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Abstract

Structures of fivefold symmetry were obtained in computer models of dense packings of hard spheres containing crystalline regions
(g > 0.639). Such structures are known to exist in small particles and thin films; however our models are specimens of a rather bulk phase
(10000 spheres in a box with periodic boundary conditions). This observation indicates that the fivefold structures can also exist in real
bulk systems and play a role in the process of homogeneous crystallization of simple liquids and ageing of amorphous solids. The Voro-
noi–Delaunay approach is used for disclosing these structures. The Delaunay simplexes are the basic geometrical elements for this anal-
ysis. Having a quantitative measure for the shape of the simplexes, one can mark (color) Voronoi sites according to a given physical
criterion to reveal aggregates of atoms with a given structure. Aggregates consisting of good tetrahedral simplexes are studied in this
work.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

For the last 50 years, the phenomenon of fivefold sym-
metry has attracted the attention of physicists studying
the structure of condensed matter. The intriguing issue here
is that it is forbidden for space-filling crystals, while not
infrequently it arises in cases without translation symme-
try. The fivefold symmetry has been discussed for a long
time for the case of simple liquids. Frank in 1952 proposed
an icosahedral short-range order in the melt to explain the
large undercoolings of pure metals [1]. This idea has been
exploited till now for the structural interpretation of results
of diffraction experiments in liquids [2–4]. Fivefold symme-
try structures were also observed experimentally in small
atomic clusters, metallic particles and thin films, see the
reviews [5–7].

The direct experimental observation of such structures in
bulk phases is difficult. Nevertheless, they were discovered
in computer models, where tens thousands of atoms in a
model box with periodic boundary conditions can be con-
sidered as a sample of bulk phase [8–10]. These structures
may play a role in a mechanism of homogeneous crystalliza-
tion of simple liquids as well as of ageing of amorphous sol-
ids, and therefore they should be investigated in detail. This
is a nontrivial task, since traditional statistical methods for
structure analysis of computer models of hard sphere pac-
kings (such as calculation of the radial distribution func-
tion, structure factor, using averaged characteristics of
Voronoi polyhedra or orientation order parameters) are
not sensitive enough for that purpose.

In the present paper the advanced Voronoi–Delaunay
approach is used. We study the shape of the Delaunay sim-
plexes and their mutual arrangement on the Voronoi net-
work [9,11,12] with respect to packings of hard spheres.
Such packings are good models for studying general
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principles of the structure of dense systems because their
structure is determined mainly by the impenetrable core
of atoms. A set of dense packings of hard spheres (with
packing fraction g from 0.639 to 0.706) obtained in our ear-
lier work [13] is investigated.

The nature of the phenomenon of fivefold symmetry has
been investigated for a long time both in mechanical [14,15]
and computer simulations, see e.g. [16,17]. From these
studies it is known that the origin of fivefold local symme-
try in dense liquids and non-crystalline packings of spheres
is the occurrence of pentagonal bipyramids. Such a config-
uration consists of seven atoms forming a five-membered
ring of ‘good’ tetrahedral configurations, i.e. of quadru-
plets of atoms the shape of which is close to a regular tet-
rahedron, Fig. 1(a, c). Five-membered rings arise because
the dihedral angle of a regular tetrahedron (70.53�) is close
to one-fifth of the round angle (72�); in addition, the tetra-
hedral configuration of four spherical atoms itself is the
locally densest and energetically most favorable [1,14].
The difference in 1.5� between the mentioned angles is
not important for non-crystalline systems, where atomic
configurations are not obliged to have a rigorous shape.

In the physics of small clusters fivefold structures were
studied in detail. It was shown that clusters of atoms of
noble gases and metals can have an icosahedral structure
demonstrating a sequence of stable structures with magic
numbers (13, 29, 43, 55, 76, 147, . . .) of atoms [6,7]. This
means that the original idea of Frank [1] that the icosahe-
dral local structure is more preferable in comparison with
crystalline local arrangement is really justified for small
clusters.

In thin films and small metal particles fivefold symmetry
appears with pentagonal prisms [5–7]. The origin of these
structures is also arranging five tetrahedra around a com-
mon edge. However, in this case the tetrahedral subunits
of the fcc structure are organized in fivefold ring represent-
ing the pentagonal twinning. (The widely used term ‘twin-
ning’ means an aggregation of crystalline units breaking
translational order. In this case we have a multiple twin-
ning, namely pentagonal twinning [5]). The crystalline sub-
units may contain many atoms, so the difference of the
dihedral angle to one-fifth of the round angle becomes sig-
nificant. However, this problem is solved by filling the gap
with extra atoms, and slight deformation of the crystal
structure nearby the fivefold axis [5,6]. If we deal with
rather a small pentagonal structure, it is more natural to
imply perfect pentagonal bipyramid as an inherent ele-
ments than fcc units. Such an ideal structure with one five-
fold symmetry axis covering the all space homogeneously,
was described Bagley in 1965 [18]. It can be understood
as a succession of pentagonal atomic shells or be presented
as a packing of alternating planes in which atoms are
arranged in concentric pentagons, where the number of
spheres in the pentagon edges is even in one plane and
odd in the other [18]. The central part of this structure is
the pile of pentagonal bipyramids, Fig. 1(f), and in each
of the five sectors the crystal structure (a body centered

