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Abstract: We perform extensive simulations of light scattering by a 
granulated sphere in the size and refractive index range of human granulated 
leucocytes using the discrete dipole approximation. We calculate total and 
depolarized side scattering signals as a function of the size and refractive 
indices of cell and granules, and the granule volume fraction. Using typical 
parameters derived from the literature data on granulocyte morphology, we 
show that differences between experimentally measured signals of two 
granulocyte subtypes can be explained solely by the difference in their 
granule sizes. Moreover, the calculated depolarization ratio quantitatively 
agrees with experimental results. We also use the Rayleigh-Debye-Gans 
approximation and its second order extension to derive analytical 
expressions for side scattering signals. These expressions qualitatively 
describe the scaling of signals with varying model parameters obtained by 
rigorous simulations, and even lead to quantitative agreement in some cases. 
Finally, we show and discuss the dependence of extinction efficiency and 
asymmetry parameter on size and volume fraction of granules. 
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1. Introduction 

Simulation of light scattering by homogeneous particles with simple shapes, such as 
spheroids, is relatively easy [1]. Unfortunately, most natural particles are inhomogeneous and 
have a complex shape. A broad class of such particles can be characterized by a matrix with 
multiple inclusions (granules). A number of approximations exist to simulate light scattering 
by these particles which fall in one of two connected realms: effective medium theories 
(EMTs) [2-4] or radiative transfer theories [5]. The latter is especially relevant when an 
infinite medium is considered or granule positions randomly fluctuate with significant 
amplitude during the observation time. 

However, in many cases none of these approximations is accurate enough and rigorous 
light scattering theories are required. The superposition T-matrix method allows simulation of 
light scattering by clusters of spheres [6,7], which is a particular case of a granulated particle 
when the matrix is vacuum. Recently Mishchenko et al. [8] studied clusters of spheres with 
respect to radiative transfer theories. Apart from that, only general methods like the finite 
difference time domain method (FDTD) [9] or the discrete dipole approximation (DDA) [10] 
are capable of simulating light scattering by arbitrarily shaped granulated particles. Most 
researchers who studied granulated particles are concerned with astrophysical or atmospheric 
applications [3,4,8,11], while our main application – light scattering by biological cells – is a 
much less studied field. 

Biological cells, when suspended in liquid, have an important advantage with respect to 
the light scattering simulation. Their relative refractive index is close to unity. This accelerates 
the rigorous methods and improves the accuracy of the EMTs and other approximate theories. 
FDTD simulation of light scattering by biological cells was performed in a number of 
manuscripts by Dunn and coworkers (summarized in [12]). To the best of our knowledge, 
these are the only studies that include cell organelles and granules in rigorous light scattering 
modeling. The main conclusion is that side scattering by biological cells are mainly 
determined by small granules, which agrees with the general notion of flow cytometry [13]. 
However, only the dependence on the volume fraction and not on the size of the granules was 
studied. 

Study of light scattering by granulated biological cells is motivated by several empirical 
techniques that use the dependence of light scattering signals measured by flow cytometer on 
the characteristics of the granules [14-17]. All these techniques are successfully used in 
practice but lack a rigorous theoretical foundation. For instance, production of the inclusion 
bodies consisting of protein synthesized by E. coli cells was found to correlate with forward 
scattering [16,17], which can be qualitatively explained by the increase of total amount of 
matter that scatters light inside the cells. Probably, the most fascinating application of light 
scattering to characterize granulated cells are the results of de Grooth, Terstappen and 
coworkers [14,18,19], who showed that neutrophils and eosinophils can be discriminated by 
their depolarized side scattering intensity I⊥. This result was extended to other species by 
Suzuki and Eguchi [15]. The values for light scattering signals are given in arbitrary units by 
de Grooth et al. [14] and, hence, can be compared to other studies only qualitatively. 
However, the ratios of the signals, which are also provided, can be compared quantitatively to 
predictions of any models, thus providing a stringent test of the latter. 

Granulocytes are the most numerous type of leukocytes, consisting of three subtypes: 
neutrophils, eosinophils, and basophils. Their abundance relative to all leukocytes in normal 
condition is in the ranges 46–73%, 0–4.4%, and 0.2–1.2% respectively [20]. The major role of 
neutrophils is to protect the host against infectious agents. To accomplish this task, the 
neutrophil must first sense infection, migrate to the site of the infecting organism, and then 
destroy the infectious agents [21]. Although rare in healthy individuals, the eosinophil is 
prominent in peripheral blood and tissue in association with various disease conditions 
including allergy, inflammatory responses against metazoan helminthic parasites, and certain 
skin and malignant conditions [22]. 
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In this manuscript we aim at two goals: to get general insight into light scattering by 
index-matching granulated particles much larger than the wavelength and to rigorously 
explain why eosinophils and neutrophils have different I⊥. For that we construct a simple 
model of granulocytes in Section 2, starting from literature data on its morphology. In Section 
3 we specify the total and depolarized side scattering signals measured by flow cytometers. 
We derive analytical expressions for these signals using the Rayleigh-Debye-Gans (RDG) 
approximation and its second-order extension in Sections 4 and 5 respectively. We show the 
results of extensive DDA simulations in Section 6, comparing them with predictions of 
approximate theories and known experimental results. We conclude the manuscript in Section 
7 and discuss perspectives for characterizing granulated particles, specifically granulocytes, 
with light scattering. 

