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Abstract
This paper reports an exact solution for the problem of spin evolution of a
radical ion pair in a static magnetic and resonant a microwave field taking into
account Zeeman and hyperfine interactions and spin relaxation. The values of
parameters that provide one of the four possible types of solution are analysed.
It is demonstrated that in the absence of spin relaxation, besides the zero field
invariant an invariant at large amplitudes of the resonant microwave field can
be found. The two invariants open the possibility for simple calculation of
microwave pulses to control quantum state of the radical pair. The effect of
relaxation on the invariants is analysed and it is shown that changes in the high
field invariant are induced by phase relaxation.

1. Introduction

The problem of controlling elementary chemical reactions, and especially the advances in the
field of quantum informatics [1], stimulates interest towards controlling the quantum state of
microscopic spin systems [2]. Spin correlated radical pairs are one of the most intriguing
quantum objects. The quantum state of such a pair can be controlled by applying external
magnetic fields [3, 4]. Additional application of resonant microwave fields substantially
widens the possibilities for manipulating the spins.

Figure 1 shows the scheme of transitions between spin states of a radical ion pair induced
by hyperfine interaction with magnetic nuclei and resonant microwave field. Usually the set
of singlet state of the pair |S〉 with zero total spin and three triplet states |T+〉, |T0〉 and |T−〉
with total spin 1 and its projection on the z axis equal to +1, 0 and −1, respectively, is taken
as the basis. In strong applied magnetic field the degeneracy of the triplet states is lifted by
Zeeman interaction. In the absence of microwave field and relaxation the populations of |T+〉
and |T−〉 states, as well as the sum of the populations of |T0〉 and |S〉 states remain constant.
In the presence of hyperfine interaction the states |T0〉 and |S〉 are not stationary, and their
populations periodically change with time. This phenomenon is referred to as quantum beats
and is observed in experiment [5, 6]. Quantum beats can also be induced by differences in the
g-values of the pair partners [7].

0953-4075/06/092231+16$30.00 © 2006 IOP Publishing Ltd Printed in the UK 2231

http://dx.doi.org/10.1088/0953-4075/39/9/010
mailto:svan@kinetics.nsc.ru
mailto:v_ver@ngs.ru
mailto:vbag@kinetics.nsc.ru
http://stacks.iop.org/JPhysB/39/2231


2232 S V Anishchik et al

ω
1

ω
1

hfi

T
−

T
+

T
0S

Figure 1. Spin dynamics of a radical ion pair.

A resonant microwave field induces transitions between the triplet states, which leads to
changes in the population of the singlet state of the pair and can be used to optically detect ESR
spectra of radical ions in liquids [8, 9]. If the rate of transitions between |S〉 and |T0〉 states
is higher than between the triplet states, periodic changes of the singlet state population with
frequency proportional to the amplitude of the microwave field are observed, which is referred
to as quantum oscillations [10–12]. In the opposite limiting case of the strong microwave field,
when the rate of transitions between the triplet states exceeds the rate of transitions between
|S〉 and |T0〉, singlet-triplet transitions are slowed down, and the so-called spin locking is
observed. As was demonstrated [13] for pairs formed in the singlet initial spin state a strong
microwave field only slows down singlet-triplet transitions but does not completely block
them, and the population of |T0〉 state always remains low. This was suggested as a possible
route to control the spin state of such a pair. If the microwave field is switched off at the
moment when the population of the singlet state is minimal, most pairs will be trapped in
the |T+〉 and |T−〉 states. The only way to get into the singlet state for them is spin-lattice
relaxation. A similar idea was exploited to experimentally substantially prolong the lifetime
of the radical pair in photosynthetic reaction centre [14] by transferring it into its |T+〉 and
|T−〉 states. Another route to control the spin state of the pair was found theoretically in the
work [15]. If a strong resonant microwave field is rapidly switched on at the moment when the
spin system is in its |T0〉 state, the pair is completely locked in the triplet state and will never
become singlet through dynamic transitions. A possibility of controlling the spin state of the
pair with very short pulses of very strong microwave field has also been treated theoretically
[16]. The theory shows that quantum beats in the radical pair can be controlled with two (for
singlet-born pairs) or just one (for triplet-born pairs) short microwave pulses.

The already cited works [13, 15] treated spin dynamics of a radical pair in static magnetic
and resonant microwave fields neglecting relaxation. A method for solving the problem of
spin dynamics, taking into account relaxation, was developed in work [12], and approximate
solutions in the two limiting cases of large and small splitting were obtained. A method for
numerical solution of this problem, taking into account relaxation and ion-molecular charge
transfer reaction, was developed in work [17]. In the present contribution we provide a general
analytical solution for the problem of spin evolution of a radical ion pair taking into account
spin relaxation and use it to analyse the characteristic features of time evolution of the pair
spin state in the microwave field.

2. Analytical solution

2.1. Model

Let us consider what happens when a non-polar solution is irradiated by ionizing radiation.
As an example we shall use liquid hydrocarbons (RH), in which ionizing irradiation in the
presence of electron (A) and hole acceptors (D) initiates the processes which in turn lead to the
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formation of several types of singlet spin correlated pairs (RH·+/e−), (RH·+/A·−), (D·+/e−)

and (D·+/A·−) and their subsequent recombination [18, 19]. Singlet excited molecules (1A∗

and 1D∗) produced by recombination emit a quantum of light that is detected by experimental
setup. The intensity of the detected luminescence is thus proportional to the probability
of forming singlet excited molecules upon recombination. The effects of magnetic fields
on recombination luminescence have as their origin spin evolution in geminate pairs and
dependence of the yield of luminescence on the multiplicity of excited molecule formed by
recombination.