orthorhombic cell) with density g = 0.7236 is realized. In
this paper we use the Bagley structure as a reference con-
struction for the analysis of pentagonal aggregates.

Fig. 1. Aggregates consisting of good (close to regular) tetrahedral
configurations of spheres: (a) single tetrahedron, (b) trigonal bipyramid
(pair of face-adjacent tetrahedra), (c) pentagonal bipyramid (decahedron,
five tetrahedra organized in a ring), (d) icosahedron, (e) a complex
aggregate typical for dense non-crystalline packings, see text, (f) an
ordered pile of pentagonal bipyramids. On the right side of the figure the
aggregates are represented according to the Voronoi–Delaunay method.
Points denote centers of good tetrahedal configurations, lines connect the
neighboring centers for which the tetrahedra have a common face.
Consequently, an isolated tetrahedron is represented by a single point (a),
a trigonal bipyramid by a short line (b), a pentagonal bipyramid by a five-
member ring (c), icosahedron by a dodecahedron (d), a complex aggregate
of face-connected tetrahedra by a complex cluster of lines (e), and a pile of
pentagonal bipyramids by a pile of parallel five-membered rings (f).
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2. Models

The dense packings of hard spheres discussed below have
been obtained in the paper [13] using algorithm, which
belongs to the family of so-called ‘collective rearrangement’
algorithms [19–21]. It is based on the classical algorithm of
Jodrey and Tory proposed in [19], but it is more efficient
and able to simulate packings with arbitrary sphere diame-
ter distributions [13]. We start with a set of spheres (10000
in this case) of a given (rather large) radius uniformly dis-
tributed in a model box with periodic boundary conditions.
Overlappings are permitted in the initial configuration. The
algorithm attempts to reduce overlaps between spheres by
pushing apart overlapping spheres and gradual shrinking
of the radii. The choice of a ‘repulsion force’ between each
pair of overlapping spheres is a nontrivial task but crucial
to the efficiency of the algorithm. The paper [13] describes
an expression for the calculation of the shift of overlapping
spheres and gives a way in which the diameters are shrinked
in the algorithm for general case of sphere of different radii.
For the case of equal spheres, which is relevant for the pres-
ent paper, the ‘potential function’ is chosen as simply pro-
portional to the volume of intersection of the overlapping
spheres. In every step of the algorithm the shifting and a
shrinking operation are performed for all spheres until
overlappings vanish. The speed of the algorithm decreases
drastically with growing packing fraction. In this respect
it is very difficult to get a packing with density close to ideal
crystalline value 0.74. But this problem is general for all
algorithms of family [19–21]. Indeed, to avoid a defect in
uniform crystalline sample needs for a simultaneous rear-
rangement of a large amount of spheres what is unlikely
event for such algorithms.

The critical value of g = 0.64 is well known in physics of
liquids and glasses, and corresponds to a limiting density at
which a non-crystalline (i.e. without containing any crystal
nuclei) packing of hard spheres can exist [14]. Our packing
at g = 0.639 just corresponds to such a system, in which we
have observed aggregates of good tetrahedral configura-
tions, which are impossible for a crystal; see Fig. 1(e) as
one example. Increasing density leads inevitably to the
occurrence of crystalline regions of the densest crystalline
structures (f.c.c. and h.c.p.). At values of g about 0.65 there
appear small isolated crystal nuclei; at values of about 0.66
there are distinct crystalline islands of different orientation
(Fig. 2(a) shows a simulated packing with g = 0.664); and
at values of g exceeding 0.68 a uniform crystalline structure
with defects appears [10,13].

We use the Voronoi–Delaunay method, which is known
in many areas of science [22] and is a powerful tool for
structure investigation of atomic systems [12]. The statisti-
cal analysis of the Voronoi polyhedra is the most known
approach for structure characterization. In particular, the
finding of a high fraction of pentagonal faces on the Voro-
noi polyhedra revealed the importance of local fivefold
symmetry in liquids years ago [14–16]. But here the struc-
ture investigation is based on shape analysis of the Dela-

unay simplexes [11,12,22,23]. A Delaunay simplex is
defined by the four ‘mutually-nearest’ atoms, and is a tetra-
hedron, in general of irregular shape. For our problem the
simplexes similar to a regular tetrahedron are of particular
interest. We characterize them by the shape measure T,
called tetrahedricity [9,23], which is the variance of the
lengths of edges of the simplex.