2. Simple granulocyte model and DDA simulations 

Both neutrophils and eosinophils have a size of 10–15 μm as measured in blood smears [21]. 
However Ting-Beall et al. [23] reported that a normal suspended neutrophil has a volume of 
299 ± 64 μm3, which corresponds to a diameter 8.3 ± 0.6 μm (intervals correspond to two 
standard deviations). A similar value for the diameter of mature neutrophils (8.3 ± 1.2 μm) 
was obtained by Brederoo et al. [24] using electron microscopy. For eosinophils a value of 
8 μm has been reported [22]. The nucleus is separated into definite lobes with a very narrow 
filament or strand connecting the lobes. Usually, two or three lobes are observed [22,25,26]. 

Neutrophils contain two major types of granules: azurophilic and specific granules, 
although more minor classes can be specified [24,27,28]. Azurophilic granules are larger and 
more dense than the specific ones, and the ratio of their numbers is 1/2–1/3 [29]. A typical 
size of azurophilic granules is 500 nm, whereas specific granules are either spherical with a 
size of 200 nm (Livesey, et al., [27] reported the range 100–250 nm) or rod shaped 
(130×1000 nm) [30]. On average a cell cross section contains 200–300 granules [30], the total 
number per whole cell is 1900–6300, with a total volume of 30 μm3 [29]. Eosinophils contain 
three major classes of granules: crystalloid, primary, and small granules. Crystalloid granules 
measure 0.5–0.8 μm in diameter [22] (Puppels et al. [26] reported another range: 0.9–1.3 μm) 
and contain crystalline electron-dense cores surrounded by an electron-lucent matrix. There 
are approximately 200 crystalloid granules in each cell [22,26]. Primary granules measure 
0.1–0.5 μm in diameter and are less abundant than crystalloid granules. Small granules are 
even smaller than primary ones [22]. 

We use a granulated sphere as a model for granulocytes (see Fig. 1). The sphere contains 
no nucleus and all the granules are identical and randomly placed inside the cell. Thus, we 
compromise between realistic shapes (cf. [12]) and a general fundamental approach (cf. [8]). 
We are able to study the dependence of light scattering of each of the particle parameters 
independently, and at the same time to quantitatively describe at least the depolarization ratios 
of neutrophils and eosinophils (see Section 6). 

mc
m0

dg
mg

Dc

mc
m0

dg
mg

Dc  
Fig. 1. The granulated sphere model. All granules are identical and randomly positioned. 
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In the following we describe the default parameters of the model. The diameter of the cell 
Dc = 8 μm and volume fraction of granules f = 0.1 correspond to the above data on 
morphology of both neutrophils and eosinophils. Dunn collected information on refractive 
indices of the cell cytoplasm and constituents from several sources [12]. However, the ranges 
are broad, which makes it hard to select a particular value. We set the cytoplasm refractive 
indices, relative to the medium (for which we consider buffered saline m0 = 1.337), to 
mc = 1.015, which corresponds to the values obtained by fitting experimental light scattering 
patterns of lymphocytes by a multi-layered sphere model [31,32]. For the granules we set the 
relative refractive index to the upper limit as if granules consist entirely of proteins, mg = 1.2. 
This choice exaggerates all light scattering effects of granules; however, as we will show, all 
conclusions also are valid for smaller mg. We completely neglect absorption in this study, and 
set the wavelength to that of a 0.66 μm semiconductor laser, which is 0.4936 μm in the 
medium. The main variable is the granule diameter dg, which is varied from 0.075 to 2 μm. 
The lower limit is determined by the size of the dipole in DDA, which was set to 0.041 μm for 
all simulations, corresponding to 12 dipoles per wavelength in the outer medium. Each DDA 
simulation depends on random granule placement, therefore we repeat it 10 times and show 
mean value ± 2×SD (standard deviation) for each simulated value. In addition, we simulated 
the result for effectively dg = 0, by using the Mie theory applied to a homogenous sphere, 
where the refractive index is obtained by Maxwell-Garnett EMT [33]. Since all refractive 
indices are close to unity, the differences between most EMTs are negligible. 

We also varied some of the parameters from their default values. To limit the number of 
DDA simulations and keep the time of this study feasible we varied each parameter with 
others fixed. For each set of parameters a whole range of dg was calculated. We tried four 
additional values of f : 0.02, 0.05, 0.2, and 0.3, two values of Dc: 4 and 14 μm, two of mg: 1.1 
and 1.15, and one of mc = 1, i.e. no cytoplasm at all (actually we used mc = 1.000001 because 
of the limitations of the current code). 