An important advantage of non-polar solutions is that the initial inter-partner distance
in the pairs after ionization (normally ∼5–6 nm) is substantially lower than Onsager radius
(∼30 nm for alkanes at room temperature). The overwhelming majority of the pairs thus
recombine as geminate pairs, i.e., with their sibling counter ion. Upon ionization of molecule
the spin of the ejected electron does not change its state. Since in the molecule the spins were
paired, the initial spin state of the geminate pair is always singlet. Charge transfer to acceptors
and charge recombination also do not change spin states. This means that the multiplicity
of the excited molecule formed by recombination is determined by the multiplicity of the
recombining pair immediately before recombination. The multiplicity of the excited molecule
is thus determined by spin evolution of the geminate radical ion pair between the moments
of ionization and recombination. Static or oscillating magnetic fields can substantially affect
this evolution. And finally, as excited molecules normally emit light from their singlet excited
state, any effect of magnetic fields on the spin state of the pair is directly reflected in the
intensity of recombination luminescence.

In liquid non-polar solution the partners of the pair formed by irradiation spend almost
the entire period of time from ionization and up to recombination at substantial distances
from each other (tens of nanometres), as their approach to distances about 1–2 nm leads to
practically instant recombination. Thus dipole–dipole and exchange interactions between the
pair partners can be safely neglected. Spin evolution of the pair in this case is driven by
interaction of electron spin with spins of nuclei (hyperfine interaction, HFI), with external
magnetic fields, and by spin relaxation processes.

Spin Hamiltonian for the radical pair consisting of radicals A and D in high static magnetic
field B0 and microwave filled with magnetic component B1(t) can be written as

Ĥ = gµB[B0 + B1(t)](Ŝ
A + ŜD) + ŜA

z

∑
i

aA
i Î A

zi + ŜD
z

∑
j

aD
j ÎD

zj , (1)

where ŜA and ŜD are spin operators for electrons, and ÎA
i and ÎD

j are spin operators for
magnetic nuclei in radicals A and D respectively. The sum runs over the nuclei of radicals.
The first term describes Zeeman interaction of electron spins with external magnetic field, and
the second and third terms correspond to isotropic hyperfine interaction of electron spins with
nuclear spins in the two radicals. The z axis is aligned along the direction of the field B0. For
simplicity we assume that the partners of the pair have identical g-values (gA = gD = g).

As was shown in work [12] in the presence of spin relaxation time evolution of the spin
operators for the partners of the radical pair ŜA(t) and ŜD(t) is described by a system of
equations in the frame rotating at the frequency of the applied microwave field that are similar
to Bloch equations [20, 21]. For operator ŜA(t) the system is written as

dŜA
x

/
dt = −�ωAŜA

y − ŜA
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/
T A

2 , (2a)
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A
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/
T A

2 , (2b)

dŜA
z

/
dt = ω1Ŝ

A
y − ŜA

z

/
T A

1 , (2c)
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where ω1 = gµBB1/h̄, T A
1 and T A

2 are the times of spin–lattice and spin–spin relaxation.
The z axis is aligned in the direction of the static magnetic field, and the x axis points
along the B1 field. �ωA = ωA − ω0 is the detuning of the hyperfine component (HFC)
of radical A from resonance. Here ω0 is the frequency of the applied microwave field, and
ωA = (

gµBB0 +
∑

aA
i IA

i

)/
h̄ is the resonance frequency for radical A. Time evolution

for partner ŜD(t) is described by similar equations after substituting D for A. Equilibrium
magnetization of spins in magnetic field was neglected in the system (2a)–(2c) to simplify the
following calculations. This is a good approximation if the spin state of the pair is far from
equilibrium during the entire observation time. This condition is always met for spin evolution
of a radical ion pair from its singlet initial state at room temperature on the nanosecond time
scale.

In the absence of interactions between the spins of the pair, the spin state of the pair can
be described using operators of projection P̂ ψ(t) on an arbitrary state |ψ〉 written through
ŜA(t) and ŜD(t):

wψ(t) = Tr[P̂ ψ(t)ρ̂(0)], (3)

where wψ(t) is the probability of finding the system in the state |ψ〉. Some P̂ ψ(t) are given
in appendix C.

2.2. Solution of the coupled operator equations

Coupled equations (2a)–(2c) are a system of homogeneous linear differential equations, and
its solution can be represented as an expansion over a complete orthonormal basis. In our case
such a basis is conveniently given by Pauli matrices σ̂x, σ̂y and σ̂z.

Ŝ
A,D
i (t) =

∑
k

ΛA,D
ik (t)Ŝk(0), i, k = x, y, z, (4)

where Ŝi (0) = 1
2 σ̂i , i = x, y, z.

The system (2a)–(2c) was solved by Laplace transform and its inversion along the lines of
the work [22]. Alternatively, the generalized coupled equations are solved numerically [23].
A substantial difference from [22] is that in our case the equations are solved for operators,
but this does not change the basic approach.