T ¼
X

i6¼j

ðei � ejÞ2=15hei2: ð1Þ

Here ei and ej are the lengths of the ith and jth edges, and
hei is the mean edge length for a given simplex. When all T

values are determined, the good tetrahedral configurations
of atoms in a given packing can be found, which are de-
fined as those Delaunay simplexes with T close to zero.
In the framework of the Voronoi–Delaunay approach the
location and connectivity of the simplexes are defined on
the Voronoi network, in a result the spatial arrangement
of distinguished Delaunay simplexes can be investigated
easily. The procedure of selecting good tetrahedral config-
urations is called T-coloring of the Voronoi network
[11,12].

At the right side of Fig. 1 aggregates of spheres consist-
ing of Delaunay simplexes of good tetrahedral shape are
shown in the spirit of the Voronoi–Delaunay method.
Instead of atoms, only the centers of the corresponding
Delaunay simplexes are drawn. If neighboring simplexes
have a common face, the corresponding centers are joined
by a line. (note that these lines are edges of the Voronoi
network). An isolated tetrahedral configuration is thus rep-
resented by a point (Fig. 1(a)), a pentagonal bipyramid by
a five-member ring (Fig. 1(c)), and a complex polytetrahe-
dral configuration by a branched cluster of segments,
which may contain also five-membered rings (Fig. 1(e)).

3. Results

Fig. 2(b) shows the spatial distribution the ‘backbones’
(cycles) of the T-colored clusters in the model of

Fig. 2. A simulated dense packing of hard spheres (g = 0.664) with partial
crystallization. (a) Atoms in the simulation box. (b) Clusters of good
tetrahedral configurations resulting from T-coloring of the Voronoi
network. Only cycles (backbones) of clusters are shown (see text). Piles
of parallel five-membered rings are visible. The arrow points to a pile
which is in the central part of the Bagley structure shown in Fig. 3.
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g = 0.664. We selected Delaunay simplexes with values of
the measure T < 0.012. In this case nearly one quarter of
all simplexes are marked as good tetrahedra. It is difficult
to draw all of them because the total number of Delaunay
simplexes in the packing is over 60000. Therefore, we kept
only the backbones of these clusters to cut out ‘dead ends’
and remove linear clusters. In this way we got only about
600 good tetrahedral configurations. We are focused on
piles of parallel five-membered rings in Fig. 2(b). There
are three clear piles with five, six, and seven five-membered
rings, and also a few shorter piles with three and two rings.
In the model of density g = 0.651 a few short piles are also
observed, but in the models of lower densities (disordered
packings) there are no piles of pentagonal rings. Also, such
piles are missing in models in which a uniform crystal is
developed (g P 0.68).

In order to confirm that Bagley structures are present in
our models we fitted the theoretical Bagley structure to the
spheres surrounding the observed piles of pentagonal
bipyramids. First, using the coordinates of the spheres in
a pile, we estimated the optimum orientation of the fivefold
axis and the mean distance between the planes forming the
Bagley structure. Then we could calculate the coordinates
of all sites of the theoretical Bagley structure. Having this
theoretical structure we calculated the values of ri, i.e.
the root-mean-square deviations of the sphere of the pack-
ing from the nearest site of the Bagley structure. The calcu-
lation was carried out separately for every i-th concentric
shell of the Bagley structure averaged over all sites in the
shell. The following values were obtained for the pile
shown by the arrow in Fig. 2(b): r0 = 0.03, r1 = 0.04,
r2 = 0.05, r3 = 0.09, r4 = 0.22, r5 = 0.27, r6 = 0.37,
r7 = 0.40. The index 0 corresponds to the central line of
spheres in the pile, index 1 to the first shell, and so on.
One can see that up to the third shell the spheres of the
packing are very well fitted by the sites of the theoretical
Bagley structure. This structure extracted from the packing
is shown in Fig. 3. Distortion becomes visible on the sub-
sequent shells, especially at the butt-ends of the structure.

However, if the outermost pentagonal bipyramids of the
pile are ignored (only five rings in the middle are used)
the Bagley structure becomes clearly visible up to five con-
centric shells. So we can estimate that several hundred
spheres belong to the Bagley structure.

