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Analytical solution is obtained for time-resolved magnetic field effectssTR-MFEd on recombination
fluorescence of radical-ion pairsRIPd containing radical ion with two groups of magnetically
equivalent nuclei. The present theoretical approach is applied to three experimental systems: RIPs
containing radical cations of 2,3-dimethylbutane, 2,2,6,6-tetramethylpiperidine, or diisopropylamine
and radical anion ofp-terphenyl-d14 in nonpolar alkane solutions. Good agreement between theory
and experiment is found for all the three systems, hyperfine coupling constants of radical cations are
obtained by fitting the experimental TR-MFE traces. The potential of the TR-MFE technique for
studying radical ions with nonequivalent nuclei is discussed in detail. The wide applicability of the
theoretical model and the experimental technique make them useful for studying short-lived radical
species that are often beyond the reach of the conventional electron paramagnetic resonance
spectroscopy. ©2005 American Institute of Physics. fDOI: 10.1063/1.1901661g

I. INTRODUCTION

The method of time-resolved magnetic field effectsTR-
MFEd in recombination fluorescence of spin-correlated radi-
cal ion pairs is a powerful tool for studying the properties of
the short-lived radical ions formed under ionizing irradiation
of nonpolar solutions.1–12As a rule, TR-MFE is defined as a
ratio of recombination fluorescence kinetics in the presence
and in the absence of external magnetic field. High temporal
resolution of this experimental method that is about 1 ns
allows one for studying elusive radical ion intermediates,
which are often beyond the reach of the conventional elec-
tron paramagnetic resonancesEPRd spectroscopy. Recent ap-
plications of the TR-MFE technique have revealed its high
potential for determining the hyperfine interactionsHFId con-
stants and theg-factors of radical ions in solutions.5–13

Hitherto, all the applications of TR-MFE have been re-
stricted to radical ions having either magnetically equivalent
nuclei or unresolved hyperfine structure. Hereafter the term
“equivalent nuclei” means the nuclei having equal HFI con-
stants with unpaired electron. Theory of TR-MFE in both the
cases is well developed, and analytical expressions for spin

evolution of radical pairs have been obtained and success-
fully applied to treat the experimental data.3,11,14–17Unfortu-
nately, in many situations of experimental interest this theo-
retical treatment is not sufficient, since many radical ions
with resolved EPR spectra may have nonequivalent magnetic
nuclei. In the presence of nonequivalent nuclei, the solution
of the problem at high magnetic field is not a difficult
exercise,3,14 but at zero field no exact analytical results for
spin dynamics have been obtained so far. Since the solution
for spin evolution at zero field is unknown, the TR-MFE
kinetics cannot be evaluated. So far, only numerical simula-
tions of MFE have been performed that encourage one to
apply the TR-MFE technique for studying radical ions with
nonequivalent magnetic nuclei.6,16 However, to recognize
clearly a potential of TR-MFE for studying such radical ions
a more detailed analysis is required.

The present work is aimed at obtaining analytical results
for TR-MFE in recombination fluorescence of radical-ion
pairs, where onesor bothd of the radical ions has either two
magnetically nonequivalent nuclei or two groups of equiva-
lent nuclei. The first group hasn1 spin I1 nuclei with HFI
constanta1, while in the second group there aren2 spin I2

nuclei with HFI constanta2. Theoretical results are applied
to treat experimental TR-MFE curves obtained for three dif-
ferent radical-ion pairs containing radical cations of 2,3-
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dimethylbutane, 2,2,6,6-tetramethylpiperidine, or diisopro-
pylamine and radical anion ofp-terphenyl-d14 spTPd.

II. THEORY

A. Basic principles of TR-MFE

In the TR-MFE experiment radiolytic impact on solution
containing electron acceptorsA and hole acceptorsD rapidly
produces radical-ion pairssRIPd in their spin-correlated sin-
glet state1fA•−

¯D•+g. A luminophor with sufficient fluores-
cence quantum yield and short fluorescence timet f is usually
chosen as one of the charge acceptors. In nonpolar solution,
RIP recombination is not spin selective and RIP recombines
from both singlet and triplet states at the same rate but fluo-
rescence is produced only from the singlet recombination
product. Prior to its recombination, RIP may change its spin
state due to HFI, difference ing-factors of radical ions and/or
paramagnetic relaxation.

If fluorescent timet f is short enough, experimentally
measured fluorescence intensity at external magnetic fieldB
IBstd obeys the following equation:18

IBstd = Fstd„urSS
B std + 1

4s1 − ud… , s2.1d

whereFstd is the lifetime distribution of RIPs,u is the frac-
tion of recombining RIPs originating from the same precur-
sor sgeminate pairsd, rSS

B std is the population of their singlet
state. Equations2.1d implies the same lifetime distributions
for geminate and cross recombining RIPs. The accuracy of
this assumption has been checked by Monte Carlo modeling
of radical-ion recombination in multiparticle tracks.19 The
simulation revealed that the ratio of the recombination rates
of geminate and cross recombining RIPs becomes time-
independent after several picoseconds.

Knowing the time behavior ofrSSstd at high magnetic
field B, one can obtain the EPR spectrum of the radical pair
making Fourier transformation. Unfortunately, to evaluate
this quantity fromIBstd the time dependence of recombina-
tion function Fstd is required, which is unknown. To mini-
mize this problem it is a common practice to measure the
ratio of the fluorescence kinetics at high and zero magnetic
fields. This quantity called the TR-MFE is as follows:

MFEstd =
IBstd
I0std

. s2.2d

In the simplest case, where fluorescence timet f is very short
and RIPs under study are created instantly, the TR-MFE ki-
netics does not containFstd,

MFEstd =
urSS

B std + 1
4s1 − ud

urSS
0 std + 1

4s1 − ud
. s2.3d

For more rigorous analysis, it is necessary to take into
account both finitet f and Fstd dependence as well as finite
setup response time and duration of pulsed generation of
RIPs. In this case, expression for recombination fluorescence
is recast as follows:

I0,Bstd =
1

t f
E

−`

t

dt expS−
t − t

t f
DE

−`

t

djFst − jd

3hurSS
0,Bst − jd + 1

4s1 − udjGsjd. s2.4d

Here we introducedGstd to account for the last two afore-
mentioned factors. In the present workGstd was approxi-
mated as a rectangular shape function of time,

Gstd = H1/tg, − tg/2 , t , tg/2

0, utu . tg/2.
s2.5d

Note, theFstd value for geminate recombination of RIPs
decreases rapidly at earlier time and becomes slow decaying
at longer times. As a consequence, accounting the realFstd
dependence is of importance only at short timest&t f, tg. In
this work, the recombination functionFstd was approximated
as follows:

Fstd ~
1

st + t0d3/2, s2.6d

where the value oft0 depends on the properties of the solvent
and mobilities of the radical ions.