Laplace transform of the original equations yields the following system:

(p + 1/T2)
ˆ̃Sx + �ω ˆ̃Sy = Ŝx(0), (5a)

−�ω ˆ̃Sx + (p + 1/T2)
ˆ̃Sy + ω1

ˆ̃Sz = Ŝy(0), (5b)

−ω1
ˆ̃Sy + (p + 1/T1)

ˆ̃Sz = Ŝz(0), (5c)

where the tilde sign denotes Laplace transforms of the corresponding spin operators and p
is the Laplace parameter. This system is a system of linear algebraic equations with three
unknowns, which has a unique solution when its determinant is nonzero

�(p) = (p + 1/T2)
2(p + 1/T1) + �ω2(p + 1/T1) + ω2

1(p + 1/T2). (6)

The solution of the system (5a)–(5c) has the following form:

ˆ̃S = 1
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To take inverse Laplace transform from expressions (7) we need to factorize the
determinant �(p). The determinant is a cubic polynomial with respect to p, and its roots
are given by Cardano formula. Depending on whether the discriminant of the equation

ξ = q2/4 + s3/27 (8)

is positive, negative or zero (two cases of degeneration), four types of solution are possible.
We introduced the following notation:

q = 2b3/27 − bc/3 + d, s = −b2/3 + c, b = 2/T2 + 1/T1, (9)

c = 1
/
T 2

2 + 2/(T1T2) + �ω2 + ω2
1, d = 1

/(
T 2

2 T1
)

+ �ω2/T1 + ω2
1

/
T2. (10)

As can be seen from equations (7), in all cases the following relations hold true:

Λyx(t) = −Λxy(t), Λzx(t) = Λxz(t), Λzy(t) = −Λyz(t). (11)

Case: ξ > 0. In this case the polynomial �(p) has one real and two complex conjugate
roots (the roots of �(p) are −p1 and −p2 ± ip3): �(p) = (p + p1)

[
(p + p2)

2 + p2
3

]
, where

p1 = b/3 − (y+ + y−), p2 = b/3 + (y+ + y−)/2, p3 = √
3(y+ −y−)/2, y± = (−q/2 ±√

ξ)1/3.

This case corresponds to an oscillatory solution:

Λik(t) = Aik e−p1t + Bik e−p2t cos(p3t) +
1

p3
Cik e−p2t sin(p3t), (12)

The coefficients were found by a procedure similar to the method used in the work [22]. The
expressions for the coefficients are given in appendix A.

The solutions for species type A and type D are similar and differ only in the corresponding
indices (A or D) for parameters �ω, T1 and T2.

Appendix A does not provide expressions for coefficients Λyx(t),Λzx(t) and Λzy(t), as
they can be easily obtained from formulae (11).
Case: Negative discriminant (ξ < 0). In this case the polynomial �(p) has three
real roots: �(p) = (p + p1)(p + p2)(p + p3), where p1 = b/3 + 2ρ cos(φ/3), p2 =
b/3 − 2ρ cos(π/3 −φ/3), p3 = b/3 − 2ρ cos(π/3 + φ/3), ρ = ±√−s/3, cos(φ) = q/(2ρ3)

and the sign of ρ must coincide with the sign of q. Similar to the first case we obtain

Λik(t) = C1
ik e−p1t (p3 − p2) + C2

ik e−p2t (p1 − p3) + C3
ik e−p3t (p2 − p1). (13)

This case corresponds to a overdamped solution (all pi > 0).
The expressions for the coefficients Cl

ik are given in appendix A. Coefficients
Λyx(t),Λzx(t) and Λzy(t) can be found using formulae (11).
Case: ξ = 0. In this case the determinant �(p) has three real roots, two of which coincide:
�(p) = (p + p1)(p + p2)

2, where p1 = b/3 − 2(−q/2)1/3, p2 = b/3 + (−q/2)1/3. In this
case

Λik(t) = Aik e−p1t + Bik e−p2t + Cikt e−p2t . (14)

Case: ξ = 0 and q = 0. In this case the determinant �(p) has three coinciding real roots:
�(p) = (p + p1)

3, where p1 = b/3 = (2/T2 + 1/T1)/3. In this case

Λik(t) = Aik e−p1t + Bikt e−p1t + Cik

t2

2
e−p1t . (15)

This case (double degeneration) occurs when ω1 = 2
√

2�ω and (1/T2 − 1/T1) = 3
√

3�ω.

The degenerate cases (14) and (15) never occur in actual calculations, so we do not provide
expressions for their coefficients.
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3. Some peculiarities of spin dynamics

A convenient basis for spin states of the radical pair is given by Bell functions:

|S〉 = |ψ−〉 = 1√
2
(|↑〉|↓〉 − |↓〉|↑〉), (16a)

|Tx〉 = |φ−〉 = 1√
2
(|↑〉|↑〉 − |↓〉|↓〉), (16b)

|Ty〉 = |φ+〉 = 1√
2
(|↑〉|↑〉 + |↓〉|↓〉), (16c)

|Tz〉 = |ψ+〉 = 1√
2
(|↑〉|↓〉 + |↓〉|↑〉), (16d)

where |↑〉 and |↓〉 are eigenstates of radical with spin projection on the z axis equal to +1/2
and −1/2 respectively. In the product the left function always corresponds to radical A and
the right function to radical D. The singlet function |S〉 has zero total spin, and the three triplet
functions |Tx〉, |Ty〉 and |Tz〉 have total spin equal to 1 and zero projection on axes x, y and z

respectively.
Specialists in spin chemistry are more used to working in the basis of the singlet function

|S〉 and the three triplet functions |T0〉, |T+〉 and |T−〉 with defined projection of the total spin
on the z axis equal to 0, +1 and −1 respectively (it is this notation that was used in figure 1).
As equations (16b)–(16d) show, the Bell functions are expressed from them as follows:

|Tz〉 = |T0〉, |Tx〉 = 1√
2
(|T+〉 − |T−〉), |Ty〉 = 1√

2
(|T+〉 + |T−〉).

