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An analytical formula for the correction factor which is to multiply the classical expression for the
nucleation rate to account the translation and rotation of the critical nucleus is proposed. The
formula is based on the Reiss approach considering the contribution from the clusters translational
degrees of freedom, Frenkel’s kinetic theory of liquids, and Kusaka’s theory. Using this formula we
determined the correction factor for argon vapor-to-liquid phase nucleation for the temperature
range 80–110 K. These evaluations are in a good agreement with the correction factor calculated
numerically by Kusaka �2006�. Basing on the Gibbs theory of capillarity it is also shown that for the
case of ideal gas-to-liquid nucleation the exponent in the classical formula for the rate of nucleation
is strictly equal to the reversible work of drop formation. © 2009 American Institute of Physics.
�doi:10.1063/1.3258643�

I. INTRODUCTION

In the theory of nucleation from the vapor phase it is
important to know the equilibrium cluster size distribution.
On the other hand, the nucleation rate is proportional to the
concentration of critical nuclei. This concentration is, in turn,
related to the reversible work of formation of the critical
cluster �nucleus�. More than half a century ago Frenkel1 and
then Kuhrt2,3 noted that the contribution to the free energy of
the critical nucleus from the translational and rotational de-
grees of freedom should be accounted when calculating the
cluster size distribution. Due to this contribution the so-
called free energy correction factor arises in the formula for
the nucleation rate. Lothe and Pound4 estimated �within the
framework of the Gibbs imaginary process of drop forma-
tion� the translational-rotational contribution to the free en-
ergy of critical nucleus which gave the correction factor of
about 1017. Reiss and co-workers5,6 argued that the Lothe
and Pound correction factor was exaggerated too much due
to the neglect of the fluctuation of the center of mass of the
nucleus and a new correction was proposed to be a factor of
103–106. Later on Reiss et al.7 developed another approach
which gave the correction factor for water of about 104. Par-
tially the discrepancy between the Reiss correction and that
of Lothe and Pound is related to different interpretations of
the classical formula for the reversible work of formation of
the critical nucleus8 and not only to the different level of
mathematical rigor. Recently Kusaka8 derived a rigorous for-
mula for the correction factor within the framework of the
Gibbs process of drop formation and calculated numerically
this factor for the Lennard-Jones system. The calculated val-
ues ranged from 109 to 1013 which were considerably higher
than the Reiss correction factor and less essentially than the
Lothe–Pound one.

The numerical calculation is probably the most direct
way to determine the correction factor. However, the calcu-
lations of this kind are only possible for simple systems and,
therefore, an analytical expression for the correction factor
applicable to a wide range of real systems is still necessary.
In this paper we propose such an analytical formula and
evaluate the correction factor for the Lennard-Jones system
to compare with Kusaka’s numerical simulation results.8

II. TRANSLATIONAL-ROTATIONAL CONTRIBUTIONS
TO THE CLUSTER FREE ENERGY

Frenkel1 was the first to point out that the translational
and rotational degrees of freedom should be accounted when
evaluating the partition function of the cluster �drop�. To de-
termine the equilibrium cluster size distribution, Frenkel
considered an ensemble of clusters as an ideal gas mixture.
In this case a statistical mechanical analysis gives1,7

Nn = �N1

q1
�n

qn = qne�vn/kBT, �1�

where Nn is the equilibrium number of n-sized clusters �con-
sisting of n monomeric molecules�, N1 is the number of
monomers in the vapor, q1 and qn are the partition functions
within the canonical ensemble for monomer and n-mer, re-
spectively, �v is the chemical potential for the vapor mol-
ecules, kB is the Boltzmann constant, and T is the absolute
temperature of the system. The right Eq. �1� follows upon
recognition of the standard form for the chemical potential of
an ideal gas.7

The partition function of the n-sized cluster may be writ-
ten as1a�Electronic mail: onischuk@ns.kinetics.nsc.ru.
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qn = �
i

e−Hni/kBT = e−fn/kBT, �2�

where the index i numerates the stationary states of the clus-
ter, Hni is the energy of the ith state of the cluster, and fn is
the cluster Helmholtz free energy. According to Frenkel’s
model,1 the cluster energy Hni can be presented as the sum of
translational, rotational, vibrational energies and the potential
energy of the molecule interaction. All the clusters have one
and the same structure corresponding to the minimum poten-
tial energy Un. Thus, the cluster partition function may be
written in the following form:

qn = QtrQrotQ3n−6,ve−Un/kBT �3�

where Qtr and Qrot are the translational and the rotational
partition functions, respectively, Q3n−6,v is the partition func-
tion for 3n−6 vibrational degrees of freedom �six degrees of
freedom are deactivated because three translational and three
rotational degrees of freedom are energized�.