B. Evaluation of TR-MFE

Singlet state population of geminate RIPrSS
B std at arbi-

trary strength of external magnetic field can be written as
follows:15

rSS
B std = 1

4 − TrhsŜ1,Ŝ2dr̂stdj, s2.7d

where r̂std is the density matrix of radical pair,Ŝi

=sŜix ,Ŝiy ,Ŝizd are electron spin operators of the firstsi =1d
and secondsi =2d radicals. This formula can be rewritten in
terms of the components of the tensorsTik

s1,2dstd describing
the evolution of spin operators16 for each of the radicals,

rSS
B std =

1

4
+ o

i,k
Tik

s1dstdTik
s2dstd, s2.8d

wherei, k=x, y, z and

Tik
s1d = kTrehŜ1istdŜ1ks0djl, Tik

s2d = kTrehŜ2istdŜ2ks0djl.

s2.9d

Here k¯l denotes the averaging over the nuclear spin states
of radicals, trace is taken over electron spin states.

At high magnetic fields, i.e.,B@aef f, whereaef f is the
effective HFI constant of radical pair secular approximation
for HFI is applicable. As a consequence, solution of the
problem is greatly simplified and analytical results forrSS

B std
can be obtained. For example, for a RIP where one of the
radical ions has two nuclei with even spinsI1 and I2 having
HFI constantsa1 and a2, respectively, and the other has no
HFI the solution forrSS

B std is as follows:3,14
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rSS
B std =

1

4
+

exps− t/T1d
4

+
exps− t/T2d

2s2I1 + 1ds2I2 + 1d
cosSDgbBt

"
D

3 o
m1=−I1

I1

cossm1a1td o
m2=−I2

I2

cossm2a2td. s2.10d

HereDg=g1−g2 is the difference of radicalg-factors. Para-
magnetic spin relaxation is taken into account as well as the
dynamic spin evolution for RIP, andT1 and T2 are the lon-
gitudinal and transverse relaxation times, respectively. For
another frequently met situation where the first radical hasn1

spins 1/2 nuclei with HFI constanta1 andn2 spins 1/2 nu-
clei with HFI constanta2 and the second radical has no HFI
rSS

B std is of the form:3,14

rSS
B std =

1

4
+

exps− t/T1d
4

+
exps− t/T2d

2
Scos

a1t

2
Dn1

3Scos
a2t

2
Dn2

cosSDgbBt

"
D . s2.11d

In a more general way the solution forrSS
B std at B@aef f can

be presented as follows:17

rSS
B std =

1

4
+

exps− t/T1d
4

+
exps− t/T2d

2 o
i,kÞz

Tik
s1dstdTik

s2dstd.

s2.12d

Tensor componentsT ik
s1,2dstd can easily be calculated forar-

bitrary hyperfine structure of each of the radical ions.
In contrast to the high field case, at zero field the prob-

lem of calculating the spin tensor components is much more
complicated. So far, only the cases of eitherequivalentmag-
netic nuclei3,14,17or unresolvedHFI sRef. 15d on each radical
ion have been resolved analytically. The aim of the present
work is to obtain analytical results for a more general case
where the partners of RIP have two groups of magnetically
equivalent nuclei. For the sake of clarity we evaluate the spin
tensor components only for the first radical ion assuming that
the second radical has no magnetic nuclei. This assumption
is not of principal importance: one may take into account
HFI of the electron spin with one or two groups of equivalent
nuclei or with unresolved HFIs in the second radical ion as

well. In terms of the spin HamiltonianĤ of the first radical
the expression forT ik

s1d takes the form

T ik
s1d =

1

NI1I2

TrhexpsiĤtdŜ1i exps− iĤtdŜ1kj. s2.13d

Here trace is taken over both electron and nuclear spin states
and the coefficient

NI1I2
= s2I1 + 1ds2I2 + 1d s2.14d

provides normalization condition att=0: T ik
s1d=dik /2. Due to

the absence of HFI in the second radical, at any instant of

time T ik
s2d=dik /2. At zero magnetic field the HamiltonianĤ

of the first radical is as follows:

Ĥ = a1sŜ1, Î 1d + a2sŜ1, Î 2d = V̂1 + V̂2. s2.15d

It describes isotropic HFI of electron spin with either two
nuclei having spinsI1 and I2 with HFI constantsa1 anda2,
respectively, or with two groups of equivalent nuclei.

In the case of two groups of magnetically equivalent
nuclei spinsI1 and I2 can be treated as the total nuclear
momenta of both groups. For instance, total momentumI of
n protons varies from 1/2 ton/2 sodd nd or from 0 ton/2
seven nd and the coefficients of the distribution overI are
given by the formula8

Pn,I =
s2I + 1d2n!

2nsn/2 − Id!sn/2 + I + 1d!
. s2.16d

As a consequence, in order to obtain theT ik
s1d one first should

evaluate it from Eq.s2.13d in configuration with fixed total
momentaI1 andI2 in these groups, sinceI1 andI2 are “good”
quantum numbers because the total nuclear spin in each
group obviously commutes with the radical spin Hamil-
tonian. Then the result should be averaged overI1 and I2

with appropriate weighting factors. Forn spins 1/2 the
weighting factor is given by Eq.s2.16d.

To calculate the desired quantitiesT ik
s1d we choose the

following basis:

uJMjl, s2.17d

that is, the state with fixed total momentumĴ=Ŝ1+ Î 1+ Î 2, its

projection M on Z axis and total nuclear momentumĵ = Î 1

+ Î 2. Both J and M are good quantum numbers because the

operatorsĴ2 andĴz commute with the HamiltonianĤ s2.15d.
Although fĵ 2,ĤgÞ0 and the Hamiltonian does not keepj
constant the solution of the problem in the basiss2.17d is still
feasible. Fortunately, at anyJ nuclear momentumj can be

equal only toJ±1/2 sbecauseĴ=Ŝ1+ ĵ andS1=1/2d. That is,
at anyJ there are only two possible values ofj . Therefore,
the Hamiltonian splits into blocks 232.