The expressions for spin projection operators P̂ ii in the basis |S〉, |Tx〉, |Ty〉, |Tz〉 are given
in appendix C.

Let us introduce notation for the density matrix written in this basis at time zero:

ρ̂(0) =




ρss ρsx ρsy ρsz

ρxs ρxx ρxy ρxz

ρys ρyx ρyy ρyz

ρzs ρzx ρzy ρzz


 . (17)

In our calculations we shall also use a particular case when the initial state of the pair at
zero time is given by a wavefunction that is a linear combination of singlet |S〉 and triplet |Tz〉
states:

|	〉(0) = cos θ |S〉 + sin θ eiφ |Tz〉. (18)

In this case ρss = cos2 θ, ρzz = sin2 θ, ρsz = 1
2 sin 2θ e−iφ, ρzs = 1

2 sin 2θ eiφ , all other ρij are
equal to zero.

3.1. Spin dynamics in the absence of spin relaxation

In the absence of spin relaxation, i.e. for 1/T1 = 1/T2 = 0, the calculations become
substantially simpler, which allows us to get a number of important results analytically.
In this an oscillatory solution always occurs:

Λik(t) = Aik + Bik cos(ωt) +
1

ω
Cik sin(ωt), (19)

where ω =
√

ω2
1 + �ω2.
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3.1.1. Spin dynamics in the absence of microwave pumping (ω1 = 0). As it follows from
expressions (C.1)–(C.4),

P̂ ss + P̂ zz = |S〉〈S| + |Tz〉〈Tz| = 1
2 − 2ŜA

z (t)ŜD
z (t), (20)

P̂ xx + P̂ yy = |Tx〉〈Tx | + |Ty〉〈Ty | = 1
2 + 2ŜA

z (t)ŜD
z (t). (21)

For each radical we can write

Ŝz(t) = �ωω1

ω2
(1 − cos(ωt)) Ŝx(0) +

ω1

ω
sin(ωt)Ŝy(0) +

(
�ω2

ω2
+

ω2
1

ω2
cos(ωt)

)
Ŝz(0). (22)

For ω1 = 0 and considering (C.5)–(C.13) we have

Tr
[
ŜA

z (t)ŜD
z (t)ρ(0)

] = 1
4 (−ρss + ρxx + ρyy − ρzz), (23)

where we used the notation of (17).
From (20), (23) and from the normalization condition

ρss + ρxx + ρyy + ρzz = 1 (24)

it follows that for ω1 = 0 the sum of populations of the singlet |S〉 state ρss(t) and the triplet
|Tz〉 state ρzz(t) does not depend on time:

ρss(t) + ρzz(t) = ρss + ρzz. (25)

This is a quite natural result, since in the absence of microwave pumping and spin relaxation
the only possible transitions in the system are between the states |S〉 and |Tz〉 due to hyperfine
interaction or differences in the g-values of the pair partners. The two other triplet states
|T+〉 and |T−〉 (that can be linearly combined to produce the |Tx〉 and |Ty〉 states) under these
conditions are stationary, and their population does not change in time due to substantial
Zeeman splitting.

3.1.2. Spin dynamics in a strong microwave field (�ω/ω1 → 0). As it follows from
expressions (C.1)–(C.4),

P̂ ss + P̂ xx = |S〉〈S| + |Tx〉〈Tx | = 1
2 − 2ŜA

x (t)ŜD
x (t), (26)

P̂ yy + P̂ zz = |Ty〉〈Ty | + |Tz〉〈Tz| = 1
2 + 2ŜA

x (t)ŜD
x (t). (27)

Since for each radical

Ŝx(t) =
(

ω2
1

ω2
+

�ω2

ω2
cos(ωt)

)
Ŝx(0) − �ω

ω
sin(ωt)Ŝy(0) +

�ωω1

ω2
(1 − cos(ωt)) Ŝz(0),

(28)

for �ω/ω1 → 0 considering (C.5)–(C.13) we have

Tr
[
ŜA

x (t)ŜD
x (t)ρ(0)

] −→ 1
4 (−ρss − ρxx + ρyy + ρzz). (29)

From (26), (29) and (24) we obtain that in the limit of the strong microwave field a new
invariant appears. The sum of populations of the singlet |S〉 and the triplet |Tx〉 states does not
depend on time:

ρss(t) + ρxx(t) ≈ ρss + ρxx. (30)

The smaller the ratio �ω/ω1, the more accurate the equality.
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Figure 2. Time dependence of the sum of populations of the singlet |S〉 and the triplet |Tz〉 states.
�BA = 0, �BD = 0.3 mT (a); �BA = 1 mT, �BD = 1.3 mT (b). The value of B1 is indicated
next to its corresponding curve.