As a numerical implementation of the DDA we have used the ADDA computer code 
v.0.76, which is capable of running on a cluster of computers (parallelizing a single DDA 
computation), allowing simulating light scattering by scatterers much larger than a 
wavelength [34,35]. In this manuscript we use the default ADDA settings for dipole 
polarizability (lattice dispersion relation), iterative method (quasi minimal residual method), 
and convergence threshold (relative residual norm less than 10−5) and employ the built-in 
granule generator. For each particle we calculated Qext, <cosθ >, and the whole Mueller matrix 
for the whole scattering angle with steps of 0.5° and 5° in polar θ and azimuthal ϕ angles 
respectively. Moreover, we refined the grid to 0.5° step in ϕ near the side scattering direction 
to accurately compute the signals described in Section 3. All simulations were run on the 
Dutch compute cluster LISA [36]. Typical simulation time is half an hour on 8 nodes (each 
node has dual Intel Xeon 3.4 GHz processor with 4 GB RAM), but it is about 1.5 hours on 16 
nodes for Dc = 14 μm. 

3. Orthogonal light scattering 

We simulate the side scattering signals exactly as described by de Grooth et al. [14]. The 
incident light propagates along the z-axis and is polarized along the x-axis, and the particle is 
located in the origin. The exact side scattering direction is along the y-axis. A lens focused on 
the particles projects the scattered light on the photodetector; both the lens and the 
photodetector are centered around and orthogonal to the y-axis. A rectangular diaphragm 
placed before the lens limits the collection scattering angles to θ = 90° ± Δθ and ϕ = 90° ± Δϕ. 
The default values are Δθ = Δϕ = 25°. The measured signals are the total side scattering 
intensity collected by the photodetector ISS and the total depolarized intensity I⊥, when a 
polarizer with polarization axis along the z-axis is placed before the photodetector. The 
depolarization ratio is defined as DSS = I⊥/ISS. 
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In the original paper [14] an expression of ISS and I⊥ in terms of the amplitude scattering 
matrix (Si) is derived, however it has a typographical error in one sign. Therefore, we present 
the corrected derivation in the following and also derive an expression in terms of the Mueller 
scattering matrix (Sij). We denote the radius vector of a point on the lens as r, and scattering 
direction n = r/r, which corresponds to scattering angles θ and ϕ. We introduce unity vectors 
e⊥ and e|| orthogonal and parallel to the scattering plane respectively, which are the local basis 
for scattered wave in point r, i.e. {e⊥, e||, n} is a right-handed orthogonal basis (according to 
Bohren and Huffman [33]). These vectors are connected to the basis vectors of a spherical 
coordinate system by e|| = eθ, e⊥ = −eϕ . We assume that incident light has unity amplitude. 
Then two components of the scattered electric field in point r (before the lens) is given by: 

( ) ( ) .
i

sincos,
i

sincos
i

32
sca
||

i

14
sca

kr

e
SSE

kr

e
SSE

krkr

−
+=

−
+=⊥ ϕϕϕϕ  (1)

The lens rotates the propagation vector of the scattered wave from n to ey together with the 
electric field vector. 

We introduce the following auxiliary unity vectors: 
,,||)( 121 enenenee ×=××= yy
 (2)

which form two right-handed orthogonal bases: {e1, e2, n} and {e1, e3, ey}. The mapping of 
scattered electric field in basis {e⊥, e||, n} into the electric field on the detector in basis 
{ez, ex, ey} (components det

zE  and det
xE ) is performed in several steps 
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where Rη(e) denotes the rotation by angle η around the vector e, which changes the 
components of the electric field accordingly. The lens transformation does not change the 
component of the electric field along e1 and directly maps the component along e2 to the 
component along e3. Therefore the components det

zE  and det
xE  can be obtained from sca

⊥E  and 
sca
||E  by rotation of the reference frame by the angle η = η1 + η2: 
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The corresponding angle-resolved total and depolarized intensities, which are sensed by the 
detector, are 
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Using Eqs. (1), (4), and (7) and the definition of the Mueller scattering matrix in terms of the 
amplitude scattering matrix [33] one can obtain: 
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The same result can be obtained using the Mueller matrix formalism. 
The final signals, measured by the detector, are proportional to the intensities integrated 

over the scattering aperture: 
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(10)
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We choose the proportionality coefficient κ = k 2/(4Δθ Δϕ), so that ISS and I⊥ are linear 
combinations of the Mueller matrix elements averaged over the scattering aperture. Moreover, 
in the limit of infinitesimal small aperture, the expressions are especially simple: 

,,0, 221221111211SS SSSSISSI −−+→−→⇒→ΔΔ ⊥ϕθ  (11)

where all Mueller matrix elements are considered at exact side scattering direction. The 
particular value of κ is not relevant since we will always consider either qualitative behavior 
of plots including ISS and I⊥ or relative values. 

Next, we summarize the experimental conclusions of de Grooth, et al. [14], that we will 
explain by rigorous DDA simulations in Section 6. The scatter plot of the sample containing 
eosinophils and neutrophils in I⊥ versus ISS coordinates shows clear discrimination of two 
subtypes. The ISS signals are almost the same, while I⊥ are larger for eosinophils. Moreover, 
there is significant correlation between I⊥ and ISS for both neutrophils and eosinophils. 
Discrimination between two subtypes is the most pronounced using DSS, with mean values of 
0.044 and 0.013 for eosinophils and neutrophils respectively (averaged over a single sample). 
They also showed that DSS is almost constant when Δϕ is decreased at fixed Δθ for both 
granulocyte subtypes. Thus, the depolarization signals of granulocytes are inherent in contrast 
to the aperture depolarization, e.g. of a sphere, which is caused by a finite value of the 
detector aperture around the exact side scattering direction and decreases to zero with 
decreasing Δϕ. 