4. Discussion

Analysis of the neighborhood of the other piles of five-
membered rings, Fig. 2, showed that they also form Bagley
structures of nearly the same quality. The piles of three and
two parallel rings, which are also present in the model in a
small amount, can be regarded as embryos of such struc-
tures. Note that a pair of parallel five-membered rings pre-
sents the simplest pentagonal prism (twisted icosahedron).
This structure is observed in simple liquids at the beginning
of crystallization [8,9], and we can also see a few of them in
the densest non-crystalline phase in our model at g = 0.639.

On the contrary, we could never see icosahedra in bulk

systems of hard spheres In our approach they would be
represented by decahedra in the Voronoi network,
Fig. 1(d). We did not observe them even if we accepted tet-
rahedral configurations of lower quality (increasing the
limiting value of T). Actually the same statement was made
in the article [8], where the structure of crystallizing systems
of hard spheres was studied. Using topology of the Voro-
noi polyhedra, only twisted icosahedra instead of the origin
icosahedra were obtained in a small amount. Note that in
the literature there are many papers where the authors
report on icosahedra (icosahedral local order) in simple liq-
uids, see e.g. [2–4] and references there. This contradiction
has a terminological reason. We are looking for an icosahe-
dron as a three-dimensional structure unit. Of course, it
can be distorted but it should keep main features of the ico-
sahedron. In contrary, the mentioned authors speak about
icosahedra if they find any manifestation of icosahedral
structure, i.e. five-membered faces on the Voronoi polyhe-
dra, characteristic angles to neighbor atoms, characteristic
pair distances or their manifestation in the structure factor.
It is known that all non-crystalline packings contain many
good tetrahedral configurations, but they are arranged in
an irregular way. Fig. 1(f) shows a typical aggregate of
face-connected tetrahedra extracted from our model with
g = 0.639. Good tetrahedral configurations in liquids and
glasses are arranged in various linear, branched or cyclic
aggregates with five-membered rings as constituent parts.
They demonstrate a rich variety of morphologies and irreg-
ular spatial distribution, at the same time all of them dem-
onstrate a specific set of icosahedral pair distances and
angles. In this respect discussing diffraction experiments
data [2–4] it is more correctly to speak (following [24])
about ‘polytetrahedral’ structure of simple liquids than
‘icosahedral’.

On the other hand, recently we have demonstrated the
existence of icosahedra and Mackay structures in a large
model of inhomogeneous packing of 100000 Lennard-
Jones atoms [25]. However, this model contains big pores

Fig. 3. Bagley structure with an axis of fivefold symmetry. The light and
dark spheres belong to different planes of the structure. The central part of
this structure forms a pile of pentagonal bipyramids (see Fig. 1(f)). The
figure shows two different projections of the configuration taken from the
packing shown in Fig. 2.
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(up to ten atomic diameters), and regions of dense packing
of atoms of the same scale. This model was made for mod-
eling porous media, and was created by a long Monte-
Carlo relaxation of the Lennard-Jones system with a given
density at zero temperature. Obviously, the dense regions
in that model cannot be considered as bulk structures.
Rather, they should be considered as small atomic clusters
because they are contiguous with the pores substantially,
but the existence of icosahedral structures in small objects
is a known fact [5–7,26].

The models with packing fraction g > 0.68 represent
uniform crystals with numerous defects, but there are no
separated nuclei independently oriented. We do not see
any fivefold structure in these models.

There are different opinions about the origin of the
fivefold symmetry structure in the crystallization of liq-
uids. As it was discussed by Bagley [27], it is due to the
growth of the pentagonal bipyramid, and it should not
be regarded as a result of accidental crystal twining. How-
ever, in a recent paper [8] an opposing opinion was pro-
posed, which says that the fcc nuclei are joined through
the hcp stacking fault with a ‘fivefold’ orientation and
as a result the pentagonal twinnig arises. We think that
both of these mechanisms may work, depending on the
hardness of the interatomic potential and on the density
of the system. The method used in the paper [8] may miss
some of the fine steps of structure reorganization, because
it uses a rather complex structural unit: the atom with all
of its neighbors. This is a rather rough characterization as
compared with the Delaunay simplex, which contains only
four atoms.

Note that in order to distinguish crystal nuclei we
should use a more complex coloring of the Voronoi net-
work. In this case we should take into account not only
the good tetrahedral but also good octahedral configura-
tions, which are typical for f.c.c. and h.c.p. crystals. More
details about this procedure are given in [9,12].

5. Conclusion

The fact that we have obtained fivefold symmetry struc-
tures in dense packings of spheres suggests that they really
can appear in real bulk systems. That means that they
should be taken into consideration in the process of homo-
geneous crystallization. Additional investigations are
needed to study the role of pentagonal bipyramids at the
initial stage of nucleation of liquids, and pentagonal prisms
(Bagley structures, pentagonal twinning) at the main stage
of crystallization.
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