3.1.3. Spin dynamics in microwave fields of finite strength. The situation in arbitrary
microwave fields is more complex than in the limiting cases discussed above, so we shall
consider the general properties of the obtained solutions using several specific examples as an
aid.

Figure 2(a) shows time dependences of the sum of populations of the singlet |S〉 and
the triplet |Tz〉 states of the system at different magnitudes of B1. The line of one radical
is precisely in resonance with the applied microwave field, and the line of the other partner
is detuned by 0.3 mT. The initial state of the pair was taken to be singlet, i.e. ρss = 1, all
other ρij = 0. For figure 2 and all following figures �BA,D = h̄�ωA,D/(gµB) is taken. As
the figure shows, in this case even a weak microwave field is sufficient to completely destroy
invariant (25). The reason for this is transitions between |Tz〉 and |Ty〉 states induced by the
resonant microwave field. As a consequence the value of ρss(t) + ρzz(t) periodically changes
from zero to one. The population of the singlet state also changes periodically (see figure 7).
This phenomenon is referred to as quantum oscillations and has been observed experimentally
[10–12] and studied theoretically [12, 13]. The changes in the frequency of oscillations
with increasing amplitude of the microwave field are not monotonous. The frequency first
increases but then, as B1 grows substantially larger than the splitting between the lines of the
two radicals, falls down. The decrease of the frequency is related to the effect of spin locking.

Figure 2(b) shows time dependences ρss(t) + ρzz(t) in the situation of strong detuning of
the microwave frequency from resonance. Time scale is expanded five times with respect to
figure 2(a). As is clear from the figure, in this case for not too large amplitudes of the
microwave field the frequency of oscillations substantially increases as compared to the case
of resonance with accompanying decrease in the amplitude of the oscillations.

This effect can be observed experimentally. Figure 3 shows experimental results on
monitoring kinetics of recombination fluorescence from liquid alkane solutions in the absence
and in the presence of the microwave field. The experimental technique that was used to get
the presented traces was described in detail in work [12]. The processes initiated in the sample
under the action of a short pulse of x-irradiation are given in subsection 2.1. Dodecane was
used as the solvent (RH), hexafluorobensene C6F6 served as the electron acceptor (A) and
deuterated para-terphenyl PTP − d14 as the hole acceptor (D). ESR spectrum of PTP − d14

radical cation is a single inhomogeneously broadened line with width about 0.1 mT. Radical
anion of C6F6 has a wide resolved spectrum with hyperfine coupling constant of about 13.5 mT
with six equivalent fluorine nuclei [24]. Time dependence of the intensity of recombination
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Figure 3. Experimentally observed microwave field effect in the kinetics of recombination
fluorescence from a dodecane solution of 10−4 M PTP−d14 and 10−2 M C6F6 under the conditions
of resonance (1) and with detuning of 0.3 mT (2) and 1.3 mT (3). B1 = 1 mT. For convenience
the curves 2 and 3 are shifted upwards by 0.05 and 0.1 respectively.

fluorescence I (t) was sampled using the single photon counting technique. The observed light
in this case mostly comes from excited PTP − d14 molecules. Since recombination kinetics
f (t) does not depend on the multiplicity of the pair, and fluorescence intensity is proportional
to the singlet state population of the pair at the moment of recombination ρss(t), we can write
that I (t) ≈ f (t)ρss(t). The equality becomes more accurate as fluorescence time of the
luminophore shortens (about 1ns for PTP − d14) and time resolution of the experimental setup
improves (about 3ns in our case). Under these conditions time resolved microwave field effect
is given by

Imw(t)/Ioff(t) − 1 ≈ ρmw
ss (t)

/
ρoff

ss (t) − 1, (31)

where Imw(t) and ρmw
ss (t) are luminescence kinetics and time dependence of the singlet state

population in the presence of the microwave field, and Ioff(t) and ρoff
ss (t) are the same functions

in the absence of the field.
Figure 3 shows three curves. Curve 1 corresponds to conditions of microwave field

resonance for radical cation of PTP − d14, curves 2 and 3 to detuning from resonance by
0.3 mT and 1.3 mT respectively. As can be seen from the figure, the experimental curves
are modulated with oscillations. The frequency of oscillations increases with increase in
the detuning, and their amplitude falls down in qualitative agreement with the results of
theoretical calculations shown in figure 2. Because of rather large HFI constants in radical
anion of C6F6 the populations of |S〉 and |Tz〉 states can be considered equal at any time, and
ρss(t) = 1

2 [ρss(t) + ρzz(t)]. Experimental curves are noisy as they were not passed through
any smoothing routines, and the figure shows that noise level increases with time. As was
shown in work [12], it is proportional to t3/4.

As figure 2(b) shows for large magnitudes of B1 in the case of detuning from resonance the
frequency of oscillations also decreases, but this happens at larger amplitudes of the microwave
field than under the conditions of resonance and is accompanied with increasing amplitude of
the oscillations.