4. The Rayleigh-Debye-Gans approximation 

Consider our model of a granulated sphere (see Section 2). The position of the granule centers 
relative to the origin, which is placed in the cell center, is given by vectors ri, where i is from 
1 to N, and N is total number of granules. Vc, xc and Vg, xg are the volume and the size 
parameter of the cell and one granule respectively, and the volume fraction of granules is 
given by f = NVg /Vc = N(xg /xc)

3. We assume that granules are randomly positioned inside the 
cell, and they are not allowed to overlap. Furthermore, to simplify our derivations we assume 
that xg << xc. It is important to note that xg can be both small and large compared to unity. We 
formulate the random granule position as: ri is uniformly random inside the sphere with size 
parameter xc − xg. Thus we neglect the boundary effects due to the non-overlapping of 
granules, which are significant only for large f in the layer of width of order of dg from the cell 
boundary. It is important to note that the pair distribution function of granules, which will be 
discussed below, is much more sensitive to the non-overlapping condition than the probability 
distribution function of a single granule position. The incident wave propagates along the z-
axis and the scattering direction n is described by angles θ and ϕ. We consider the scattering 
problem of a particle in vacuum, i.e. we divide all relevant quantities by the refractive index 
of the host medium. 

To understand the dependence of side-scattering intensity on the granule size we consider 
the RDG approximation [33]. We consider the limit of small refractive indices, i.e. |m − 1| << 1 
for both cell cytoplasm and granules. Actually, RDG is strictly valid only when x|m − 1| << 1, 
which, strictly speaking, is not true for our particles. We will see, however, that it is capable 
of describing some features that are obtained by accurate DDA simulations. 

Our goal is to derive simple analytical expression rather than to keep all derivations as 
accurate as possible. We can derive the final RDG result numerically with any required 
accuracy for any particular granule configuration and then perform numerical averaging over 
all possible configurations. This is a laborious task, albeit much faster than the DDA 
simulations. However, such brute-force numerical simulations of RDG-based theory are 
anyway not accurate enough. Therefore, we prefer to additionally sacrifice some accuracy to 
derive analytical expressions, which give added value compared to rigorous DDA simulations. 
This value consists in physical insight into the light scattering problem, e.g. scaling laws, and 
the opportunity for an approximate solution of the inverse light scattering problem. Although 
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we discuss all employed assumptions and approximations, the accuracy of the final 
expressions can only be determined by comparison with the DDA simulations. 

According to the RDG theory, only the diagonal elements of the amplitude scattering 
matrix are nonzero [33]: 
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i
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 (12)

where the particle is divided into N + 1 domains: i = 0 corresponds to the cytoplasm and the 
rest to N granules. mi and Vi are refractive index and volume of each domain. h(V,n) is a form 
factor given by 
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where we have introduced q = k(ez − n). The form factor for a sphere, which center is in the 
origin, can be obtained analytically [33]: 
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where r and x are the radius and the size parameter of a sphere, and there is no dependency on 
the azimuthal angle. The asymptotic behavior of Eq. (14) is: 
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Using the linearity of Eq. (12) in the factor m − 1, we consider separately the spherical 
cytoplasm with factor mc − 1 and superimposed granules with factor mg − mc. Then, Eq. (12) 
can be rewritten as 

[ ],)(),()(),()1(
2
i

)( gsgcgcscc

3

1 NxhVmmxhVm
k

S ξθθ
π

−+−−=n  (16)

where ξ(N) holds all the dependency on granule positions: 
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Averaging of ξ(N) over all possible granule positions is performed independently for each 
element of the sum leading to the same integral as the one in Eq. (13), therefore 
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The second moment of the absolute value of ξ(N) is given by: 
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Now we consider a particular case by assuming that ri and rj are independent. In other words, 
we neglect the effect of the non-overlapping condition on the statistical properties of granule 
positions. This is only valid for sufficiently small volume fractions ( 1<<f ). Then 
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Using Eqs. (18) and (20) one can obtain 
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Equation (21) is obtained under the assumptions xg << xc and 1<<f  (and the RDG 
approximation itself). In particular, if the limit xg → 0 and N → ∞ is taken, keeping f constant, 
then 
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which is exactly an RDG result for a homogeneous sphere with effective refractive index me. 
the expression for me can be considered as a simplified Maxwell-Garnett EMT in the limit of 
both mg and mc being close to unity. If we consider typical parameters of our problem: 
mc = 1.015, mg = 1.2, λ = 0.4936 μm, Dc = 8 μm, then even for the smallest xg and f that we 
simulated (xg = 0.48 ⇔ dg = 75 nm, f = 0.02) the first term in Eq. (21) (the one that is 
independent of N) is about an order of magnitude smaller than the second. Therefore, we may 
completely neglect the cytoplasm except for its total volume and the effect it has on the 
refractive index of the granules. By that we introduce an assumption xc >> 1, and use it for a 
new evaluation of Eqs. (18) and (19) discarding the condition 1<<f . Granules are uniformly 
distributed inside a large volume with volume fraction f, without overlapping. Taking the limit 
of infinitely large volume (N → ∞, f = const) and finite θ (θ ∼ 1), that is equivalent to a model 
of a hard spheres liquid, for which it is known that [37,38] 
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Sf is a structure factor, for which an explicit albeit cumbersome expression is known [37]: 
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.Employing the assumptions discussed above together with Eqs. (16), (23) one may obtain 
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Derivation of Eq. (26) under the assumption xc >> 1 is similar to that performed in §3.3 of [39]. 
The final quantity of interest is the total side scattering intensity [cf. Eqs. (8) and (10)]: 
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where Eq. (12) was used. Since averaging and integration can be interchanged, 
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Using Eq. (26), this integral can be computed numerically for any set of parameters. It is 
interesting to analyze the scaling of RDG results. For that we rewrite Eq. (28) as 
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where hSS(x,f ) is the following function: 
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First, we analyze the scaling behavior of gf (v). One may show that 
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and finally: 
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where constants ap
2,1C  are determined by the aperture angles Δθ and Δϕ. ap