Equation �3� is written on the assumption that the cluster
is solid. The last statement needs clarification. According to
Frenkel,1 the properties of liquid are akin to these of gases at
high temperatures �near the critical point� and high specific
volumes and rather similar to the properties of solids at low
temperature and low specific volumes. The character of the
thermal motion at low temperature in the liquid state �at least
near the melting point� is about the same as in the solid state
�i.e., small amplitude vibrations of molecules about the equi-
librium positions�. The last statement follows from the fact
that the short-range order in the liquid state is about the same
as in the solid one as well as from the low value of the
melting enthalpy and small change in the specific volume
and the heat capacity during the melting.

Following Debye’s method in the theory of heat capacity
of solids based on an approximate model of elastic, isotropic
�i.e., amorphous� solids, Frenkel proposed a theory of the
heat capacity of simple liquids for the temperatures near the
melting point. He assumed that there was no qualitative dif-
ference between these liquids and the amorphous solids
�overcooled liquid�. According to Frenkel, the quantitative
difference between ordinary liquids and amorphous solids is
in a relatively short Maxwell relaxation time for liquids as
compared to that for solids. The Maxwell relaxation time
�M =� /G, is the time which is necessary for the relaxation of
the elastic shear stress �� is the coefficient of dynamic vis-
cosity, G is the shear modulus�.

For the ordinary temperature range Frenkel’s
estimations1 have shown that the Maxwell relaxation time �M

is approximately equal to the time � of residence of particles
in the temporary equilibrium positions �about which the har-
monic oscillations occur�:

� = �0 exp� W0

kBT
� , �4�

where �0 is the period of harmonic oscillations, and W0 is the
free energy barrier for a molecule to overcome when jump-
ing from one local minimum of potential energy to another.
The activation energy can be evaluated approximately as1

W0 � 5kBTm, �5�

where Tm is the melting temperature. For the temperatures
near the melting point the combination of Eqs. �4� and �5�
gives

�M 	 � 	 100�0. �6�

It follows from the Debye theory that the thermal motion
of the system of elastically bound particles can be considered
as a superposition of longitudinal and transverse waves with
the wavelength to be in the range from the size of the body
��max	L� to the distance 2r between the particles ��min

	2r� �Ref. 1� �r is the radius of particles�. Thus, the vibra-
tional spectrum is limited between the Debye frequency9

��max�,

�max 	
u

�min
	

u

2r
, �7�

and the minimum frequency,1

�min 	
u

�max
	

u

L
, �8�

where u is the sound velocity.
Frenkel’s theory accounts the contribution to the vibra-

tional partition function from the whole spectrum of longitu-
dinal waves. As to the transverse waves, this theory is able to
account the contribution only from the high frequencies
which satisfy the inequality,

��M � 1. �9�

The problem is that the transverse waves with frequencies
less than 1 /�M are not able to propagate due to quick damp-
ing. The low frequency transversal vibrations are to be sub-
stituted by the motion of another kind. However, in the case
of equilibrium cluster size distribution, small drops with the
size L less than 10r dominate. Hence, the inequality Eq. �9�
is correct for the whole spectrum of frequencies. Indeed,
from Eqs. �7� and �8� for the drops with the size L	10r we
have �min	�max /5. Then, taking into account that the Debye
frequency1 �max	�0

−1, one gets from Eq. �6�

��M � �min �M 	 �max �M/5 	 20 � 1. �10�

The validity of the inequality Eq. �9� for the whole vi-
brational spectrum of a small cluster means that the cluster
can be regarded as an amorphous solid. In this case Debye’s
theory can be applied to calculate the “internal” �vibrational�
partition function and, hence, we can use formula �3� to cal-
culate the full cluster partition function.

For the ordinary temperatures the vibrational partition
function can be written as

Q3n−6,v = 

�=1

3n−6
kBT

h��

= � kBT

h�m
�3n−6

= �Qv�3n−6, �11�

where the product is made for all the 3n−6 frequencies �� of
normal vibrations of the cluster, ��min	��	�max�, which are
numerated by the index �, �m is the mean geometric fre-
quency ln �m=1 /3n−6��=1

3n−6ln ��, and Qv is the partition
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function for the oscillator with the frequency �m. Using
Eq. �11� one can rewrite Eq. �3� as

qn =
QtrQrot

�Qv�6 Q3n,ve−Un/kBT, �12�

or

qn =
QtrQrot

�Qv�6 qn
rest, �13�

where qn
rest is the partition function for the cluster at rest,

qn
rest = Q3n,ve−Un/kBT = e−fn

rest/kBT, �14�

fn
rest is the Helmholtz free energy for the cluster at rest. Ac-

cording to the simple Frenkel model the free energy fn
rest is

assumed to be given by1

fn
rest = f0n + 
n2/3, �15�

where f0 is the Helmholtz free energy per one molecule in
the bulk liquid phase, and 
 is a constant proportional to the
surface tension of the flat interface. We refer to the factor
QtrQrot / �Qv�6 in Eq. �13� as the Frenkel factor. Equation �15�
is the basis of the classical nucleation theory �CNT�. In the
framework of CNT the embryo of the nucleating phase is
regarded as a spherical incompressible liquid drop fixed in
the space; the density of the drop is considered as homoge-
neous and equal to that of the bulk liquid. This drop has a
sharply defined interface with the surrounding metastable
mother phase which, in the case of vapor, is regarded as an
ideal gas; the surface tension of the critical nucleus is re-
garded as equal to that for the flat interface �“capillarity ap-
proximation”�.

