral aggregates span their largest extension. A question then arises: 
why this mechanism stops working at higher densities? Which resource of packing 
becomes exhausted upon approaching the limiting density? The answer to these ques-
tions might be found in Fig. 2.19, which demonstrates that a parameter reaching its 
limit is the number of spheres involved in tetrahedra [AnikPRL]. For each packing we 
counted all spheres that are a vertex of at least one tetrahedron. (Recall that each 
sphere of the packing is a common vertex for several Delaunay simplexes.) As one 
can see, the fraction of these spheres grows with increasing density and reaches 100% 
at the limiting density. At this point all spheres in the packing have been involved into 
the formation of tetrahedra. So the process of densification by means of formation of 
polytetrahedral nuclei becomes exhausted. 
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Fig. 2.18. Fraction of Delaunay simplexes involved in polytetrahedral aggregates as a function 
of packing density. Different curves correspond to different methods for selecting tetrahedra. 
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Fig. 2.19. Fraction of spheres in the packing involved in quasi-perfect tetrahedra as a function 
of packing density 

a) c)

b)

 
Fig. 2.20. Motifs of polytetrahedra on the Voronoi network for a packing of hard spheres with 
packing fraction ~0.64. (2D projection of the 3D pictures). All clusters selected by the measure 
T<0.018 (a); small fragments from the picture (b); skeletons of the polytetrahedral clusters (c).  
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The patterns of spatial distribution of polytetrahedra in the packings can be investi-
gated on the Voronoi network as it was illustrated in Fig. 2.16 where the patterns of 
crystal clusters were demonstrated (see also Section 2.2.1 and [Med88, Naber91]). 
However, in this case we select (color) the sites of the Voronoi network, which corre-
spond to Delaunay simplexes belonging to polytetrahedral clusters. Fig. 2.20a pre-
sents all polytetrahedra in a packing with density close to the limiting density 
(~0.640) selected according the measure T < 0.018. A detailed examination of the 
picture reveals that they are comprised of lineal clusters with five-member rings (see 
Fig. 2.20b where small fragments from different places of Fig. 2.20a are shown at 
large scale). For lightening the Fig. 2.20a, we have cut off all dead lines of the clus-
ters and also eliminated lineal clusters. The obtained “skeletons” of polytetrahedra are 
shown in Fig. 2.20c. Here, five-member rings and aggregates of them can be ob-
served. This illustrates an old proposition [Bernal64, Finney70, Med90] that the five-
member ring (circle of five tetrahedra, see Fig. 2.17b) is a remarkable feature of dense 
packings of spheres.    

2.4.6   Conclusions about Structure of Hard Sphere Packings 

We reported results of our analysis of a set of identical hard sphere packings in a 
broad interval of densities. Our packings are not abstract constructions realizing a 
given density. They are “statistically preferable” configurations obtained by densifica-
tion from randomly distributed spheres. They can represent a pouring of spherical 
beads, atomic systems like liquids and glasses, intervening medium between glasses 
and crystals, and defective crystals. Our task is to understand which kind of the struc-
ture is more preferable to realize a given density. The performed analysis reveals 
properties of packings, and gives helpful information for understanding the structure 
of atomic systems. Our packings are quite representative, i.e. the packings having the 
same density possess statistically equivalent structure. 

We confirm that the non-crystalline packings can exist at up to Bernal’s limiting 
packing density of ~0.64 (we propose a more precise estimation 0.645-0.646). It is 
justified by the detailed analysis of the Delaunay simplexes, which show the lack of 
crystal nuclei in packings up to this density. However, the disordered packings are in 
no way random. They contain some specific local configurations. One can select a 
class of Delaunay simplexes with the shape close to a regular tetrahedron, and another 
class of the simplexes with the shape close to a regular quartoctahedron. The total 
fraction of these simplexes increases with density and, at the Bernal’s limit, becomes 
more than 70%. At that density, the ratio between tetrahedra and quartoctahedra 
reaches 2/3, which is substantially larger than the ratio for the densest crystalline 
packings, where its value is 1/2.   