2C  also weakly 

depends on x, but this is ignored in this discussion. 

5. The second-order Born approximation 

To theoretically approach the depolarized intensity we employ the second order of the RDG 
or, more precisely, the second-order Born (2-Born) approximation. We use the same 
definitions as given in Section 4, and the same philosophy of preferring simplicity to the best 
possible accuracy. The internal field inside the scatterer is a sum of two orders (see e.g. [10]): 
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where Einc(r) and E(r) are the incident and total electric field, χ(r) = (m2(r) − 1)/4π is the 
susceptibility of the medium, V0 is an infinitesimally small spherical exclusion volume around 
r. ),( rrG ′  is the free space dyadic Green’s function, defined as 
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where I  is the identity dyadic, k = ω/c is the free space wave vector, R = r − r′, R = |R|, and 

RR ˆˆ  is a dyadic defined as νμμν RRRR =ˆˆ  (μ and ν denote Cartesian coordinates). 

Most of the scattering quantities can be obtained from the scattering amplitude [33]: 
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To simplify our derivations we consider the depolarized intensity )0(
⊥I  for zero aperture 

(Δθ = Δϕ = 0°), i.e. we study only the intrinsic part, which is not caused by the finite value of 
the aperture. Then 
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while S3(ey) = Fz(ey) for the incident field equal to 

).iexp()(inc
zx krerE =  (38)

It is easy to show that both E(1)(r) and the last term in Eq. (34) results in zero contribution to 
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S3(ey), from which it follows that 
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Like in the RDG derivations, we divide the scatterer into the whole volume Vc with 
susceptibility χc and superimposed granules with total volume Vgrs and susceptibility χg − χc). 
The integral in Eq. (39) is decomposed into four parts: a double integral over Vc, a double 
integral over Vgrs and two cross-terms (over Vc and Vgrs). The first term is just a second-order 
Born approximation for a homogenous sphere, which identically equals zero because of 
symmetry (S3 is always zero for a sphere). The cross-terms are very similar and they both can 
be thought of as RDG scattering by Vgrs for an incident field produced by the RDG applied to 
Vc. One can show that the RDG applied to an index-matching homogenous sphere much larger 
than the wavelength produces an internal field parallel to the incident one, except at a distance 
of order of wavelength from the boundary. The x-component of the internal field does not 
contribute to the depolarization at exact side scattering direction. Therefore, the relative 
contribution of the cross-terms in Eq. (39) is at least an order of (mc − 1)/[ fxc(mg − mc)] 
smaller than the remaining granule-granule interaction, and can be neglected. Moreover, 
interaction of a granule with itself results in identically zero polarization. Hence, 
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Averaging Eq. (37) over all possible sets of granule positions results in 
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where ∗ denotes complex conjugate, Rij = rj − ri, and integration is performed over a granule 
positioned in the origin. If all four indices: i, j, i′, and j′ are different then Rij and Ri′j′ are 
independent. We assume that Rij and Rij′ ( j ≠ j′) are also independent; by that we neglect the 
triple correlations. In case arguments of two Green’s tensors in Eq. (41) are independent, they 
can be averaged independently. The result is then zero because changing sign of the x 
component of Rij inverts the sign of Gzx(Rij) while not affecting any of the exponents in 
Eq. (41). Therefore, we need to consider only the terms with either (1) i = i′ and j = j′ or (2) 
i = j′ and j = i′. All the instantiations of (1) are equivalent, and so are the instantiations of (2). 
Therefore, 
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where N >> 1 is assumed. 
To keep the derivations analytical in calculation of H(Rij) we assume that Rij >> dg. 

However, the following derivation is expected to be approximately correct also for small Rij, 
resulting in the correct scaling laws but with different constants. Employing the assumption of 
distant granules we obtain 
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where gs(u) is defined by Eq. (15) and n = R/R is a unit direction vector. Using Eq. (44) and 
the fact that 
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Eq. (42) can be rewritten as 
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where P(R) is a radial distribution function of relative granule positions, defined so that 

∫ = 1)(d RPR , and hΩ is the following result of averaging over the whole solid angle, since all 

n are equiprobable, 
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The exponent in Eq. (42) was replaced by a cosine function because the imaginary part of hΩ 
is zero due to the symmetry properties of the integrand. 