As zero field it is sufficient to calculate only a single
componentTzz

s1d of the spin tensor for two reasons. First,

T xx
s1d=T yy

s1d=T zz
s1d owing to the symmetry of the systemsat

zero field there is no preferred axis of quantization in spaced.
Second, all the nondiagonal components of the tensors are
equal to zero, e.g.,T zx

s1d=T zy
s1d=T xy

s1d=0. This is because the

operatorsŜ1z, expsiĤtd, exps−iĤtd keep constant the projec-
tion M of the total momentumJ of three spins, while the

action of operatorsŜ1x, Ŝ1y change this projection to projec-
tion M8=M ±1, thus, the trace of product of these four op-
erators vanishes. Indeed,

TrhexpsiĤtdŜ1z exps− iĤtdŜ1xj

= o
J,M,j

kJMjuexpsiĤtdŜ1z exps− iĤtdŜ1xuJMjl

= o
J,M,j

o
J8,j8

AJj;J8 j8
M kJ8Mj8uŜ1xuJMjl = 0. s2.18d

Here AJj;J8 j8
M is the coefficient dependent onJ, J8, j , j8, M.

Consequently, the result forrSS
0 std s2.8d is as follows:
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rSS
0 std = 1

4 + 3
2Tzz

s1dstd. s2.19d

The problem of calculating matrix elements ofĤ is
similar to that of summing three momenta in quantum
mechanics.20,21 In the case under study these momentaĵ 1, ĵ 2,
and ĵ 3 are as follows:

ĵ 1 = Ŝ1, ĵ 2 = Î 1, ĵ 3 = Î 2. s2.20d

To calculate matrix elements ofĤ we shall introduce the
notations for sums of momenta following Refs. 20 and 21,

ĵ 12 = ĵ 1 + ĵ 2 = Ŝ1 + Î 1,

ĵ 13 = ĵ 1 + ĵ 3 = Ŝ1 + Î 2,

ĵ 23 = ĵ 2 + ĵ 3 = Î 1 + Î 2 = ĵ . s2.21d

Let us now calculate the elements ofV̂1 and V̂2 that consti-

tute the Hamiltonian. Matrix elements ofV̂1 should first be
calculated in the basis with fixed momentumj12: uJMj12l
= u j12l and then transformed to those in basiss2.17d. The
value of j12 varies fromuI1−1/2u to I1+1/2. It isbound with
the initial basiss2.17d by the following relation:20,21

kJMj23uJMj12l = k j23u j12l

= s− 1dI1+I2+J+1/2Îs2j12 + 1ds2j23 + 1d

3H 1
2 I1 j12

I2 J j23
J , s2.22d

where

H j1 j2 j3
j4 j5 j6

J
denotes the Racah 6j-symbol. OperatorV̂1 can be rewritten
as follows:

V̂1 =
a1

2
sĵ 12

2 − Î 1
2 − Ŝ1

2d. s2.23d

In the basis of its eigenfunctionsuJMj12l its elements can
easily be calculated,

kJMj12uV̂1uJMj12l =
a1

2
f j12s j12 + 1d − I1sI1 + 1d − 3

4g .

s2.24d

As a consequence, elements ofV̂1 in basiss2.17d take the
form

kJMj23uV̂1uJMj238 l =
a1

2 o
j12=uI1−1/2u

I1+1/2

f j12s j12 + 1d − I1sI1 + 1d

− 3
4gk j23u j12lk j12u j238 l. s2.25d

Similarly, to determine the elements ofV̂2 we shall first
specify them in its eigenbasisuJMj13l= u j13l,

kJMj13uV̂2uJMj13l =
a2

2
f j13s j13 + 1d − I2sI2 + 1d − 3

4g .

s2.26d

which is bound with basiss2.17d by the following
relation:20,21

kJMj23uJMj13l = k j23u j13l

= s− 1dJ+j23+1/2Îs2j13 + 1ds2j23 + 1d

3H 1
2 I2 j13

I1 J j23
J . s2.27d

Here the signspower of21d is introduced in a different way
as compared to Eq.s2.22d. This is not a mistake or a misprint
but a correct result of momenta summation because the sign
of the spin wave function depends on the order in which the
spins are summed.20,21 Second, similar to Eq.s2.25d we re-

write the elements ofV̂2 in basiss2.17d as follows:

kJMj23uV̂2uJMj238 l =
a2

2 o
j13=uI2−1/2u

I2+1/2

f j13s j13 + 1d − I2sI2 + 1d

− 3
4gk j23u j13lk j13u j238 l. s2.28d

As has been mentioned above at anyJ we have to

specify only four elements ofĤ:

H11sJd = kJM,J − 1
2uĤuJM,J − 1

2l,

H12sJd = kJM,J − 1
2uĤuJM,J + 1

2l,

H21sJd = kJM,J + 1
2uĤuJM,J − 1

2l,

H22sJd = kJM,J + 1
2uĤuJM,J + 1

2l, s2.29d

which are independent of the projectionM of the total mo-
mentum in full accordance with the Wigner–Eckart
theorem20 for the elements of scalar products. Performing
summation in Eqs.s2.25d ands2.28d we obtain the following
results for these elements:

H11sJd = −
a1 + a2

4
+ gJ

a1 + a2

8
+ aJbJgJ

a1 − a2

8
,

H22sJd = −
a1 + a2

4
− gJ

a1 + a2

8
− aJbJgJ

a1 − a2

8
,

H12sJd = H21sJd = gJ
a1 − a2

8
ÎbJ

2 − 1Î1 − aJ
2. s2.30d

Here we introduced new quantities,

aJ = 2
I1 − I2

2J + 1
, bJ = 2

I1 + I2 + 1

2J + 1
, gJ = 2J + 1. s2.31d

At given I1 and I2 total momentumJ varies from uuI1− I2u
−1/2u to I1+ I2+1/2. To evaluate tensor componentss2.13d
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we have to obtain the expressions for the matrix exponents
of the Hamiltonian, i.e., the following matrices:

