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Melting and homogeneous crystallization in a Lennard-Jones system of 10,976 atoms in a model box with

periodic boundary conditions were investigated by the molecular dynamics method in an NVE ensemble.

Crystal melting occurs by arbitrary generation and growth of local defects transformed into regions of a

disordered phase. These defects gradually span the entire space of the sample, absorbing the residual

islands of crystal. Homogeneous crystallization of a liquid starts with generation of crystal nuclei which

grow into defective crystals. The resulting crystal varies in structure between different realizations of the

model. Face-centered cubic (fcc) structures prevail. A hexagonal close packing (hcp) structure is present on

the boundaries of fcc regions and arises from disordering in alternation of atomic planes. Multiple twinning

of the fcc structure is observed, and aggregates with fivefold symmetry have been found.

Keywords: molecular dynamics, liquid structure, Voronoi–Delaunay method, melting, homogeneous

crystallization, fivefold symmetry.

INTRODUCTION

Systems of Lennard-Jones atoms are generally used as models for investigating fundamental processes during phase

transitions in simple (monoatomic) liquids. Melting and crystallization have long been under study, but many details of the

ensuing structural changes are not clear as yet. For these studies we need computer models that make it possible to trace the

position of each atom. The models should be large enough, at least larger than typical structural inhomogeneities arising from

a phase transition. Modern computer technology and computer simulation methods permit researchers to create models on

which they can trace not only changes in thermodynamic parameters, but also subtle features of structural rearrangements in

the sample.

Structural analysis is performed using the Voronoi–Delaunay method [1]. In this work we restricted ourselves to the

use of Delaunay simplices. A Delaunay simplex is a quadruple of adjacent atoms. For disordered and thermally perturbed

systems, simplices are distorted tetrahedra. Using a quantitative measure of the simplex form [1, 2], we isolate those

simplices that approach an ideal tetrahedron in shape and employ them for structural analysis of our models. These are just

the kind of simplex typical for a dense crystal structure. They also occur in liquids, but their mutual arrangement differs

radically from that in crystals.

To model a liquid–solid phase transition one often employs an NPT ensemble; i.e., the number of particles, as well

as the pressure and temperature of the sample, are kept constant [3-5]. Indeed, in real experiment, physical processes

generally occur in “ambient” conditions (constant pressure and temperature). NVT is another widely used thermodynamic
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ensemble, in which volume (mean density) of the sample is kept constant instead of pressure. The most popular ensemble

used for molecular dynamic simulations is NVE, where the total energy of the system is maintained at a constant level. This

ensemble is useful in many fields of applied research where inclusion of thermodynamic details is not critical. It embodies a

classical conservative mechanical system and does not need any special techniques as those needed for realization of

statistical ensembles. In the latter case, pressure or temperature are to be kept constant, which is achieved by scaling the

atomic velocities and the dimensions of the model box [4-7]. The NVE ensemble is more suitable for studies of processes that

occur at atomic levels and within short periods of time. For example, spontaneous generation of crystallization nuclei

significantly lowers the local temperature (kinetic energy) of atoms in the vicinity of the nucleus. Setup of thermodynamic

equilibrium at this site is not an instant process; therefore, such processes are preferably studied under adiabatic, but not

isothermal conditions.

In this work, we developed a molecular dynamic program for the NVE ensemble, specially designed for work with

large models. Some special techniques were used to accelerate program operation with models of large numbers of atoms.

The idea of linked lists allows fast enumeration of the nearest neighbors during calculation of atomic interactions with the

environment [4]. This program was used to simulate melting and crystallization of a Lennard-Jones system of 10,976 atoms.

Variation of temperature (kinetic energy) and structure during the phase transition has been studied. The results of this work

provide better insight into the mechanisms of melting and crystallization at the atomic level.

PROCEDURE

In the molecular dynamics (MD) method, we solve Newton’s system of equations. For this we use Verlet’s

algorithm, which is accurate enough and simple to use [7]. For the interatomic interaction potential we take the Lennard-

Jones potential U(r) = 4 [( /r)12 – ( /r)6], where r is the distance between atoms;  is the depth of the potential well; and  is

the size of the “rigid nucleus” of the atom. The values of the parameters used are those of argon:

T * = /kB = 119.8 K,  = 3.405 10–10 m.