It is easy to show that P(R) for point granules in a sphere of diameter Dc is given by 
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independent of f. Taking into account a finite size of granules, which is assumed much smaller 
than Dc, modifies P(R) only for R close to 0 and Dc. Moreover, we neglect the boundary 
effects for large R, because the contribution to the integral in Eq. (46) from a small interval 
near Dc, which has width of order dg, is relatively small. The correction for small R can be 
obtained in the limit of infinitely large Dc, i.e. considering a granulated sphere as an infinite 
hard sphere liquid (xc >> 1 and xc >> xg). The structure factor given by Eq. (24) is basically a 
Fourier transform of P(R) [37], hence P(R) can be obtained by the inverse Fourier transform 
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This integral cannot be computed in closed analytical form. Therefore, we expand Sf (q) in 
series of f and leave only terms up to the second order, since higher orders anyway cannot be 
computed accurately without consideration of triple- and higher scattering orders. After that 
one may obtain the final result for P(R): 
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(50)

Using Eqs. (45), (47), and (50), the integral in Eq. (46) can be computed; however, it is 
still cumbersome. To simplify, we notice that hΩ only weakly depends on R, while different 
parts of hG(R) exhibit very different scaling with respect to R [cf. Eq. (45)]. The first two 
terms increase when R → 0 [after multiplication by P(R)], and the integral is determined by a 
small interval of R, up to several dg. On the contrary, the third part of hG(R) has a smooth 
behavior, and it’s integral is determined by the whole range of R. In particular, when 
evaluating the integral of the third part of hG(R) the cosine term in hΩ can be neglected, since 
for kR >> 1, which is valid for most of the R range, the contribution of this term is negligible 
compared to the unity addend. We denote the resulting hΩ as hΩ(x,∞), and one may show that 
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Contribution of the third part of hG(R) to the integral in Eq. (46) is 
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Next we calculate the contribution of the first two parts of hG(R). As we will show below, 
this contribution is significant only for small xg. Therefore, we expand hΩ(xg,R) in series of xg, 
similar to Eq. (51), assuming kR = O(xg): 
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Using Eqs. (50), (54) we obtain 
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(55)

It is important to note, that Eq. (55) is not completely accurate, because it is determined by 
R ∼ dg, for which derivation of Eq. (44) is not accurate. Comparing Eq. (55) to Eqs. (53) and 
(51) one can see that the contribution of the third part of hG(R) is negligible for very small xg 
but becomes dominating, compared to other parts, for xg larger than a few times 31

c
−x . This 

conclusion can be derived rigorously for the whole range of xg, using Eq. (52) instead of 
Eq. (54) for evaluation of the integral in Eq. (55). Physically speaking, for very small granules 
the depolarized intensity is determined by the short-range interaction of granules that happen 
to be close to each other. Starting from 31-

cg ~ xx  the main contribution is from the long-range 
interaction of all granules. Therefore, we may use Eq. (55) for xg up to some arbitrary chosen 
constant of order less than unity (we choose it to be unity), and set its contribution to zero for 
larger xg. Fortunately, this exactly corresponds to the assumptions that were used in obtaining 
Eq. (55). The final result for depolarization intensity is 
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Using Eqs. (29) and (56) one may derive the scaling behavior of depolarization ratio: 
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Although our derivations do predict O( f 2) corrections of DSS for small xg, this correction is 
not accurate because of higher-order scattering effects which are of the same order. The factor 

)ln(O g
1

g xx−  is almost constant for a range of large xg that we studied, so we may consider 

both limiting values of DSS to be independent of xg. Hence, our approximate derivations based 
on the RDG and the 2-Born predicts the step-wise behavior of DSS(xg). 

The 2-Born also can be used to refine the RDG results for ISS. Although this definitely 
improves the accuracy, it also makes the final result significantly more complex. Derivation 
for the exact side scattering direction is more cumbersome than that for I⊥, because less terms 
in intermediate equations cancel out. Averaging over the side scattering aperture also does not 
seem feasible in closed form. Therefore this refinement contradicts our philosophy for 
approximate theories and we do not pursue it further. 
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6. Results and discussion 

The results of DDA simulations of side scattering by granulated spheres with the default set of 
parameters and varying granule diameter is shown in Fig. 2. For each dg mean values of ISS 
and I⊥ and error bars corresponding to two SDs are shown. Labels near some of the points 
indicate the values of dg. One can see that there are two ranges of dg: from 0.1 to 0.25 μm and 
from 0.4 to 2 μm, which correspond to distinct regions in Fig. 2. The range from 0.25 to 
0.4 μm is intermediate, where ISS and I⊥ strongly albeit differently depend on dg. The two 
regions in Fig. 2 qualitatively correspond to the neutrophils and eosinophils on the plots by de 
Grooth et al. [14]. Considering the morphological characteristics of neutrophil and eosinophils 
granules, the difference in depolarized side scattering can be explained solely by the 
difference in dg. However, it is important to note, that direct comparison cannot be performed 
because the model is a significant simplification of the granulocyte morphology. Apart from 
neglecting a nucleus, it assumes the same size for all granules, while granule population of a 
real granulocyte is always heterogeneous both in size and refractive index. 