Figure 4(a) shows time dependences of the sum of populations of the singlet |S〉 and
the triplet |Tx〉 states at several amplitudes of the microwave field. In the calculations it was
assumed that one radical is precisely in resonance with the applied microwave field, and the
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Figure 4. Time dependence of the sum of populations of the singlet |S〉 and triplet |Tx〉 states
for different amplitudes of the microwave field. The magnitude of B1 is indicated next to its
corresponding curve. �BA = 0, �BD = 0.3 mT (a); �BA = 1 mT, �BD = 1.3 mT (b).

line of the second radical is detuned by 0.3 mT. All calculations were performed for the singlet
initial state. Figure 4(b) shows the results of calculations similar to those shown in figure 4(a),
but with detuning from resonance by 1 mT.

As figure 4 shows, the behaviour of these curves qualitatively differs from the curves of
figure 2. An increase in the amplitude of the microwave field leads to increased frequency and
decreased amplitude of the oscillations. Such a behaviour of the calculated curves reflects the
existence of the high field invariant (30). It can be noted that the accuracy of conserving the
value of ρss(t) + ρxx(t) at small splitting is rather high already for microwave field amplitudes
easily accessible in experiment. The magnitudes of B1 amplitudes required for conserving the
high field invariant increase in the case of detuning from resonance (or increasing the value of
�ω).

For the singlet initial state of the pair and sufficiently large magnitude of B1 the sum
of populations ρss(t) + ρxx(t) oscillate close to 1, as can be seen from figure 4, which is in
good agreement with equation (30). In a more general case (18), when the initial singlet state
population ρss(0) is equal to cos2 θ , the sum of populations ρss(t) + ρxx(t) should oscillate
close to this value cos2 θ . The correctness of this conclusion is demonstrated by the results
of calculations given in figure 5, which shows time dependences of the sum of populations of
the singlet |S〉 and the triplet |Tx〉 states of the system for different initial conditions (18). The
curves that are shown in this figure correspond to several sets of values of θ and φ. As can be
clearly seen, the curves in fact oscillate close to the level of cos2 θ . The frequency of these
oscillations is indeed close to ω1, and their amplitude depends on φ.

3.2. On the possibility of controlling the spin state of the radical ion pair

The existence of invariants (25) and (30) significantly simplifies the analysis of spin evolution
of radical ion pairs in the absence of the microwave field and in strong microwave fields. This
opens important possibilities for controlled impact on the pair to manipulate its spin state.

As was demonstrated in [15], the existence of the high field invariant (30) allows us, in
principle, to perform ‘true spin locking’. Upon rapid application of a strong microwave field
at the moment when the pair is in its triplet |Tz〉 state the system is ‘locked’ in the triplet state
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Figure 5. Time dependence of the sum of populations of the singlet |S〉 and the triplet |Tx〉 states
for different initial conditions given by equation (18). The values of θ are indicated next to their
corresponding curves. φ = π/2 (a) and 0 (b). �BA = 0, �BD = 0.3 mT. B1 = 2 mT.

and cannot get into the singlet state. At the same time for the singlet initial state the system
cannot be completely ‘locked’, and the singlet state population oscillates at a frequency close
to �ω2

AD

/
2ω1, where �ωAD = ωA − ωD , where ωA and ωD are resonance frequencies for

radicals A and D respectively [13]. This effect is made absolutely clear by the existence of
the high field invariant (30). For the singlet initial state the sum of populations ρss(t) + ρxx(t)

is equal to 1 all the time, and the populations ρss(t) and ρxx(t) change in antiphase with
frequency �ω2

AD

/
2ω1. The population of the state |Tz〉 always remains very close to zero

[13, 15]. From the invariant (30) it follows that the population of the state |Ty〉 also remains
zero. For triplet initial state |Tz〉 the sum of populations ρss(t) and ρxx(t) remains zero all the
time, which means that populations ρss(t) and ρxx(t) remain zero.

In radiation processes the initial state of the pair is always singlet. However the pair
can be transferred into the triplet state |Tz〉 due to the existence of invariant (25). In the
absence of the microwave field only the states |S〉 and |Tz〉 get populated. If the frequencies of
transitions between them �ωAD for different pairs in the sample are multiples of each other,
as it happens when there is an odd number of equivalent magnetic nuclei in the radical ion,
there are moments when all pairs are in their |Tz〉 states. If a strong microwave field is applied
at this time, the effect of ’true spin locking’ can be observed.

3.3. The effect of relaxation

The above considerations are valid only in the absence of spin relaxation, which destroys spin
invariants. The zero microwave field invariant (25) is apparently destroyed by spin-lattice
relaxation. Phase relaxation does not affect this invariant. This means that expression (25)
holds true only for times substantially smaller than T1. The effect of relaxation on the high
field invariant (30) is much less obvious. Figure 6 shows transformations of time dependence
for the sum of populations of the singlet |S〉 and the triplet |Tx〉 states of the pair with changing
phase relaxation time T2. In the absence of relaxation because of invariant (30) the total
population of ρss(t) and ρxx(t) should oscillate close to zero. However the figure shows that
this is no longer the case. The total population increases with time, and the time scale of this
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Figure 7. Time dependence of the populations of the singlet state |S〉 (1), triplet state |Tz〉 (2) and
the sum of populations of the triplet states |Tx〉 and |Ty〉 (3) for T A
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1 µs. �BA = 0, �BD = 0.3 mT. B1 = 10 µT (a) and 1 mT (b).

increase is close to the phase relaxation time T2. We conclude it is phase relaxation that causes
the destruction of the high field invariant (30).