Calculations were fulfilled with reduced  units for energy and  for distance. The trimming radius of the potential rcut was

chosen equal to 3 . The ensuing abrupt change in the potential at the point rcut was smoothed by adding a linear function.

The linked list technique was used to accelerate program operation for large models [4] to achieve higher efficiency

O(N) of the algorithm. The run time grows as a linear function with the number of atoms in the model. For the standard

algorithm, we are bound to enumerate all atoms of the system every time we calculate the force acting on an atom; in this

case, the efficiency was estimated as O(N 2).

The model box was divided into relatively small cells, numerated in terms of their coordinates. This makes it

possible to immediately calculate the number of the cell with the given point from the coordinates of this (arbitrary) point

within the box. Each cell was assigned the indices of its constituent atoms. Thus when calculating the force acting on the

given atom, one can avoid enumerating all atoms of the system.

Indeed, from the coordinates of the atom one can immediately calculate the number of the cell where it lies; from the

number of the latter (and from the numbers of adjacent cells) one can immediately determine (using lists of atoms assigned to

the cells) the atoms of the nearest environment of the given atom.

The size of the cells obtained by dividing the box is to be chosen approximately equal to volume per atom:

box3
cell .

V
l k

N

The cell size affects the efficiency of the algorithm. We investigated the dependence of the computing time of the potential

energy of the system on the coefficient k. The dependence is a function with a minimum at approximately k = 2. This value of

the coefficient was chosen for further calculations.
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Fig. 1. Behavior of the potential (1),

kinetic (2), and total (3) energies during

fcc crystal melting.

Below we compare the computing times of the total energy for models with different numbers of atoms using the

standard algorithm and ours. While for 500 atoms both algorithms show approximately the same time, for 32,000 atoms the

difference is significant. All computations were performed on a PC with an Athlon processor, 1.82 GHz. Evolution of a

system of 10,976 atoms within 1 ns takes approximately 36 h computer time.

Model energy calculation time 500 atoms 4000 atoms 32,000 atoms

Enumeration of all atoms 0.2 s 0.75 s 62.9 s

Linked lists 0.2 s 0.2 s 1.7 s

The integration step t is an important parameter of calculations. Large steps lead to a significant error in solving

equations by numerical methods, while small steps leads to unreasonably long simulation times. We chose t = 0.005 as an

optimal value, which corresponds to 0.01 ps. Figure 1 illustrates conservation of energy in the case of our program. A test

system was an overheated fcc crystal, which melted and became an equilibrium liquid.

Since crystal melting leads to structure disordering, the potential energy increases, while the kinetic energy

decreases. The total energy will not change. Our calculations show that the total energy of the system is conserved. In Fig. 1,

the curve of the total energy (curve 3) is shown as a horizontal straight line. Pronounced “noise” on curves 1 and 2 implies

fluctuations of potential and kinetic energies in the course of molecular dynamic evolution. These fluctuations, however,

occur under conditions of the preserved total energy of the system.

MELTING

Melting of a dense fcc crystal. In the initial configuration of a model dense crystal, atoms lie at the sites of the fcc

lattice where the shortest interatomic distance (lattice parameter) is 6 2 ,  which corresponds to a minimum of the Lennard-

Jones potential. The crystal was heated in a stepwise procedure (Fig. 2). In the first step, all atoms acquired random (in

magnitude and direction) velocities, which were normalized in such a way that the kinetic energy corresponded to the given

temperature (in the first step, T = 1 in /kB units). Redistribution between the kinetic and potential energies takes place within

the first 50 steps (0.5 ps) (fast relaxation; Fig. 2, insert). Then relaxation continued for another 10,000 steps, which

corresponds to ~0.1 ns (Fig. 2, region 1).

In the second step, the sample was quickly heated to T = 1.2. Relaxation set the temperature to 0.9 (Fig. 2, region 2).

This stepwise heating led to a temperature of 1.6 at which the sample spontaneously melted after ~0.1 ns (Fig. 2, region 5). In

our ensemble, melting is accompanied by a decrease in the kinetic energy and an increase in the potential energy. The sample

temperature lowered to 1.32 /kB.
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Fig. 2. Stepwise heating and melting of an fcc

crystal containing 10,976 atoms. Insert: fast

relaxation of the system after instant heating of

the sample.