Using instead of Eq. �15� a similar formula for the Gibbs
free energy,

gn = �ln + 
n2/3, �16�

where �l is the chemical potential of a molecule, as if it was
part of a bulk liquid at the pressure P outside of the drop,
Frenkel derived a formula for the cluster �drop� equilibrium
size distribution. This distribution proves to be1

Nn = N1 exp�−
1

kBT
�gn − �vn�� . �17�

The rate of nucleation is proportional to the number Nn� of
the critical nuclei1,8,10 �where n� is the number of molecules
in the critical nucleus�. Under the CNT approximation the
factor �gn−n�v� for the critical nucleus is equal to one-third
of the surface free energy.1 Note, in the rigorous Gibbs
theory of interface,11 one-third of the surface free energy is
equal to the work W of formation of the critical nucleus.
Thus, CNT is in a formal conformity with the rigorous Gibbs
theory.

Frenkel failed to find the connection between the size
distributions Eqs. �1� and �17�. To do this, Lothe and Pound
considered an imaginary process �devised by Gibbs�, in
which a cluster embedded in the bulk liquid is transferred to
the vapor phase.

In the Gibbs theory of interface W is governed by11

W = − VS�Pl − P� + �sAS, �18�

where Pl is the pressure of the reference bulk liquid having
the same temperature and chemical potential as the vapor, AS

is the area of the surface of tension, which is assumed to be
spherical, VS is the volume enclosed by this surface, and �s is
the surface tension. To make the meaning of Eq. �18� clearer,
Gibbs introduced an imaginary process consisting of two
separate stages. Let us consider this process in a nutshell.
Initially the system consists of the bulk liquid reference
phase �at pressure Pl� and the bulk vapor phase �at pressure
P�. Due to the pressure difference the reference phase is
surrounded by an elastic envelope. However, it is assumed
that the envelope is transmittable for the gas molecules. First,
some numbers of molecules from the vapor are transferred to
the bulk liquid. The volume of the reference phase increases
by VS due to this transfer but the surface area is kept con-
stant. During this stage the benefit of work is �Pl− P�VS. In
the next stage an aperture in the envelope opens and then
closes so that a volume VS of the liquid phase is extruded
outside and the envelope intrudes inside to decrease the vol-
ume by the same magnitude VS. The total work made at the
second stage is �sAS. This work includes different compo-
nents. For instance, during the extrusion the drop loses the
interaction with the bulk liquid; therefore, �sAS contains the
energy of this interaction. �sAS includes also the work of
structural relaxation of the extruded drop and the adsorption
of gas molecules to its surface.

In the Gibbs thought process no account is taken of the
translational and rotational degrees of freedom of the cluster,
either in the bulk liquid or in the vapor. Lothe and Pound4

suggested accounting the difference in free energy associated
with these degrees of freedom. They added to W the transla-
tional and rotational free energies of the cluster in the gas
phase and subtracted the entropy contribution to free energy
associated with the vibrational translation and rotation of the
embedded cluster with the relative positions of the molecules
in the cluster held fixed. The partition function correspond-
ing to those vibrational modes of fluctuation, qrep, is called
the replacement partition function, since these modes are re-
placed by the free translation and free rotation in the vapor
phase. The above procedure results in the Lothe–Pound
factor,8

�LP =
QtrQrot

qrep
=

Qtr

Qtr
l

Qrot

Qrot
l , �19�

where

qrep = Qtr
l Qrot

l , �20�

Qtr
l is the partition function of vibrational translations of the

embedded cluster, and Qrot
l is the partition function of vibra-

tional rotations around the center of mass of the cluster.
The factor �LP is to substitute the Frenkel factor in Eq.

�13�. As to the nucleation rate, it is to be multiplied to the
free energy correction factor �LP /N1 �the appearance of the
denominator N1 will be discussed later�. One should note that
it is assumed in the Lothe and Pound theory that Eq. �20�
refers to the absolutely incompressible cluster because the
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relative coordinates of the n molecules in the cluster are
fixed. Strictly speaking this assumption is not valid and can
be considered only as an approximation even in the case of
solid cluster �because solids are also compressible�.