ÂJstd = expFiSH11sJd H12sJd

H12sJd H22sJd DtG = S fJ hJ

hJ gJ
D ,

B̂Jstd = expF− iSH11sJd H12sJd

H12sJd H22sJd DtG = S fJ
* hJ

*

hJ
* gJ

* D ,

s2.32d

where “p” denotes complex conjugate value. The quantities
fJ, gJ, hJ can be easily calculated:

fJ = eilJ
+t1 + cosuJ

2
+ eilJ

−t1 − cosuJ

2

= eilJ
+t cos2

uJ

2
+ eilJ

−t sin2 uJ

2
,

gJ = eilJ
+t1 − cosuJ

2
+ eilJ

−t1 + cosuJ

2

= eilJ
+t sin2 uJ

2
+ eilJ

−t cos2
uJ

2
,

hJ =
sinuJ

2
seilJ

+t − eilJ
−td, s2.33d

where

lJ
± = −

a1 + a2

4
±

ÎDJ

2
s2.34d

are the egenvalues of the Hamiltonian at givenJ,

uJ = arcsinS2H12sJd
ÎDJ

D s2.35d

is the “mixing angle” of statesuJM ,J−1/2l and uJM ,J
+1/2l and

DJ = fH11sJd − H22sJdg2 + 4H12
2 sJd = gJ

2sa1 + a2d2 + sa1 − a2d2saJ
2 + bJ

2 − 1d + 2sa1
2 − a2

2daJbJ

16

=
a1 − a2

4
fs2I1 + 1d2a1 − s2I2 + 1d2a2g +

a1a2

4
s2J + 1d2. s2.36d

Elements ofŜ1i required for evaluation of tensors2.13d
can be expressed via the components of the so-called irre-
ducible tensorsfk,q in the following way:

f1,0= iŜ1z, f1,±1 = 7
i

Î2
sŜ1x ± Ŝ1yd. s2.37d

As has been mentioned above we restrict ourselves to calcu-

lating only the elements ofŜ1z=−i f 1,0. Elements off1,0 in
basiss2.17d are of the form20 of the Hamiltonian, i.e., the
following matrices:

kJ8M8 j8uf1,0uJMjl = i · d j j 8dMM8

3s− 1dJmax−MS J8 1 J

− M 0 M
D

3kJ8 j uuf1,0uuJjl. s2.38d

Here

S j1 j2 j3
m1 m2 m3

D
is the Wigner 3j-symbol,Jmax=maxhJ,J8j and kJ8 j uuf1,0uuJjl
is the so-called reduced element of the tensorf1,0, which is
as follows20

kJ8 j uuf1,0uuJjl = s− 1d j+Jmin+3/2Î2J + 1Î2J8 + 1

3H 1
2 J8 j

J 1
2 1

Jk j uuf1,0uu jl

= s− 1d j+Jmin+3/2Î3

2
Î2J + 1Î2J8 + 1

3H 1
2 J8 j

J 1
2 1

J . s2.39d

Here Jmin=minhJ,J8j. As a result, we arrive at the expres-

sion for Ŝ1z elements,

kJ8M8 j8uŜ1zuJMjl = d j j 8dMM8

3s− 1d j+3/2−MÎ3

2
Î2J + 1Î2J8 + 1

3 S J8 1 J

− M 0 M
DH 1

2 J8 j

J 1
2 1

J .

s2.40d

Finally, we can obtain the following expression forTzz
s1d

at givenJ andM:
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Tzz
s1dsJ,M,td =

1

NI1I2

o
J8=J−1

J+1

o
j=J−1/2

J+1/2

o
j8=J−1/2

J+1/2

kJMjuÂJuJMj8lkJMj8uŜ1zuJ8Mj8lkJ8Mj8uB̂J8uJ8MjlkJ8Mj uŜ1zuJMjl

=
1

NI1I2

o
J8=J−1

J+1

o
j8=J−1/2

J+1/2

o
j8=J−1/2

J+1/2

kJMjuÂJuJMj8lkJ8Mj8uB̂J8uJ8Mj8l
3

2
s− 1d j+j8−2M+1s2J + 1ds2J8 + 1d

3S J8 1 J

− M 0 M
D2H 1

2 J8 j

J 1
2 1

JH 1
2 J j8

J8 1
2 1

J . s2.41d

Here summation overJ8 is from J−1 to J+1 because the

action of Ŝ1z on spin state with fixedJ results in total mo-
mentum J8=J−1, J, J+1. Performing summation in Eq.
s2.41d we obtain the following expression forT zz

s1dsJ,M ,td:

NI1I2
T zz

s1dsJ,M,td =
fJ

4
SgJ−1

* J2 − M2

J2 + fJ
* M2

J2 D
+

gJ

4
S fJ+1

* sJ + 1d2 − M2

sJ + 1d2 + gJ
* M2

sJ + 1d2D
−

hJhJ
*

2

M2

JsJ + 1d
. s2.42d

Performing summation over all possibleM sfrom −J to Jd
and keeping in mind that

o
M=−J

J

M2 =
JsJ + 1ds2J + 1d

3

we arrive at the following result forT zz
s1d at fixedJ:

NI1I2
T zz

s1dsJ,td = fJfJ
* sJ + 1ds2J + 1d

12J
+ gJgJ

* Js2J + 1d
12sJ + 1d

− hJhJ
* 2J + 1

6
+ fJgJ−1

* 4J2 − 1

12J

+ gJfJ+1
* 4sJ + 1d2 − 1

12sJ + 1d
. s2.43d

Total value of T zz
s1d component of the spin tensor can be

obtained by summation of this quantity fromJ=Jmin= uuI1

− I2u−1/2u to J=Jmax= I1+ I2+1/2, i.e.,

T zz
s1dstd = o

J=Jmin

Jmax

Tzz
s1dsJ,td. s2.44d

At J=Jmax= I1+ I2+1/2 bothgJmax
andhJmax

vanishsbecausej
cannot be equal toJmax+1/2d and fJmax

=1. At J=Jmin there
are two possibilities. IfI1Þ I2 both fJmin

andhJmin
vanish and

gJmin
=1. If I1= I2 both fJmin

and hJmin
do not vanish atJ

=Jmin. Finally, atJmin,J,Jmax all three quantitiesfJ, gJ, hJ

exist.
Keeping this in mind, we can recast Eq.s2.43d in a sim-

pler way. First, if all three quantitiesfJ, gJ, hJ exist at given
J, one can obtain the following result using their definitions
given by Eq.s2.33d,

fJfJ
* sJ + 1ds2J + 1d

12J
+ gJgJ

* Js2J + 1d
12sJ + 1d

− hJhJ
* 2J + 1

6

=
s2J + 1d3

12JsJ + 1d
·

sin2 uJ

2
scosÎDJt − 1d

+ s2J + 1d
sJ + 1d2 + J2

12JsJ + 1d
. s2.45d

Expression for the real part of the quantityfJgJ−1
* can be

written as follows:

RehfJgJ−1
* j = cosslJ

+ − lJ−1
+ dt cos2

uJ

2
sin2 uJ−1

2

+ cosslJ
+ − lJ−1

− dt cos2
uJ

2
cos2

uJ−1

2

+ cosslJ
− − lJ−1

+ dt sin2 uJ

2
sin2 uJ−1

2

+ cosslJ
− − lJ−1

− dt sin2 uJ

2
cos2

uJ−1

2

= cosSÎDJ − ÎDJ−1

2
tD1 − cosuJ cosuJ−1

2

+ cosSÎDJ + ÎDJ−1

2
tD1 + cosuJ cosuJ−1

2
.