Fig. 3. Radial distribution function of an fcc crystal at  = 0 ( ), of a crystal heated to  = 1.6 (b), after melting (c).

The temperature of the resulting liquid (  = 1.32) proved to be lower than the crystal temperature in the previous

heating step (  = 1.4 /kB). Continuous relaxation of the crystal at  = 1.4, however, did not lead to melting (Fig. 2, curve 4 ).

This indicates that after minor overheating the crystal remains stable enough.

The radial distribution functions (RDFs) calculated for this model reveal the ensuing structural changes (Fig. 3).

During heating the sharp peaks of the RDF of the crystal structure (Fig. 3 ) become diffuse, but long-range order is well

visible even at T = 1.6 as long as the sample remains crystalline (Fig. 3b). In liquid, long-range order vanishes, and the

oscillations of the radial function decay quickly with distance (Fig. 3c).

Melting of a loose fcc crystal. Since we work with the NVE ensemble, the average density does not change after

melting. The liquid obtained after melting of a dense crystal has exaggerated density and corresponds to a state at a high

pressure. To obtain a model liquid with normal density we took a crystalline sample with a density of a liquid phase, = 0.85

(the density of the triple point for a Lennard-Jones liquid). For the initial configuration we again took an fcc crystal, but this

time the interatomic distance was 1.056 . The sample was heated as described above, i.e., instant heating (by ~0.25 /kB) with

further relaxation of the system. Melting in this case occurred at a temperature of ~0.6. Figure 4 shows only the melting step.

The radial distribution functions calculated for this model are similar to those shown in Fig. 3. The system has long-

range order until the kinetic energy is “pumped” into potential energy; this can be seen from the peaks on the RDF in the

region of minor values of r. After a new equilibrium between the kinetic and potential has set in, the crystal structure vanishes

completely, and the system is a liquid with typical quick damping of the RDF.

Details of the inner structure of the sample may be presented using the Voronoi–Delaunay method. To visualize the
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Fig. 4. Melting of an fcc crystal with density

0.85. The arrows mark the structures shown in

Fig. 5.

Fig. 5. Melting of an fcc crystal. The points denote the centers of simplices shaped like a regular tetrahedron. The

segments imply that adjacent tetrahedral simplices have a common face. The pictures correspond to configurations

taken at the moments shown by arrows in Fig. 4. Rows of isolated points denote an fcc structure. Disordered

clusters of segments are inherent in liquids.

structure we draw the centers of the simplices shaped like good tetrahedra [1, 2]. If good tetrahedra share faces, their centers

are linked by a line. In this approach, the ideal fcc crystal corresponds to series of isolated points [8, 9] (in hcp structures,

tetrahedra contact only by their edges). In the course of heating, the even rows of simplices are broken, and clusters of

tetrahedral simplices not typical of hcp structures, in particular, face-sharing tetrahedra appear in the model (Fig. 5 ). Then

the local defects are gradually accumulated and grow, merging into a single disordered region. Islands of crystal still remain

in the model (Fig. 5b), but they quickly vanish, resulting in a uniform liquid phase (Fig. 5c). The character of melting is the

same for both dense and loose crystals.

CRYSTALLIZATION

To study crystallization we cooled the above model of a liquid phase with density 0.85. Cooling was a stepwise

procedure similar to crystal heating (Fig. 2). The kinetic energy decreased immediately (by a quantity corresponding to a

decrease of 0.1 in temperature); after that, system relaxation took place (Fig. 6, regions I-IV). Cooling was continued until a

structural rearrangement started in the sample which is clearly seen from the sharp growth of kinetic energy in region IV at a

temperature of 0.32.
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Fig. 6. Time dependence of the sample

temperature during simulation of crystallization.

In the range from 0 ns to 0.32 ns (regions I-III)

the liquid undergoes stepwise cooling. Curves 1-

3 show different routes of crystallization from

the same configuration of the model from region

IV. Curve 4 demonstrates that an overcooled

disordered phase exists at a temperature

exceeding the temperature of the start of the

structural rearrangement.