Figure 7 shows time dependences of the populations of different states in the cases of
weak and strong microwave fields in the presence of phase relaxation.

The time of spin-lattice relaxation T1 in this model calculation is taken to be very large,
so it has practically no effect on the obtained curves.

As figure 7 shows, the time profile of the populations of different states is qualitatively
different upon application of weak and strong microwave fields. In a weak field ρss(t) and
ρzz(t) oscillate in antiphase with frequency close to �ωAD . The amplitude of these oscillations
drops because of phase relaxation, and ρss(t) and ρzz(t) asymptotically approach each other.
The sum of populations ρxx(t)+ρyy(t) in this case is a more smooth curve, which is periodically
modulated with frequency close to ω1.
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In a strong microwave field we see the manifestations of spin locking. The singlet state
population ρss(t) oscillates at a frequency about �ω similar to the weak field case, but the
amplitude of these oscillations is rather small. Oscillations of substantial amplitude occur at
a frequency about �ω2

AD

/
2ω1. This is also the frequency at which the sum of populations

ρxx(t) + ρyy(t) changes. The population of the triplet state |Tz〉 increases with the time of
phase relaxation T2.

4. Conclusions

First of all we note that all these results were obtained in the case of fixed nuclear configurations
in both partners of the pair. In the presence of the reaction of ion-molecular charge transfer this
condition is no longer observed, but this apparently does not change the zero microwave field
invariant (25). The high microwave field invariant (30) will also remain valid if the condition
�ω/ω1 � 1 is not violated in the course of the reaction.

Let us formulate the main rules for spin evolution of a radical pair that follow from the
existence of invariants (25) and (30).

(i) In the absence of microwave pumping the sum of populations of the states |S〉 and |Tz〉
(or |S〉 and |T0〉 in different notation) remains constant at times shorter than T1. The
populations of these states oscillate at a frequency ωA − ωD , where ωA and ωD are
resonance frequencies for radicals A and D respectively. It also naturally follows that the
sum of populations of the states |Tx〉 and |Ty〉 (or |T+〉 and |T−〉) does not change as well.
Invariant (25) is destroyed by spin-lattice relaxation. Even the weak resonant microwave
field also destroys invariant (25). The sum of populations ρss(t) + ρzz(t) starts oscillating
at a frequency close to ω1 (quantum oscillations induced by microwave field).

(ii) In a strong resonant microwave field the sum of populations of the states |S〉 and |Tx〉,
as well as |Ty〉 and |Tz〉, remains constant. The consequence of this is the effect of spin
locking. The high field invariant (30) is rather accurately conserved already for not very
large magnitudes of B1 quite accessible in experiment. The magnitude of B1 required to
maintain invariant (30) increases with detuning from resonance. The high field invariant
(30) is destroyed by phase relaxation.

The two invariants that we found suggest a way of controlling transitions between spin
states of a radical pair. One possible variant of controlling the quantum spin state would be a
rapid switching of a strong microwave field on and off. In this case the pair will alternatively
be in the conditions when one of the invariants is conserved. Another possible control option
may be a rapid change in the phase of the microwave field by π/2. In this case the axes x and
y are exchanged, which correspondingly changes the populations of the |Tx〉 and |Ty〉 states.
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Appendix A. Coefficients in the expressions for different types of solutions of
equations for spin dynamics

Case ξ > 0 (for oscillatory solution)

Axx = (
αβ + ω2

1

)/
γ, Ayy = αβ/γ, Azz = (β2 + �ω2)/γ,

Axy = −α�ω/γ, Axz = ω1�ω/γ, Ayz = −ω1β/γ,
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Bxx = 1 − Axx, Byy = 1 − Ayy, Bzz = 1 − Azz;
Bxy = −Axy, Bxz = −Axz, Byz = −Ayz;
Cxx = (

αβ + ω2
1

)
(p1 − p2)/γ + (α + β + p1 − p2),

Cyy = αβ(p1 − p2)/γ + (α + β + p1 − p2),

Czz = (β2 + �ω2)(p1 − p2)/γ + (2β + p1 − p2),

Cxy = −�ω[α(p1 − p2) + γ ]/γ, Cxz = ω1�ω(p1 − p2)/γ,

Cyz = −ω1(γ + β(p1 − p2))/γ,

where

α = 1/T1 − p1, β = 1/T2 − p1, γ = (p2 − p1)
2 + p2

3.

Case ξ < 0 (for overdamped solution)

Cl
xx = 1

η

{
p2

l −
(

1

T1
+

1

T2

)
pl + ω2

1 +
1

T1T2

}
,

Cl
yy = 1

η

{
p2

l −
(

1

T1
+

1

T2

)
pl +

1

T1T2

}
,

Cl
zz = 1

η

{
p2

l − 2

T2
pl + �ω2 +

1

T 2
2

}
,

Cl
xy = �ω

η

(
pl − 1

T1

)
, Cl

xz = 1

η
�ωω1, Cl

yz = ω1

η

(
pl − 1

T2

)
,

where l = 1, 2, 3, η = (p1 − p2)(p2 − p3)(p3 − p1).

Appendix B. The values of parameters that lead to certain types of solution for
equations of spin dynamics

To analyse the different cases of spin dynamics it would be very useful to have simple rules
for determining the type of solution for the equations with the given set of parameters. As it
turned out, these rules can be easily formulated, which will be done in this section.