The analysis of mutual arrangements of Delaunay simplexes has shown that the tet-
rahedra tend to cluster by their faces forming a variety of aggregates (polytetrahedra), 
which have a rather high local density, and are incompatible with lattices. One can 
say that polytetrahedral principle of the structure is realized in dense disordered pack-
ings. Such structure seems very natural. Indeed, a tetrahedron is the densest local con-
figuration, which should be present in any dense packing of spheres. An additional 
sphere can be placed at a face of the tetrahedron forming an adjacent tetrahedral con-
figuration. Further, a new sphere can be positioned at any face of either the new or the 
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original tetrahedron, with the derived aggregate forming the next adjacent tetrahe-
dron. Thus, the formation of polytetrahedra is a spontaneous process, which can  
explain why this structural principle is always realized at pouring of spheres. The 
formation of such configurations seems geometrically more probable than crystalline 
ones. Polytetrahedra can explain a phenomenon of supercooling of one-atomic liquids 
[Frank]. As mentioned, they have a relatively high local density (it means they can be 
rather stable), and extrinsic for crystals (which means they have a barrier to turn into 
crystal).  All of these can prevent homogeneous crystallization of liquids.  

The following questions deserve special attention. Why the polytetrahedral princi-
ple cannot generate density higher then ~0.645? What is the resource of the packing 
that becomes exhausted upon approaching the limiting density? This problem still 
remains a challenge for both physicists and mathematicians. It represents “the disor-
dered analogue” of the Kepler conjecture for the densest crystalline packing of 
spheres. We demonstrated that one of the parameters reaching its limit is the number 
of spheres involved in formation of the tetrahedra. Thus, the increase in the density of 
a disordered packing occurs through an increase in the number of tetrahedral configu-
rations that coalesce into polytetrahedra. This process is sustained by involving more 
and more spheres into tetrahedra. However, after all spheres of the system have been 
exhausted, a further densification would require another mechanism to increase the 
density of the packing. 

Packings with density higher then Bernal’ limiting density necessarily contain 
crystal structures. We have observed nuclei comprising hundreds of spheres in pack-
ings with density 0.65. The number of nuclei and their size increase drastically with 
the growth of packing density. Thus, in packings with 0.66, the main part of the sam-
ple has a crystalline structure. Further densification is realized by the forming of a 
“total” crystal and by improving the quality of the crystalline phase (decrease of de-
fects and perfecting of local structure). 

2.5   Conclusion 

We apply Delaunay simplexes to investigation of the structure of dense packings of 
hard spheres. Delaunay simplexes are a powerful tool of the computer geometry, 
which allows to tackle structure problems that are difficult for other methods of 
analysis, such as the method of correlation functions. Delaunay simplexes can be 
characterized by different structure parameters, including simplex shape and the struc-
tural type. Clusters of such simplexes reveal structural patterns in packings. They help 
to clarify the structure of homogeneous disordered (non-crystalline) systems as well 
as to study the appearance of crystalline nuclei. 

Different methods for characterization of simplex shapes were discussed. A meas-
ure of shape is the proximity of a simplex shape to a reference shape. The mathemati-
cal theory of shape proposes to use the Procrustean distance for this purpose. It is  
defined as a mean square deviation between vertices of the simplexes at the optimal 
superposition of a given simplex on a reference one. Simpler methods use lengths of 
simplex edges. We discussed the measures of “tetrahedrisity” and “quartoctahed-
risity” proposed in physics to select families of simplexes close to regular tetrahedra 
and to a fourth of octahedron. Here, an invariant of the lengths is constructed, which 
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has a zero value for an etalon simplex shape. In the simplest case the length of the 
maximal edge can be used to estimate proximity to regular tetrahedron. This charac-
teristic was proposed by Hales in his proof of the Kepler conjecture. However, it was 
shown that the different measures are not critical for structural analysis of packings of 
spheres.  

Besides the Delaunay simplex shape, a new characterization – the structural type – 
was also considered. It had to be introduced because a single simplex (four atoms) 
does not define the structure unambiguously, e.g. a simplex of tetrahedral shape is 
present in both FCC and HCP structures, and also in dense disordered packings. Thus 
it was proposed to take neighbor simplexes into account. Then it becomes easy to 
reveal crystal nuclei and to calculate the fraction of crystal phase in a packing.   

The application of this geometric approach to study structure of hard sphere pack-
ings was presented. Computer models of dense packings of identical hard spheres in a 
wide range of densities were generated. It was shown that a characteristic feature of a 
disordered packing is its polytetrahedral structure, i.e. the packing contains an appre-
ciable fraction of tetrahedral configurations that tend to coalesce through their faces to 
form locally dense aggregates of various morphology, incompatible with translational 
symmetry. The obtained results can help to understand the structure of liquids, solid 
amorphous phase, colloidal systems and granular matter.  
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