In contrast to melting, during which the crystal is transformed into a disordered uniform phase, crystallization gives

rise to various structures. This is understandable because the form of crystal nuclei and the character and spatial arrangement

of defects may be rather specific. To examine this problem we considered several models of crystallized liquid obtained

under identical conditions. The initial configuration of the liquid with given kinetic energy was the same, but the initial

directions of the velocities of atoms were set random. The behavior of three such models is depicted in Fig. 6 (curves 1-3).

One can immediately see that structural rearrangement in these models (growth of kinetic energy) starts at different moments

of time. All models have one feature in common: the first step of structure modification ends at  = 0.4. Within a certain

period of time thereafter, the system undergoes steady evolution. As shown by our analysis, a liquid with a density of 0.85

overcooled to a temperature of 0.32 is initially transformed into a denser disordered state, and then starts to undergo

crystallization proper. Since the model cube does not change in volume, a compact void (bubble) with a diameter of a few 

appears after a disordered dense phase has formed at  = 0.4. This void, however, occupies minor volume than the model box

and does not hinder observation of further structural rearrangements in the system.

Figure 7 -d shows the structure of configurations of model 1 at different moments of time (shown by arrows in Fig. 6,

curve 1). As in Fig. 5, points inside the model box represent the centers of Delaunay simplices that are good tetrahedra, and

the lines connect the centers of these simplices if they have a common face. Figure 7  has a region of isolated points

corresponding to crystal nucleation. Once formed, a crystal nucleus starts to grow quickly (which can be seen from fast

growth of kinetic energy), and after 0.1 ns the crystal phase occupies half of the sample (Fig. 7b); after another 0.15 ns it fills

the whole sample, but still has many defects (Fig. 7c). Then the kinetic energy does not change so quickly, and no drastic

rearrangements seem to take place, while defects gradually vanish from the structure. Nevertheless, this is not a uniform

process. At a moment of time marked by arrow d on curve 1 (Fig. 6), the curve shows a minor (but drastic) change in the

kinetic energy of the sample, resulting in elimination of many defects and higher quality of the crystal structure (Fig. 7d).

The observed rows of short segments correspond to rows of face-sharing pairs of tetrahedra. These pairs (trigonal

bipyramids) are characteristic elements of hcp structures. Possible appearance of layers of an hcp structure within the fcc

structure is a well-known fact. This is the result of alternation of crystal faces. The order of alternation is represented as
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Fig. 7. Nucleation and growth of crystal in model 1 (Fig. 6, curve 1). Structures , b, c, and d

correspond to moments of time shown by lettered arrows in Fig. 6. The arrangement of good

tetrahedral simplices inside the model box is shown (see text). Rows of short segments

correspond to layers of the hcp structure.

… for fcc crystals and … for hcp crystals. The sequence may be with sections inherent in hcp

structures if the normal sequence is violated.

The resulting picture of crystallization is generally approximately the same for all models in question. An hcp

structure is the basic crystal structure. However, it always has defects; the basic type of defect is violated alternation of

crystal planes, leading to layers of hcp structure [8, 9]. The particular arrangement of defects in a model, however, is

unpredictable.

In the course of crystallization, nontrivial structural transformations can take place. An interesting example is

furnished by model 2 (Fig. 6, curve 2). At a moment of time marked by arrow e in Fig. 6 during crystallization, structures

with fivefold symmetry appeared. In Fig. 8e they can be seen as stacks of five-membered rings. Stacks of this kind were

previously observed in models of hard sphere packings with crystalline nuclei [2].

The resulting structure was relatively stable; its lifetime was 0.1 ns. Then crystallization continued, resulting in a

normal crystal phase with familiar defects at a moment of time labeled by arrow f in Fig. 6 (Fig. 8f ).

In our approach, the five-membered ring means a closed aggregate of five good tetrahedra. This structure

(pentagonal bipyramid of seven atoms) is well known for dense monoatomic systems and sphere packings [10-12] (Fig. 9 ).
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Fig. 8. Crystallization of model 2 (Fig. 6, curve 2). Structures e and f correspond to

the moments of time indicated in Fig. 6. In configuration e, one can see stacks of five-

membered rings, which point to the existence of structures with fivefold symmetry

axis (shown by an arrow). In configuration f, structures of this kind are absent.