As has been shown earlier, the exact analytical solution for the equations of spin dynamics
can belong to one of the four types: oscillatory, overdamped and two degenerate, depending
in the first place on the value of ξ .

To simplify further treatment let us introduce the new parameter:

z = 1/T2 − 1/T1.

Since T2 � T1 in all cases, z � 0.
It turns out that relaxation times T1 and T2 enter the expressions for q, s and ξ (8)–(10)

only as the z parameter:

q = 1
3

(
ω2

1 − �ω2
)
z − 2

27z3, s = − 1
3z2 + �ω2 + ω2

1,

ξ = 1
108

[
4�ω2z4 +

(
8�ω4 − 20�ω2ω2

1 − ω4
1

)
z2 + 4

(
�ω2 + ω2

1

)3]
.

(B.1)

This means that the type of the sought solution depends only on the differences in the rates of
spin–spin and spin–lattice relaxation, but not on the absolute values of the two rates.

As can be seen from expression (B.1), ξ is a quadratic function with respect to z2, with
branches of the parabola going upwards. This means that in the absence of real roots ξ is
positive for all values of z. If the roots exist ξ is negative for values of z2 in-between the roots
and is positive for z2 outside this range.
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From ξ = 0 it follows:

z2
1,2 = 1

8�ω2

(
ω4

1 + 20�ω2ω2
1 − 8�ω4 ±

√
ω2

1

(
ω2

1 − 8�ω2
)3)

. (B.2)

The solutions exist for ω1 � 2
√

2�ω. It can be easily shown that both roots are positive.
From this we conclude that ξ > 0 either for ω1 < 2

√
2�ω, or for ω1 > 2

√
2�ω when

z < z2 or z > z1 (z1 corresponds to choice of ‘+’ in (B.2), and z2 to the choice of ‘−’
respectively). In this case we obtain a solution of the oscillatory type.

ξ < 0 for ω1 > 2
√

2�ω in the range z2 < z < z1. This set of parameters produces a
solution of the overdamped type.

For ξ = 0, when either z = z1 or z = z2 we have a solution of the degenerate type.
Finally, when simultaneously ξ = 0 and q = 0 the case of double degeneracy takes place.

It can be easily shown that this occurs for ω1 = 2
√

2�ω and z = 3
√

3�ω.
Especially interesting is the behaviour of the solution in the vicinity of resonance for one

of the radical ions, that is, when �ω/ω1 → 0. Small parameter expansion of (B.2) then yields

z1 ≈ ω2
1

/
(2�ω) → ∞, z2 ≈ 2ω1.

Thus close to the resonance line an oscillatory solution will be obtained for ω1 >
1
2 (1/T2 − 1/T1), and an overdamped solution for ω1 < 1

2 (1/T2 − 1/T1).

Appendix C. Spin operators

Below we express projection operators of the basis states in the representation
|S〉, |Tx〉, |Ty〉, |Tz〉 in terms of spin operators of the pair partners:

P̂ ss = |S〉〈S| = 1
4 − ŜA

x ŜD
x − ŜA

y ŜD
y − ŜA

z ŜD
z , (C.1)

P̂ xx = |Tx〉〈Tx | = 1
4 − ŜA

x ŜD
x + ŜA

y ŜD
y + ŜA

z ŜD
z , (C.2)

P̂ yy = |Ty〉〈Ty | = 1
4 + ŜA

x ŜD
x − ŜA

y ŜD
y + ŜA

z ŜD
z , (C.3)

P̂ zz = |Tz〉〈Tz| = 1
4 + ŜA

x ŜD
x + ŜA

y ŜD
y − ŜA

z ŜD
z . (C.4)

Let us express the trace of the product of spin operators by the initial density matrix in
the notation of (17):

Tr
[
ŜA

x (0)ŜD
x (0)ρ̂(0)

] = 1

4
(−ρss − ρxx + ρyy + ρzz), (C.5)

Tr
[
ŜA

y (0)ŜD
y (0)ρ̂(0)

] = 1

4
(−ρss + ρxx − ρyy + ρzz), (C.6)

Tr
[
ŜA

z (0)ŜD
z (0)ρ̂(0)

] = 1

4
(−ρss + ρxx + ρyy − ρzz), (C.7)

Tr
[
ŜA

x (0)ŜD
y (0)ρ̂(0)

] = i

4
(ρzs − ρyx + ρxy − ρsz), (C.8)

Tr
[
ŜA

x (0)ŜD
z (0)ρ̂(0)

] = 1

4
(−ρys + ρzx − ρsy + ρxz), (C.9)

Tr
[
ŜA

y (0)ŜD
x (0)ρ̂(0)

] = i

4
(−ρzs − ρyx + ρxy + ρsz), (C.10)

Tr
[
ŜA

y (0)ŜD
z (0)ρ̂(0)

] = i

4
(−ρxs + ρsx − ρzy + ρyz), (C.11)
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Tr
[
ŜA

z (0)ŜD
x (0)ρ̂(0)

] = 1

4
(ρys + ρzx + ρsy + ρxz), (C.12)

Tr
[
ŜA

z (0)ŜD
y (0)ρ̂(0)

] = i

4
(ρxs − ρsx − ρzy + ρyz). (C.13)
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