s2.46d

Then, denoting the coefficient offJgJ−1
* in Eq. s2.43d as KJ

and that ofgJfJ+1
* asKJ8 we obtain

KJ =
4J2 − 1

12J
= KJ−18 , KJ8 =

4sJ + 1d2 − 1

12sJ + 1d
= KJ+1. s2.47d

This means thatT zz
s1dsJ−1,td andT zz

s1dsJ+1,td contain terms
conjugate to the last two terms in the expression for
T zz

s1dsJ,td s2.43d. This allows us to recast the results forT zz
s1d

fEqs.s2.43d and s2.44dg. At I1Þ I2,
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T zz
s1dstd =

sJmax+ 1ds2Jmax+ 1d
12JmaxNI1I2

+
Jmins2Jmin + 1d

12sJmin + 1dNI1I2

+
1

NI1I2

o
J=Jmin+1

Jmax 4J2 − 1

12J
HcosSÎDJ − ÎDJ−1

2
tD

3s1 − cosuJ cosuJ−1d + cosSÎDJ + ÎDJ−1

2
tD

3s1 + cosuJ cosuJ−1dJ
+

1

NI1I2

o
J=Jmin+1

Jmax−1 X s2J + 1d3

12JsJ + 1d
·

sin2 uJ

2

3scosÎDJt − 1d + s2J + 1d
sJ + 1d2 + J2

12JsJ + 1d
C , s2.48d

while at I1= I2,

Tzz
s1dstd =

sJmax+ 1ds2Jmax+ 1d
12JmaxNI1I2

+
1

NI1I2

o
J=Jmin+1

Jmax 4J2 − 1

12J
HcosSÎDJ − ÎDJ−1

2
tD

3s1 − cosuJ cosuJ−1d + cosSÎDJ + ÎDJ−1

2
tD

3s1 + cosuJ cosuJ−1dJ
+

1

NI1I2

o
J=Jmin

Jmax−1 X s2J + 1d3

12JsJ + 1d
·

sin2 uJ

2
scosÎDJt − 1d

+ s2J + 1d
sJ + 1d2 + J2

12JsJ + 1d
C . s2.49d

General expressionss2.48d and s2.49d are still relatively
cumbersome because arbitrary spinsI1 andI2 are considered.
Nonetheless, their use is preferable for simulating the TR-
MFE curves, since the purely numerical calculation of the
TR-MFE becomes very time-consuming for systems with
high spin nuclei or large number of nuclei. For particular
values of I1 and I2, expressionss2.48d and s2.49d become
much simpler. ForI1= I, I2=1/2, andI1= I, I2=1 they are
given in the Appendix.

To treat the experimental data for TR-MFE it is also
necessary to take into consideration the paramagnetic spin
relaxation at zero field, like it has been done for the high
field in Eqs. s2.10d–s2.12d, i.e., to modify formulas2.19d.
Here we do this in the following rather simple way:

rSS
0 std = 1

4 + 3
2Tzz

s1dstdexps− t/T0d. s2.50d

HereT0 is an effective paramagnetic relaxation time at zero
magnetic field. This means of taking into account the spin
relaxation at zero field gives rather accurate results for TR-
MFE as has been demonstrated in a number of works.8,11–13

For more rigorous consideration of relaxation, the knowl-
edge of particular relaxation mechanism is required.

C. Model calculations of the TR-MFE in the presence
of nonequivalent nuclei

By means of formulass2.12d and s2.50d it is relatively
easy to calculate the TR-MFE for RIP containing radical ion
with two groups of equivalent nuclei. As has been empha-
sized above, the quantum beats in recombination fluores-
cence have shown that the TR-MFE is a perspective tech-
nique for studying radical ions with nonequivalent
nuclei.7,12,13 In particular, numerical simulations revealed
that the TR-MFE could be sensitive to the relative signs of
the HFI constants.13 This statement is supported by Eq.
s2.48d and s2.49d, in which the frequencies of oscillations
dictated byDJ s2.36d are dependent on the values of both
sa1+a2d2 andsa1−a2d2. To illustrate the features of TR-MFE
in the case of two groups of nonequivalent nuclei, we shall
perform simulations based on the foregoing theoretical re-
sults. For the sake of simplicity here we completely neglect
the difference ing-factors of radical ions, paramagnetic re-
laxation and contribution of nongeminate RIPs to recombi-
nation fluorescence, and focus our attention solely on the
HFI-induced quantum beats in recombination fluorescence.

To demonstrate how the TR-MFE is affected by the pres-
ence of nonequivalent magnetic nuclei we have considered
two examples.

In the first example, we start with a RIP comprising the
first radical ion with even numbern1=12 of spin 1/2 equiva-
lent nuclei with HFI constanta1 and the second radical ion
with no magnetic nuclei. In this case the TR-MFEfsee Fig.
1, curve sadg is known to be periodic functionsperiod T
=4p /a1d with characteristic sequence of stronger and weaker
peaks.8 As has been shown earlier8 in the limit of largen1 the
shape and position of the first peak is reproduced also in the
so-called semiclassical model of Schultenet al.15 where the
individual HFI constants are assumed to be nonresolved.
Thus, this peak will later on be referred to as the Schulten’s
peak.

FIG. 1. Model calculations of TR-MFE kinetics for RIP where one of the
partners has no HFI and the other one hasn1=12 spin 1/2 nuclei with HFI
constanta1 and one spin 1/2 nucleus with HFI constanta2 equal to 0sad;
0.1a1 sbd; 0.5a1 scd; a1 sdd; −a1 sed. Here we neglect paramagnetic relax-
ation, contribution of nongeminate pairs to MFE, difference ofg-factors of
radicals, finite fluorescence time, and delay in formation of RIPs. For con-
venience, the curves are arbitrarily shifted along the vertical.
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Now let us add to the first radical one more spin 1/2
nucleus with the HFI constanta2. If a2 is small in compari-
son with a1 the positions of peaks in the TR-MFE curve
remain the same, however, their intensities decrease with
time fFig. 1, curvesbdg. Thus, adding an extra nucleus with
small HFI constant is similar to inhomogeneous broadening
of the radical EPR lines. Ifa2 is comparable witha1 the
TR-MFE curve becomes strongly distortedfFig. 1, curve
scdg: the positions and intensities of peaks are noticeably
changed and even troughs appear instead of some peaks.
Note the Schulten’s peak position remains nearly the same. If
a2=a1 we obtain the well-known TR-MFE curve8 for odd
number of magnetically equivalent spin 1/2 nucleifFig. 1,
curve sddg. In this case, the curve is again periodic as for
even number of equivalent spin 1/2 nucleifcurvesadg. How-
ever, the strong peak att=2p /a1 is replaced by a well-
pronounced trough. Finally, let us takea2=−a1. As is readily
seen from Fig. 1, curvesed addition of nonequivalent nucleus
with HFI constanta2=−a1 distorts the time behavior of
rSS