Approximating qrep by exp�s /kB� �where s	5kB is the
entropy of a single molecule in the bulk liquid� Lothe and
Pound estimated the magnitude of �LP /N1 to be 1017 for the
water cluster containing about 100 molecules.4 A correction
factor this large appeared excessively large to many because
the real discrepancy between the experimental measurements
of nucleation rate and the classical theory predictions was
not so high. Thus, a serious controversy developed since the
beginning of Lothe–Pound theory. Reiss and co-workers in-
troduced the concept of the so-called stationary cluster.5,6,10

The partition function of the stationary cluster is given by

qn
st =

1


3nn!



rn�Vst
drne−Un/kBT, �21�

where n particles are all confined to some volume Vst, which
in turn is held fixed in space, Un is particle’s interaction
potential, and 
 is the thermal wavelength of a particle. It
was assumed that the reversible work of formation of the
stationary cluster is equal to W �Eq. �18��. The partition func-
tions qn and qn

st are linked by the factor �R �which we refer
to as the Reiss factor�,

qn = �Rqn
st. �22�

When deriving the expression for the factor �R, Reiss and
co-workers deactivated the rotational motion inside the vol-
ume Vst and the translational motion resulting from the fluc-
tuation of the position of the center of mass of the stationary
cluster prior to activating the free rotation corresponding to
Qrot and the free translation corresponding to Qtr. Since the
rotational motion of the n particles inside the volume Vst is
essentially free rotation, no explicit account needs to be
taken for the rotational partition function.10 Therefore, the
Reiss factor is the ratio between the partition function for the
free translations in the volume V and that for the translations
of the center of mass in the volume Vst and proves to be6,10

�R =
V

�2��3/2�3 , �23�

where � is the standard deviation in any of the three Carte-
sian coordinates of the center of mass, and ��2���3 is the
volume in which the center of mass of the drop fluctuates.
The evaluation of � in the framework of the model of rigid
spheres gives6,10

� =
0.2vn

1/3

n1/2 =
�0.2�3vl

1/3

n1/6 , �24�

where vn is the drop volume. Under the capillarity approxi-
mation vn=nvl, where vl is the volume per one molecule in
the bulk liquid phase. If one assumes that Vst=vn, Eqs. �23�
and �24� lead to the quantity �R /N1	106 for a water cluster
of 100 molecules.10 This value is considerably less than the
estimation of Lothe and Pound for the ratio of translational
partition functions Qtr /N1Qtr

l 	1010. The difference between
the evaluation of Reiss and that of Lothe and Pound is due to

the fact that in deriving Eq. �23� the assumption of the in-
compressibility of the liquid was not used.

In a more recent publication Reis et al.12 developed an-
other approach where the isothermal compressibility coeffi-
cient appears explicitly so that the new expression for the
Reiss factor is

�R� =
V

�n
, �25�

where �n is the variance of the volume fluctuation in the
standard formulation of the constant pressure ensemble,

�n = �kBT�vn�1/2 	 n1/2�kBT�vl�1/2. �26�

The resulting value of �R� /N1 is about 104 divided by the
supersaturated ratio for a water cluster consisting of 100
molecules. Note that �R� /N1 is about 100 times less than
�R /N1 which is due to the fact that the variance of volume
fluctuation �n is about 100 times larger than the volume
��2���3 in which the center of mass of the drop fluctuates.10

Note, as seen from the comparison between Eqs. �24� and
�26�, this difference must increase with increasing drop size
because �n increases and �3 decreases with increasing n.
Reiss notes reasonably10 that in the theory of Lothe and
Pound the translational degrees of freedom are to be related
to the motion of the center of mass of the embedded �com-
pressible� cluster with respect to the fixed spherical boundary
of the cluster but not to the vibrational translation of the rigid
cluster as a whole.

On the other hand, Reiss believes that in the theory of
Lothe and Pound �as well as in the case of stationary cluster�
the ratio Qrot /Qrot

l is about unity assuming that the rotation of
a drop which is a part of a bulk liquid is essentially the same
as the free rotation,10 i.e., no explicit account needs to be
taken for the rotational partition function �as well as in the
case of stationary cluster�. Besides, he stated10 that the free
energy of the interaction between the embedded drop and the
ambient bulk liquid was already included into the surface
free energy �SAS. One can agree with the statement that
Qrot /Qrot

l is about unity only in the case of high temperatures.
But at the temperature near the melting point �typical tem-
peratures for homogeneous nucleation experiments� the me-
chanical behavior of the viscous liquid is to be more similar
to that of the solid in the case of quick processes �for the
time shorter than the Maxwell relaxation time�.1 The second
statement of Reiss about the free energy of interaction to be
included to the surface free energy is also disputable. The
only evident fact is that the potential energy of the interac-
tion between the drop and the outer molecules must be in-
cluded into the surface free energy in any case. However,
there is also an entropy contribution to the free energy re-
lated to the hindrance of the rotational and translational
movements of the embedded cluster due to its interaction
with the surrounding liquid. The last contribution will be lost
after the cluster extrusion to the gas. At the same time the
embedded drop is at rest in the Gibbs imaginary process and,
therefore, no contribution to �SAS due to the loss of the ro-
tational movement should be implicated. Therefore Nishioka
and Pound13–15 included the entropy of rotational movement
of the embedded cluster to qrep but not to �SAS as in contrast
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to Reiss. We shall not discuss this complicated question thor-
oughly and take the side of Nishioka and Pound.