Fig. 9. Nature of structures formed by spherical atoms

and having a fivefold symmetry axis:  — decahedron–

pentagonal bipyramid (ring of five nearly perfect

tetrahedra). In terms of the Voronoi–Delaunay method

the bipyramid is represented by a five-membered ring,

see text; b — the Bagley structure fills the entire space

in a uniform manner; c — fivefold twin of fcc; in the

case of a perfect fcc structure, it has a gap of 7.5.

This is part of the icosahedral stacking of atoms. Icosahedra, however, are typical for small atomic clusters alone and are not

met in bulk samples. Three-dimensional disordered close packings of spheric atoms (in systems with periodic boundary

conditions) typically have separate pentagonal bipyramids [1, 10, 12, 13], and crystallization can form stacks of these

configurations — polydecahedra [2]. A stack of this kind is the “axis” of the pentagonal prism. The possibility for pentagonal

prisms to exist in packings of spheric atoms was examined in detail in crystallographic works [11, 14-16]. So-called Bagley

structures are possible. A Bagley structure has one fivefold axis and fills space in a uniform way [11, 17, 18]. Each sector of

the prism has a crystal structure that differs slightly from closest packings (orthorhombic body-centered structure with density

0.7236 [11]); at the boundaries of the sectors, changed alternation of crystal planes leads to “rotation” of this structure

through an angle equal to one fifth of the total angle: 2 /5 (Fig. 9b).

As the pentagonal prism increases in size, the crystal structure becomes an hcp structure (in its sectors), which is

more stable. In crystallography, this is generally considered to be a fivefold twin of the fcc structure, especially because the
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Fig. 10. Structure of model 3. The moment of time indicated by arrow g in Fig. 6.

Right: fragment of this model that demonstrates an aggregate with a fivefold axis

(scaled-up).

latter typically has macroregions of regular tetrahedral form, which may be arranged in a ring. Here we have another

problem: the dihedral angle of the ideal tetrahedron is ~70.5 , i.e., slightly smaller than one fifth of the total angle and the

fivefold twin of the fcc crystal, therefore, has a gap of 7.5  (Fig. 9c). In (physical or computer) experiment, where atoms are

perturbed by thermal motions, the gap readily diffuses, and the nature of the pentagonal prism (whether this is a Bagley

structure or a fivefold fcc twin) is not a critical issue.

Model 3 (curve 3, Fig. 6) demonstrates that a more stable structure with fivefold symmetry is formed compared to

the structure of model 2. In addition to isolated stacks of five-membered rings here we have a large fragment with a fivefold

symmetry axis (Fig. 10). As a result, our molecular dynamic experiment did not lead to a uniform crystal during run time;

instead, it gave separate nuclei with different orientations. The potential energy of this system is certainly higher than that in a

uniform fcc crystal, which accounts for the lower kinetic energy of this model compared to models 1 and 2 (Fig. 6).

CONCLUSIONS

Thus we have studied melting and homogeneous crystallization of Lennard-Jones systems using the molecular

dynamics method in the NVE ensemble. We have designed a special program in which the computing time increases as a

linear function with the number of atoms in the model (O(N)), while for many accessible programs their efficiency increases

as a quadratic dependence with time (O(N 2)). This is critical for the given problem. First, our models should be large enough,

namely, they should exceed the typical size of structural inhomogeneities arising during melting and crystallization.

Moreover, melting and crystallization occur within relatively long periods of time, and the rate of program operation is a

critical factor.

We work with a Lennard-Jones system containing 10,976 atoms in a model box with periodic boundary conditions.

Calculation was performed for times of up to 1.6 ns. It has been shown that local defects initially form during crystal melting;

these defects grow into regions of a disordered phase (liquid). They gradually fill the entire volume of the sample, absorbing

the residual islands of the crystal phase. Similarly, crystallization of a liquid starts with formation of crystal nuclei, which grow

into defective crystal. The particular structure of the resulting crystal differs between realizations of the same model.

Nevertheless, the fcc structure prevails. Regions with hcp structure are mainly present on the boundaries of fcc regions; they are

the consequence of broken order of alternation of atomic planes. In addition to the ordinary crystal nuclei crystallization forms

structures with a fivefold symmetry axis  pentagonal prisms, which can be interpreted as fivefold “twins” of the fcc structure.
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