0 std, in particular, violates its periodicity. In this case the
high-field fluorescence kinetics

IBstd = rSS
B stdFstd =

Fstd
2
H1 +Scos

a1t

2
Dn1+1J s2.51d

as well as the high-field EPR spectrum of RIP are exactly the
same as in the case ofa2=a1, i.e., they are not sensitive to
the relative sign of HFI constantsa1 anda2. At zero field the
situation is qualitatively different. This is because the ener-
gies of the RIP eigenstates given by Eq.s2.34d are sensitive
to relative sign ofa1 anda2. For a2=a1 the functionrSS

0 std is
periodic and its period is equal toT=4p /a1, while for a2

=−a1 the function is a combination of oscillating sine and
cosine functions with the frequencies whose ratios are, gen-
erally speaking, irrational. As a result, the periodicity both of
rSS

0 std and TR-MFT curve is violated.
The second example, as shown in Fig. 2, concerns the

case where two nuclei with spins 1/2 and 1 have the same or
opposite sings of HFI constants:a1=a2 and a1=−a2. It is
clearly seen from Fig. 2sad that spin dynamics at the high
field is exactly the same for both cases and is not sensitive to
the relative signs of the HFI constants. To the contrary,rSS

0 std
fFig. 2sbdg and TR-MFEfFig. 2scdg in these situations differ
drastically. Particularly, intensive peak inrSS

0 std curve at t
=4p /a1 turns into a trough when one goes from the case
a1=a2 to a1=−a2 fFig. 2sbdg. As a consequence, rather strong
peak appears in the TR-MFE curve at this instant of time
fFig. 2scdg.

These simulations clearly demonstrate that the TR-MFE
technique is very sensitive to nonequivalence of magnetic
nuclei, in particular, to relative signs of the HFI constants.
While the absolute values of the HFI constants can usually
be determined by the conventional EPR spectroscopy, their
signs are often unknown. In this case, the TR-MFE technique
can be very useful for determining the relative HFI signs.

This encourages us to apply this method to radical ions with
nonequivalent nuclei. The examples given below demon-
strate that the fitting of the experimental TR-MFE curves
with the formulass2.4d, s2.12d, and s2.50d provide reliable
extraction of the HFI constants from experimental data.

III. EXPERIMENT

The delayed fluorescence of studied solutions was de-
tected by single photon counting technique using an x-ray
fluorimeter described elsewhere.22 The duration of the ioniz-
ing pulse was less than 2 ns. The light was collected using an
optical bandpass filters260–390 nmd to separate the fluores-
cence ofpara-terphenyl spTPd. Strong magnetic field was
0.1±0.005 T. Zero magnetic field was adjusted to within
0.05 mT.

n-Hexane andc-hexane used as solvents were stirred
with concentrated sulfuric acid, washed with water, distilled

FIG. 2. Model calculations of RIP singlet state population at highsad and
zero sbd magnetic fields and TR-MFE kineticsscd for RIP where one of
partners has no HFI and the other has two nuclei with spins 1/2 and 1. HFI
constant of the nuclei have the same absolute values but either same signs
a1=a2 ssolid linesd or opposite signsa1=−a2 sdashed linesd. Here we neglect
paramagnetic relaxation, contribution of nongeminate pairs to MFE, differ-
ence ofg factors of radicals, finite fluorescence time, and delay in formation
of RIPs.
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over sodium, and passed through a 0.5 m column of acti-
vated alumina three times. 2,3-dimethylbutanesFluka, 99%d
sDMBd was processed with the same procedure except for
stirring with sulfuric acid. With the gas chromatography we
revealed thatn-hexane available contained 2-methylpentane
s0.2%d and 3-methylpentanes0.6%d as the main impurities.
These alkane isomers could not be removed with the purifi-
cation method used but their presence was believed not to
affect the experimental findings. The concentration of unsat-
urated hydrocarbon impurities was less than 10 ppm.

2,2,4,4-tetramethylpiperidines99%d sTMPPd, diisopro-
pylamines99%d sDIPAd, andpara-terphenyl-d14 s99%d were
received from Aldrich. Amines were distilled before use. The
solutions were degassed by repeated freeze-pump-thaw
cycles. All measurements were made at 293±0.5 K.

IV. RESULTS AND DISCUSSION

Here we present the experimental results for three sys-
tems and make a tight comparison of these results with the
theory developed in the preceding section aimed at definition
of HFI properties of elusive radical ions in nonpolar solu-
tions. In all the cases presented in this section the HFI in
radical cation can be modeled by two groups of equivalent
nuclei. Special attention is paid in demonstrating the sensi-
tivity of the TR-MFE curves to relative sings of HFI con-
stants.

A. Radical-ion pair DMB •+/pTP•−

The experimental TR-MFE kinetics presented in Fig. 3
as a noisy line was obtained using solution 0.1M of DMB
and 30mM of pTP in n-hexane. In solution primary radical
cations of the solvent molecules are captured by DMB mol-
ecules because of the lower value of its ionization
potential.23 It is likely that the rate of hole capture is con-
trolled by diffusion and is about 331010 M−1 s−1.24 Excess

electrons in studied solution are scavenged by onlypTP with
the rate constant of approximately 1012 M−1 s−1.25 Thus, the
delayed fluorescence in the solution arises from recombina-
tion of pairs DMB•+/pTP•+ and the RIP spin dynamics is
conditioned by HFIs in radical cations of DMB because HFI
constants in perdeuteratedpTP radical anions are rather
small sthe total effective HFI constant is 0.068 mT26d. Our
calculations show that the TR-MFE traces in the pairsas well
as for the other two experimental systems under studyd are
not sensitive to spin dynamics ofpTP in the time range
0–100 ns, thereby, fitting experimental data one can neglect
the pTP HFI. The time delay in formation of the radical
anions does not significantly affect the observed TR-MFE
because excess electrons are not coupled to any magnetic
nuclei.