III. THEORY OF KUSAKA AND APPROXIMATE
ANALYTICAL FORMULA FOR THE CORRECTION
FACTOR

As is seen from the above-said, the theory of Lothe and
Pound considers the thought Gibbs extrusion process but
uses rather rough and ill-founded approximations. Therefore
it seems to be clear that the approximate formula of Lothe
and Pound �Eq. �19�� cannot be used as a basis for the cal-
culation of correction factor. To derive a formula suitable for
such a calculation, Kusaka developed a rigorous statistical-
mechanical approach8 based on the Gibbs extrusion process
considered in Sec. II. Let us look at the milestones of
Kusaka’s theory.

The isothermal-isobaric partition function of the bulk
liquid held at constant �T , Pl ,N� is8

Y�T,Pl,N� =
 dV

a

exp�−
PlV

kBT
�

h3NN!

 dpNdrN exp�−

HN

kBT
� ,

�27�

where pN collectively denotes the momentum of each of the
N particles, and HN is the system Hamiltonian. The constant
a arises from the mechanical degrees of freedom of a piston
imposing the constant pressure Pl. Then a cluster embedded
in the bulk liquid phase is defined by taking a spherical re-
gion of volume VS, which contains m particles. The phase
points embraced by Eq. �27� are partitioned according to the
number m of molecules inside the spherical region:

Y�T,Pl,N� =
 dV

a
exp�−

PlV

kBT
��

m=3

N

�
1

h3�N−m��N − m�! 

rN−m�V−VS

dpN−mdrN−m

�exp�−
HN−m

kBT
� 1

h3mm!



rm�VS

dpmdrm

�exp�−
Hm

kBT
�exp�−

Uint

kBT
� , �28�

where Uint denotes the interaction potential between the N
−m particles outside the sphere and the m particles inside the
sphere, and is a function of rN−m and rm. The last integral in
Eq. �28�, along with the coefficient 1 /h3mm!, is regarded as
the partition function �m of a cluster, which consists of m
particles, all confined to VS, and is embedded in the liquid
phase.

The coordinate transformation is to be done from a labo-
ratory system to a body coordinate system which means that
a set of Euler axes is embedded in the object with the origin
at the center of mass Rc.m. and the rotation refers to the
rotation of these axes. Denoting by sm−2 and tm−2 the coordi-

nates and the conjugate momenta of the remaining 3m
−6 degrees of freedom of the embedded cluster, the partition
function �m is written as8

�m =
1

h3m−6m!



rm�VS

dtm−2dsm−2 exp�−
Ks

kBT
�

�exp�−
Um

kBT
� �1�2�3


c.m.
3 


rm�VS

dRc.m. sin �d�d�d�

�exp�−
Uint

kBT
� , �29�

where KS is the kinetic energy of the m particles excluding
those due to rigid translation and rotation of the embedded
cluster as a whole, Um is the interaction potential among the
m particles, and the Euler angles �� ,� ,�� specify the orien-
tation of the cluster; 
c.m. and �i are 
c.m.=h /�2�MkBT and
�i=�2�IikBT /h with M and Ii�i=1,2 ,3� denoting the mass
of the cluster and its principal moments of inertia, respec-
tively.

The second integral in Eq. �29� is regarded as the con-
figurational partition function Zc of the embedded cluster due
to its translational and rotational degrees of freedom when it
is subjected to the external field Uint. Thus, the configura-
tional entropy Sc associated with these degrees of freedom is
defined by means of the equation

Zc = 

rm�VS

dRc.m. sin �d�d�d� exp�−
Uint

kBT
�

= �3 exp�−
�Uint�c

kBT
�exp� Sc

kB
� , �30�

where �¯ �c denotes the thermal average taken with the Bolt-
zmann weight exp�−�Uint /kBT�� while imposing the con-
straint rm�VS that the m particles are confined to the volume
VS.