The results for several volume fractions are shown in Fig. 3, separately for ISS, I⊥, and their 
ratios. One may note that EMT result (dg = 0) for DSS seems to be different from the limiting 
value of the DDA simulations [Fig. 3(c)]. This is explained by the fact that both ISS and I⊥ are 
mostly determined by the granules even for the smallest dg = 0.075 μm that we tried. 
However, for much smaller granules the signals are those of the homogeneous sphere, which 
has a different depolarization mechanism (see Fig. 5 and Section 5). Therefore, both ISS and I⊥ 
decrease monotonically with dg, while DSS “switches” from the limiting value of small 
granules to that of a homogeneous sphere, which are naturally different. 

Apart from this feature, the general behavior of ISS, I⊥, and DSS versus dg, is similar to that 
predicted by Eqs. (29), (56), and (58): both ISS and I⊥ rapidly increase with dg for small dg and 
relatively slowly decay for larger dg. DSS behaves in a step-like manner, switching from a 
plateau for small dg to another one for larger dg. We include the literature data on average 
values of DSS for neutrophils and eosinophils [14] in Fig. 3(c). One can see that neutrophils 
approximately correspond to small dg limit for f = 0.1, while eosinophils have the DSS values 
between the large and small dg limits for the same f. The latter can be explained by the fact 
that eosinophils have large (> 0.4 μm), small (< 0.25 μm), and intermediate granules, and 
f = 0.1 is their typical total volume fraction. It is important to note, that this explanation is 
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Fig. 2. Depolarized versus total side scattering intensities for several granule diameters from 
0 to 2 μm, indicated for some points by labels, for the default set of parameters (see text). 
Mean values ± 2×SD are shown. 
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only qualitative, because light scattering signals for a cell with granules of different sizes 
cannot be obtained by averaging of results for different cells with identical granules. The 
quantitative comparison between the DDA simulations and experimental results for DSS is 
further hindered by the uncertainty of mg. 

To show the dependence of side scattering signals on f we plot I⊥ versus ISS in Fig. 4, 
normalizing them by f 2 and f respectively [cf. Eqs. (29) and (56)]. We omit error bars in 
Figs. 4−7 for clarity. In all cases they are similar to those depicted in Figs. 2 and 3. The only 
exception is Fig. 5, for which SD significantly increase with decreasing Δϕ (data not shown). 
This increase is natural considering the oscillating dependence of all Mueller matrix elements 
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Fig. 3. (a). Total and (b) depolarized side scattering intensity and (c) their ratio versus 
granule diameter for several volume fractions. Other parameters are set to default values 
(see text). Mean values ± 2×SD are shown. Experimental results for mean values of DSS of 
neutrophils and eosinophils are shown in (c) for comparison. 
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on both θ and ϕ. Analyzing Figs. 3 and 4, one can see that the scaling of I⊥ and ISS with f is 
slower than f 2 and f respectively, i.e. the corrections of higher order in f are important. 
Although our derivations do provide such corrections they are not expected to be accurate and 
therefore are not further discussed (see Sections 4 and 5). One also can see that the slope of 
the curves in Fig. 4 is almost independent on f for small dg, hence DSS is proportional to f in 
this regime. This scaling law holds with much better accuracy than that for either I⊥ or ISS. 

We show the results of varying the aperture in Fig. 5. We keep Δθ  fixed and vary Δϕ from 
0° to 25°. The depolarization ratio does depends on Δϕ over the whole range of dg, however 
this dependence is uniform in the sense, that variation of Δϕ do not change the general 
behavior of DSS versus dg. In other words, the aperture part of the depolarization of the 
granulated sphere is significant, especially for large dg, however it is always less than the 
inherent part. There is one natural exception to the above conclusion – the EMT result for 
dg = 0, which scales approximately as Δϕ 2 [14]. 

A plot of I⊥ versus ISS for several Dc is shown in Fig. 6, normalized by 4
cD  and 3

cD  
respectively [cf. Eqs. (29) and (56)]. One may see that plots almost coincide for small dg and 
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Fig. 4. Same as Fig. 2 but for several volume fractions. I⊥ and ISS are normalized by f 2 and f 
respectively to the case f = 0.1. 
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Fig. 5. Mean values of depolarization ratio versus granule diameter for several sizes of 
azimuthal angle aperture. Other parameters, including Δθ, are set to default values (see 
text). An inset shows the magnified region near the origin. 
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come close to each other for large dg. That means that the simple scaling derived from the 
approximate theories works satisfactory. Moreover, this scaling law is even more accurate for 
DSS. The results for several mg and mc, shown in Fig. 7, lead to analogous conclusions: scaling 
described by approximate theories works well, especially for DSS, except for the “resonance” 
intermediate region of dg. In particular, this scaling can be used to estimate the effect of 
uncertainty in mg and mc on the final simulated results. 