In addition to the Schulten’s peak with its maximum
placed at 4–5 ns there are two damped peaks at 22 and 40 ns
on the TR-MFE curve. The shape of these features differs
drastically from that expected for a RIP, where the spin dy-
namics is conditioned merely by HFI with equivalent mag-
netic nuclei.8,11 This observation is in qualitative agreement
with presumptive hyperfine structure of DMB•+: there are
two equivalent CH-protons and 12 equivalent protons of me-
thyl groups. Equivalence of protons in each group is pro-
vided by fast rotation of the methyl groups and fast confor-
mational transitions in the radical cation.11 Accordingly, the
TR-MFE curvesssolid lines in Fig. 3d have been calculated
under an assumption of two groups of equivalent protons on
DMB•+. The best fitsthick line in Fig. 3d was obtained with
HFI constants of the methyl group protonsa1=as12Hd
=1.66 mT and those for the CH-protonsa2=as2Hd
=0.65 mT. Important to note that these values of HFI con-
stants are consistent with quantum chemical calculations.27

Other simulation parameters are listed in the figure caption.
Taking sgnsa1dÞsgnsa2d, we make the agreement between
the theory and the experiment noticeably worsesthin line in
Fig. 3d. The best fit for sgnsa1dÞsgnsa2d that gives a1

=1.77 anda2=−0.68 mT accurately reproduces the first and
the second maxima in the experimental TR-MFE observed at
t<4.5 andt<22 ns, respectively, while at longer times the
differences between the experimental and the simulated
curves becomes greater: the features att<43 ns are not re-
produced properly by this simulation.

DMB•+ has earlier been observed by the EPR technique
only in low temperature freon matrices.28 Its EPR spectrum
was determined by HFI with four equivalent protons of me-
thyl groups with HFI constants of 3.8–4.5 mT.28 The value
of a1 obtained in the present work for the protons of methyl
groups is in good agreement with this result. When methyl
groups rotation becomes allowed at higher temperatures, the
number of the protons with nonzero spin density is to be
tripled with accompanying threefold decrease of the HFI
constant values. There are no reliable data on HFI constants
with the CH-protons in matrices. From the low temperature
EPR data it is expected that these HFI constants are much
smaller as compared to those of the methyl groups protons.

FIG. 3. TR-MFE curvessscatter plotd obtained in solution of 0.1M DMB
and 30mM of pTP in n-hexane. Thick line shows the best fit of experimen-
tal kinetics obtained with the following parameters:a1=as12Hd=1.66 mT,
a2=as2Hd=0.65 mT,u=0.13, T0=20 ns,T1=2000 ns,T2=20 ns,tg=1 ns,
t0=1 ns,t f =1.2 ns. Thin line shows the best simulation with different rela-
tive sign of a1 and a2, where we obtaineda1=as12Hd=1.77 mT, a2

=as2Hd=−0.68 mT,u=0.125, all the rest parameters are the same as in the
simulation with sgnsa1d=sgnsa2d.
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It is important to emphasize that Trifunacet al.29 doubt
that DMB•+ radical cations exist in solution. However, in the
present work this radical cation has been observed in solu-
tion at a room temperature by using the TR-MFE technique.

B. Radical-ion pair TMPP •+/pTP•− in c-hexane

To study TMPP radical cation, we use the solution
3 mM TMPP+30mM pTP in c-hexane. Rather low concen-
tration of TMPP were chosen to diminish the contribution of
diffusion encounters of TMPP•+ with TMPP molecules. We
have found that at higher TMPP concentration encounters of
TMPP•+ and TMPP lead to the formation of new radical
cation species, presumably dimer radical cations TMPP2

•+. In
general, this reaction pathway is well-known for radical cat-
ions of aliphatic amines.30 Experimental work focused on
identifying these species is now in progress.

In c-hexane the primary radical cations have very high
mobility31 resulting in high rate constant of secondary radical
cation formations,331011 M−1 s−1d. Due to this fact it is
plausible that RIPs TMPP•+/pTP•− are instantly born att
=0.

In Fig. 4 the experimental TR-MFE curve is shown as
scatter plot. Thick line shows TR-MFE curve fora1

=as1Hd=−1.85 mT,a2=as1Nd=1.78 mT. Other simulation
parameters are listed in the figure caption. This simulation
gives a good agreement of theoretical and experimental ki-
netics except for the regiont,10 ns. The reason of the dis-
crepancy is additional fluorescence of excited TMPP* and
pTP* molecules formed by energy transfer from singlet ex-
cited c-hexane molecules.32 The contribution of this process
to the measured fluorescence is significant during the first
several nanosecond after ionizing pulse and it completely
masks the Shulten’s peak. It is likely that negative sign of the
a-protonas1Hd as obtained from our simulation arises due to
spin polarization mechanism.33

Changing the relative HFI signs we can fit the experi-
mental TR-MFE almost equally well withas1Nd=1.81 mT

and as1Hd=2.17 mT. However, this can be done only by
taking unreasonably shortT0 relaxation time equal to 5.4 ns.
Therefore, we believe that the fit with sgnsa1dÞsgnsa2d is
more reliable than that with sgnsa1d=sgnsa2d. Unfortunately,
we cannot give a more convincing proof of sgnsa1d
Þsgnsa2d within the experimental accuracy: the difference
between simulations with different relative signs of HFI con-
stants becomes more pronounced at long times, whereas in
our experiments the signal/noise ratio decays with time. In
the case under study this ratio att.30 ns is too low to
discriminate between the two simulations with different rela-
tive HFI signs.

C. Radical-ion pair DIPA •+ /pTP•− in c-hexane

As has been found by using the optically detected EPR
radical cation of DIPA has four magnetic nuclei with the
following HFI constants:as2Hd=1.8 mT, as1Hd=2.15 mT,
and asNd=1.87 mT.34 Unfortunately, the optically detected
EPR technique does not allow one to determine the signs of
HFI constants but only their absolute values. DIPA•+ radical
cation has also been studied by TR-MFE in DIPA•+/pTP•−

system.8 However, in this work all the nuclei were consid-
ered equivalent with the HFI constant of 2.1 mT. Under these
assumptions a relatively poor fit of the experimental MFE
kinetics has been obtained. We believe that this is because
the basic assumption of four equivalent nuclei is wrong,
since the HFI constant ofa-proton is presumably negative
due to spin polarization mechanism,33 while all the rest HFI
constants should be positive. Therefore, here we reconsider
the fitting of experimental results takingas1Hd as a fitting
parameter and assuming that theb-protons and nitrogen are
magnetically equivalent nuclei with HFI constantsas2Hd
=asNd=2.1 mT. The best fit of the experimental MFE kinet-
ics has been obtained withas1Hd=−2.4 mT sFig. 5, solid

FIG. 4. TR-MFE curvessscatter plotd obtained in solution of 3 mM TMPP
and 30mM of pTP in c-hexane. Solid line shows the best fit of experimental
kinetics obtained with the following parameters:a1=as1Hd=−1.85 mT,a2

=as1Nd=1.78 mT,u=0.18,T0=12.3 ns,T1=5000 ns,T2=12.3 ns,tg=1 ns,
t0=1 ns,t f =1.2 ns.