The quantity � is an arbitrary length scale in Eq. �30� and
is introduced to make explicit the dimensionality of various
quantities involved. Kusaka believes that a natural choice for
� is to identify it with some characteristic length scale of the
system and he identifies it with the particle diameter. He
notes that the numerical value of Zc, and hence that of
�3 exp�Sc /kBT�, depends only on the functional form of
Uint /kBT and the unit used to measure a length. Once they are
specified, the numerical value of �3 exp�Sc /kBT� is stated to
be independent of the choice of �. The last statement is true,
but one must understand that the numerical value of Sc does
depend on the choice of �. Therefore, the entropy Sc thus
defined is some “formal entropy.” Later we will discuss this
question in more detail.

Since the coordinates rN−m and sm−2 are fixed when
evaluating Zc one can say that the cluster which is governed
by Eq. �30� is a rigid one in a rigid environment. The idea of
Kusaka is that during the extrusion of such a cluster the
modes of fluctuation associated with the factor,
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�1�2�3


c.m.
3 �3 exp� Sc

kB
� , �31�

are to be deactivated. Then, the resulting equation for qrep is8

1

qrep
= �� �1�2�3


c.m.
3 �3 exp� Sc

kB
��−1�

l

, �32�

where �¯ �l indicates a thermal average taken in the bulk
liquid held at constant �T , Pl ,N�.

On the other hand, according to Kusaka, the activation
of the free translation within the volume V and the free ro-
tation of the extruded cluster, when averaged over all pos-
sible values of m and internal configurations sm−2, leads to
the factor

QtrQrot = � �1�2�3


c.m.
3 �

l

8�2V . �33�

Upon the extrusion, the m-sized cluster loses its interaction
Uint with the surroundings, acquires n−m particles from the
vapor phase, and then undergoes the structural relaxation.
Thus, the translational and the rotational partition functions
of the n-sized cluster differ from the corresponding quanti-
ties given in Eq. �33� for the m-sized cluster. Nevertheless, as
in the original Lothe–Pound prescription, Kusaka assumes
that the reversible work associated with these processes is
included fully in �S. Uniting Eqs. �32� and �33� Kusaka ar-
rives finally at the expression for factor �K �which we refer
to as the Kusaka factor� designated to substitute the Lothe–
Pound factor,

�K = � �1�2�3


c.m.
3 �

l

8�2V�� �1�2�3


c.m.
3 �3 exp� Sc

kB
��−1�

l

. �34�

Our task now is to obtain an analytical formula appli-
cable for a semiquantitative evaluation of the Kusaka factor.
To solve this task, we will analyze the key equation of the
theory of Kusaka �Eq. �30��. Actually for all the m-sized
clusters which happened to be inside the volume VS the clus-
ter’s volume vm	VS. Thus, there is some volume VS−vm

accessible for the rigid cluster motion. Hence, there is some
volume �Vc.m. accessible for the motion of the cluster’s cen-
ter of mass. Note, �Vc.m. is the volume over which the inte-
gration is made in Eq. �30�. It is clear that the larger the
difference VS−vm, the larger the volume �Vc.m., and, conse-
quently, the larger is Zc �and, hence, �3 exp�Sc /kB��. Assum-
ing that the average volume �VS−vm� is approximately equal
to the variance of the volume fluctuation �m we may state
that the larger the �m, the larger the �3 exp�Sc /kB� �and the
smaller the �K�. Note, the last conclusion is in a qualitative
agreement with Eq. �25� for the Reiss factor �R� .

On the other hand, the average magnitude of the volume
�Vc.m. over which the integration is made in Eq. �30� is not
equal to �m but essentially less. It is useful to evaluate
��Vc.m.�. To this end we assume that �VS−vm���m and VS

�vm=mvl. We assume also that the volume �Vc.m. over
which the center of mass Rc.m. is sweeping in the integration
is spherical. Let �d� be the diameter of the average integra-
tion volume ��Vc.m.�. As the cluster is rigid �the coordinates
sm−2 are fixed� the radius of this volume �d� /2 is equal to the

width of the spherical layer between the equicentered vol-
umes VS and vm. Assuming that this width is small we have

�d�
2

�
�VS − vm�

4�RS
2 �

�m

4�RS
2 , �35�

where RS is the radius of the spherical volume VS. Then,
accounting the above simplifications and Eq. �26�, one gets

��Vc.m.� =
��d�3

6
=

kBT�

27vm
�m =

kBT�

27vlm
�m. �36�

For the representative case of water cluster for T=300 K,
��=5�10−11 cm2 /dyne and vl=3�10−23 cm3� we have
�m	8�10−24�m cm3, ��Vc.m.�=10−2 /4m�m�2
�10−26 /�mcm3 and �d�	��Vc.m.�1/3	2.7�10−9 /m1/6 cm.
The above evaluations have shown that the variance of the
volume fluctuation �m for the cluster of size m=100 is about
the molecular volume vl; the average volume accessible for
the motion of the center of mass ��Vc.m.� is much less than
�m and equal to ��Vc.m.�	10−4vl. as a consequence, the di-
ameter �d� of the average integration volume is by an order
of magnitude less than molecule diameter.