All the results above are for several side scattering signals. In Fig. 8 results for other 
scattering quantities are shown, namely Qext and <cosθ >. One can see that these quantities 
only moderately depend on a particular granule placement, as indicated by relatively small 
SDs. However, they non-trivially depend on both dg and f. For small dg, Qext is close to that of 
a homogeneous sphere with EMT refractive index, which linearly depends on f. Since 
dependence of Qext of a sphere on m is oscillating, so is the dependence of Qext of a granulated 
sphere on f for small dg. For large dg overall extinction by granules is less dependent on each 
other, therefore Qext increases with f for constant dg (if f = 0, Qext = 1.04). In intermediate 
region of dg Qext smoothly changes from one limiting value to another. The asymmetry 
parameter can be thought of as another measure of side scattering intensity. And one can see 
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Fig. 6. Same as Fig. 2 but for several cell diameters. I⊥ and ISS values are normalized by   
4
cD  and 3

cD  respectively to the case Dc = 8 μm. 
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that 1 − <cosθ > do correlate with ISS when varying both dg and f [cf. Figs. 3(a) and 8(b)]. 
However, the dependence of <cosθ > on dg has more oscillations (maxima and minima) than 
that of ISS. Although some of the features of Fig. 8 are easy to understand, it does not seem 
feasible to completely describe this Fig. by any simple approximate theory. 

We do not discuss other scattering quantities, e.g. angle-resolved Mueller matrix elements, 
in this manuscript, because it is hard to choose any of universal interest. Any particular 
application needs its own combination of Mueller matrix elements and range of scattering 
angles. 

As we have seen above, RDG and 2-Born adequately describe the scaling of the side 
scattering signals. It is much more enlightening to perform a quantitative comparison of these 
approximate theories with DDA results. We present an example of such comparison in Fig. 9 
for the default parameters of the DDA simulations (see Section 2). RDG results are shown for 
three volume fractions f = 0.02, 0.05, and 0.1, while 2-Born only for the default one ( f = 0.1). 
One can see that RDG is an accurate approximation for small f, especially for small xg. 
However, it systematically underestimates ISS

 for larger f. This discrepancy is due to multiple 
scattering effects which are significant for larger f and are completely ignored in the 
framework of RDG. The RDG also has some more pronounced limitations, for example, the 
RDG result for Qext do not depend on xg but only on f, contrary to the DDA simulations [see 
Fig. 8(a)]. Probably, RDG is more accurate for <cosθ >, but it cannot be accurately calculated 
in the framework described in Section 4 because of the employed assumption of not small θ. 

It is important to note that 2-Born results shown in Fig. 9(b) [Eq. (56)] are obtained for 
zero scattering aperture, while DDA results are for Δθ = Δϕ = 25°. We do not use DDA 
results for zero aperture because their standard deviations are larger than the values 
themselves. Since we calculated only 10 different realizations of granule positions for each xg, 
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the errors of mean value are also large. One can see that the agreement between the 2-Born 
and the DDA is good, especially up to the first maximum. For larger xg the 2-Born 
systematically underestimates the depolarized intensity, which is due to the neglect of higher-
order scattering and the fact that even a single large granule is treated inaccurately in the 
framework of 2-Born. 

7. Conclusion 

We performed extensive DDA simulations of light scattering by a granulated sphere. We 
calculated total and depolarized side scattering intensity (ISS and I⊥) varying parameters of the 
model: granule diameter dg, volume fraction f, and refractive index mg, cytoplasm diameter 
and refractive index and size of the side scattering aperture. Parameters used correspond to the 
literature data on granulocyte morphology. The general appearance of the maps ISS versus I⊥ 
for several dg is the same for different values of other model parameters: two segments with 
high correlation between ISS and I⊥ for small and large dg and a connecting region for a narrow 
range of dg. Both ISS and I⊥ increase with dg for small dg, have a maximum at dg approximately 
equal to the wavelength λ, and slowly decay afterwards. Depolarization ratio DSS behaves in a 
step-wise manner, having almost constant value for small dg and a larger constant value for 
larger dg. 

Analytical expressions, obtained in the framework of the Rayleigh-Debye-Gans and 
second-order Born approximations, describe these results qualitatively well. Moreover, these 
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Fig. 9. Comparison of DDA results (mean ± 2×SD) and mean values obtained (a) by the 
RDG for total- and (b) by second-order Born approximation for depolarized side scattering 
intensity. Typical parameters were used (described in the text) and for RDG – several values 
of f. Axes corresponding to both xg and dg are shown for convenience. 

#88472 - $15.00 USD Received 10 Oct 2007; revised 12 Nov 2007; accepted 12 Nov 2007; published 29 Nov 2007

(C) 2007 OSA 10 December 2007 / Vol. 15,  No. 25 / OPTICS EXPRESS  16579



expressions quantitatively agree with rigorous DDA simulations for small dg and f. In addition 
to being extremely fast, these approximate theories give an insight into the light scattering 
phenomena. In particular, depolarization of granulated sphere is determined by short-range 
interaction between nearby granules for very small dg, while for dg of order λ and larger it is 
determined by long-range interactions of all granules. Although, analytical expressions are not 
accurate enough in many cases, they can be used to construct approximate inversion 
techniques, which goal is to deduce information about granules from light scattering signals. 

We showed that differences between experimentally measured signals of neutrophils and 
eosinophils [14] can be described solely by the difference in their granule sizes, which agrees 
with previous phenomenological descriptions of this phenomena. Moreover, calculated DSS 
quantitatively agrees with experimental results. However, the quantitative comparison is 
hindered by the uncertainty of mg. Finally, as an example of other scattering quantities we 
showed and discussed the dependence of extinction efficiency and asymmetry parameter on f 
and dg. They can also be used to approach the inverse problem. 
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