FIG. 5. TR-MFE curvessscatter plotd obtained in solution of 3 mM DIPA
and 1 mM ofpTP in c-hexane. Solid line shows the best fit of experimental
kinetics obtained with the following parameters:a1=as2Hd=asNd=2.1 mT,
a2=asHd=−2.4 mT, u=0.22, T0=15.4 ns,T1=60 ns,T2=15.4 ns,tg=1 ns,
t0=1 ns,t f =1.2 ns.
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lined. Like in the previous case of TMPP the HFI constant of
thea-proton is negative. If we then change the sign ofas1Hd
we can attain good agreement between theoretial and experi-
mental kinetics only by taking extremely short relaxation
time T0=6.9 ns, whileT2 is 20.3 ns. The HFI costants in the
best fit are thenas2Hd=asNd=2.2 mT andas1Hd=2.4 mT.
However, physically this very shortT0 is not reasonable for
DIPA•+ radical cation, therefore, we believe that the HFI
constantas1Hd is negative. Unfortunately, to determine more
clearly whetheras1Hd is positive or negative the experimen-
tal signal/noise ratio att.20 ns is insufficient.

V. CONCLUSIONS

In the present work for the first time we obtained ana-
lytical solution for the time-resolved magnetic field kinetics
for radical-ion pair with radicals containing two groups of
magnetically equivalent nuclei. We believe that this solution
is very useful for analyzing experimental TR-MFE curves
and extracting the HFI constants from them. Our model cal-
culations reveal that the TR-MFE kinetics are very sensitive
to nonequivalence of the nuclei and to the relative signs of
the HFI constants in two groups of equivalent nuclei.

Application of the present theory to three experimental
systemssradical cationd/pTP•− in alkane solutions confirm
the efficiency of the method. By simulating the experimental
TR-MFE traces we managed to obtain the data on the values
and relative signs of HFI constants of radical cations.
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APPENDIX A: EXPRESSIONS FOR THE SPIN
TENSOR

Here we present the result of the general formulass2.48d
or s2.49d for two particular casessad I1= I .1/2 and I2

=1/2; sbd I1= I .1 andI2=1.
In casesad the maximal total spinJmax is equal toI +1,

while Jmin= I −1 and NI1I2
=2s2I +1d. SubstitutingI1= I and

I2=1/2 into general expressions, we obtain the following
result forTzz

s1dstd:

Tzz
s1dstd =

sI + 2ds2I + 3d
12sI + 1ds2I + 1d

+
sI − 1ds2I − 1d

12Is2I + 1d

+
2

2I + 1o
J=I

I+1

KJ RehfJgJ−1
* j

+
s2I + 1d2

12IsI + 1d
sin2 uI

2
scosÎDIt − 1d +

sI + 1d2 + I2

12IsI + 1d
.

sA1d

Substituting the value of RehfJgJ−1
* j from Eq. s2.46d we ob-

tain

Tzz
s1dstd =

2I2 + 2I + 1

12IsI + 1d
+

s2I + 1d2

24IsI + 1d
sin2 uI

2
scosÎDIt − 1d

+
2I + 3

12sI + 1dFsin2 uI

2
cosslI+1 − lI

+dt

+ cos2
uJ

2
cosslI+1 − lI

−dtG
+

2I − 1

12I
Fcos2

uI

2
cosslI−1 − lI

+dt

+ sin2 uI

2
cosslI−1 − lI

−dtG . sA2d

Here

lI+1 =
2Ia1 + a2

4
, lI−1 =

− 2sI + 1da1 + a2

4
, sA3d

lI
± are given by Eq.s2.34d, uI by Eq. s2.35d and DI by Eq.

s2.36d.
For caseI1= I and I2=1 the values ofJ can be equal to

Jmin= I −3/2, I −1/2, I +1/2, I +3/2=Jmax and the normaliza-
tion factorNI1I2

is as follows:

NI1I2
= 3s2I + 1d. sA4d

From general expressions2.48d the following result forTzz
s1d

3std can be obtained:

NI1I2
Tzz

s1dstd =
sI + 2ds2I + 5d

6s2I + 3d
+

sI − 1ds2I − 3d
6s2I − 1d

+ 2 o
J=I−1/2

I+3/2

KJ RehfJgJ−1
* j

+ o
J=I−1/2

I+1/2 S s2J + 1d2

12JsJ + 1d
sin2 uJ

2
cosÎDJt

+
sJ + 1d2 + J2

12JsJ + 1d D . sA5d

Substituting RehfJgJ−1
* j from Eq. s2.46d we arrive at the fol-

lowing expression:
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NI1I2
Tzz

s1dstd =
2I + 1

2
+

4I

3s4I2 − 1d
+

1

3s2I + 3d
+

4I3

3s4I2 − 1d
sin2 u−scosÎDI−1/2t − 1d +

4sI + 1d3

3s2I + 1ds2I + 3d
sin2 u+scosÎDI+1/2t − 1d

+
4IsI − 1d
3s2I − 1dFcos2

u−

2
cosslI−1/2

+ − lI−3/2dt + sin2 u−

2
cosslI−1/2

− − lI−3/2dtG +
4sI + 1dsI + 2d

3s2I + 3d Fsin2 u+

2
cosslI+1/2

+

− lI+3/2dt + cos2
u+

2
cosslI−1/2

− − lI+3/2dtG +
2IsI + 1d
3s2I + 1d

FcosSÎDI+1/2 + ÎDI−1/2

2
tDs1 + cosu+cosu−d

+ cosSÎDI+1/2 − ÎDI−1/2

2
tDs1 − cosu+cosu−dG . sA6d

Here

lI+3/2 =
a2 + Ia1

2
, lI−3/2 =

a2 − sI + 1da1

2
. sA7d

EigenvalueslI±1/2
± , mixing angles

u+ = uI+1/2, u− = uI−1/2, sA8d

and the quantitiesDI±1/2 are given by Eqs.s2.34d–s2.36d,
respectively.
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