The above estimations are rather rough but show that the
size of the integration region is small enough, i.e., the varia-
tion of Rc.m. when taking the integral in Eq. �30� occurs in a
very narrow region. Therefore, the variation of the integrand
function Uint is rather week during the integration over
dRc.m.. Thus, we can consider the interaction potential Uint as
independent of Rc.m.. Then the integral in Eq. �30� can be
written as the product of two integrals and we arrive at

Zc = d3

rm�VS

exp�−
Uint

kBT
�sin �d�d�d�

= d3 exp�Sc�

kB
�exp�−

�Uint�c

kBT
� , �37�

where d3=�Vc.m..
The integral in Eq. �37� may be regarded as the configu-

rational partition function of the embedded cluster due to its
rotational degrees of freedom only, when it is subjected to
the external field Uint�� ,� ,��. As a consequence, the con-
figurational entropy Sc� is associated here with these degrees
of freedom, i.e., it has a definite physical sense of the entropy
linked with the cluster’s rotational motion �as in contrast
with the effective entropy in Eq. �30��. The entropy Sc� has a
definite physical sense now, because instead of the arbitrary
length scale � in Eq. �30� we have in Eq. �37� a definite and
natural characteristic length scale of the system d which is
the size of the integration area. This quantity d substitutes
now � in Eq. �34�. We assume now that the average values in
Eq. �34� can be substituted by the products of averages:

�K 	
��1�2�3�l

�
c.m.
3 �l

8�2V
�
c.m.

3 �l

�d3�l��1�2�3 exp�Sc�

kB

��
l

. �38�

One more assumption is made that the average magni-
tude of the volume d3 over which the center of mass sweeps
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during the integration in Eq. �30� is approximately equal to
the volume in which the center of mass of the drop of vol-
ume VS fluctuates:

�d3�l = ��2���3. �39�

In Eq. �39� � must be expressed by �see Eq. �24��:

� =
�0.2�VS

1/3

�m�l
1/2 =

�0.2�VS
1/3

��lVS�1/2 =
�0.2�

�l
1/2VS

1/6 , �40�

where �m�l=�lVS and �l is the particle number density of the
reference bulk liquid.

After the cancellation and using Eq. �39� we get from
Eq. �38�:

�K � �R

Qrot
K

Qrot,l
K , �41�

where �R is the Reiss factor �Eq. �23�� in which � is de-
scribed by Eq. �40�. The quantity Qrot

K in the denominator of
Eq. �41� is Qrot

K =8�2��1�2�3�l, where �¯ �l denotes the ther-
mal averaging for various values of m taken with respect to
the isothermal-isobaric ensemble representing the bulk liq-
uid. Due to this averaging Qrot

K has a physical sense of the
rotational partition function for a free drop in the vapor, but
not for a cluster. According to Kusaka8 this drop contains
�m�l=�lVS particles and is a ball of radius RS with the homo-
geneous density �l. Therefore, we must write

Qrot
K =

���8�2IkBT�3/2

h3 , �42�

where I is the moment of inertia of the spherical drop,

I = 8
15�RS

5� , �43�

�=�l� is the density of the reference bulk liquid �here � is
the molecule mass�.

Finally, the quantity Qrot,l
K is

Qrot,l
K = ��1�2�3 exp�Sc�

kB
��

l
. �44�

As was shown above the quantity Sc� in Eq. �38� �as well as
in Eq. �44�� has a physical sense of the entropy related to the
rotational movement of embedded cluster. Therefore, Qrot,l

K

�due to the averaging in Eq. �44�� has a sense of the rota-
tional partition function for the embedded spherical drop of
volume VS. Following Frenkel’s views one can hope that the
rotational movement of such a drop with respect to the en-
vironmental viscous liquid at low enough temperature near
the melting point will be like the rotational vibrations of a
solid body. The necessary condition for this kind of vibra-
tions is that the period of vibrations Tv be small with regards
to the Maxwell relaxation time �M of shear stress which oc-
curs during the drop rotations1 Tv��M or ��M �1 �where
�=1 /Tv is the vibrational frequency�. The last inequality is
exactly the inequality Eq. �9� and, as seen above in Sec. II,
one can hope that this inequality is valid for the vibrational
processes with the frequency � equal to the Debye frequency
�or even less�.

There is a series of publications devoted to the evalua-
tion of the vibrational frequency of the solid cluster.16–18

These evaluations have shown that the frequency of rota-
tional vibrations � of small clusters with the number of mol-
ecules n	100 is about the Debye frequency �max. Account-
ing that at the ordinary temperatures the partition function of
oscillator depends weakly enough �only linearly� on fre-
quency one can use the simplest formula for the vibrational
frequency16 ���3n−1/6�max. One can see that this formula
gives ���max for n=27. We suppose that the equation �
��max is valid for all the small clusters. Thus, we assume
that the rotational partition function Qrot,l

K can be written as
the vibrational partition function for three degrees of free-
dom:

Qrot,l
K � �Qv�3 � �exp�h�max

2kBT
��1 − exp�−

h�max

kBT
���−3

.

�45�

IV. AN ASSEMBLY OF DROPS: THE CORRECTION
FACTOR FOR THE NUCLEATION RATE

The Kusaka factor considered in the previous section is
to give a connection between the partition function �qn

rest� of
the drop at rest and the partition function �qn� of the drop at
motion:

qn = �Kqn
rest = �K exp�−

fn
rest

kBT
� . �46�

Note, the drop at rest is implied here to be such a drop the
work of formation for which W is governed by the expres-
sion Eq. �18� derived by Gibbs; fn

rest is the Helmholtz free
energy for this drop. Strictly speaking, Eq. �18� is valid only
for the critical nucleus, and an additional term arises when
the Gibbs theory of interface is properly extended to treat
nonequilibrium clusters.19–23 However, the rate of nucleation
is proportional to the number Nn� of the critical nuclei.1,8,10

Therefore, to evaluate the nucleation rate, one should know
just the work of formation of these critical nuclei.

To know the number of critical nuclei, one should derive
the equilibrium drop size distribution. We will use the ap-
proach of Reiss7 to obtain this distribution. To determine the
equilibrium size distribution, Reiss considered an ensemble
of physical clusters as an ideal gas mixture.10 It was sup-
posed in this model that these clusters did not interact with
the molecules of the environmental ideal vapor. Therefore,
the full partition function for the system of volume V con-
sisting of Nn drops and N1 ideal vapor monomeric molecules
can be written in the following form:7

Q�V� = �
�Nn�

QN1,Nn

id �V − �
n=2

Nnvn�

n=2

qn
Nn

Nn!
, �47�

where QN1,Nn

id is the partition function of ideal vapor. The first
sum in Eq. �47� is over all distributions Nn such that
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N1 + �
n=2

nNn = N , �48�

where N is the total number of molecules in the system and
the superscript id indicates “ideal.” The equilibrium distribu-
tion is found in the usual manner by finding the maximum
term in the sum of Eq. �47� subject to the conservation con-
dition, Eq. �48�. The result is7

Nn = qn exp�−
1

kBT
�Pvn − n�v�� , �49�

where P is the ambient ideal gas pressure. The substitution of
Eq. �46� into Eq. �49� yields

Nn =
�K

N1
N1 exp�−

fn
rest + Pvn − n�v

kBT
� , �50�

where fn
rest+ Pvn=gn

rest is the Gibbs free energy for the drop at
rest. Formula �50� differs from the CNT expression for the
drop size distribution1 �Eq. �17�� by the factor �K /N1. Thus,
the classical formula Eq. �17� is to be modified by the cor-
rection factor �K /N1 and, as the nucleation rate is propor-
tional to the number Nn� of critical nuclei, the same free
energy correction factor will appear in the classical expres-
sion for the nucleation rate. One can see also that the coef-
ficient 1 /N1 appeared in the free energy correction factor
naturally.

It is important to note that Eq. �17� for the drop size
distribution was derived in CNT �Ref. 1� basing on the rough
approximation expressed by Eq. �16�. As to the Reiss ap-
proach, the only simplification made when deriving Eq. �50�
for the drop size distribution was the ideal gas mixture ap-
proximation. The expression in the numerator of the expo-
nent in the classic Eq. �17� is the Gibbs free energy change.
It is merely claimed in CNT that for the critical drop this
change is equal to the work of the drop formation. On the
other hand, the expression in the numerator of the exponent
in Eq. �50� is also the change of Gibbs free energy in the
process of formation of n-sized drop at rest from n vapor
molecules. However, in the last case the Gibbs free energy
change in the process of the critical drop formation is really
equal to the reversible work W of formation of this drop �in
the framework of the ideal gas mixture approximation� �see
Appendix�.

V. COMPARISON WITH KUSAKA’S NUMERICAL
SIMULATION RESULTS

Basing on Eqs. �23�, �41�–�43�, and �45� we propose the
following approximate equation for the correction factor
� /N1:

�

N1
=

�R

N1

Qrot
K

Qrot,l
K

=
�R

N1

Qrot
K

�Qv�3 =
1

Sn1
sat�2��3/2�3�5�64RS

5�kBT

15h2 �3/2

�exp�3h�max

2kBT
��1 − exp�−

h�max

kBT
��3

, �51�

where S is the supersaturation ratio, n1
sat is the saturated va-

por number density, � and nmax are to be evaluated via Eqs.
�40� and �7�, respectively.

Kusaka8 evaluated the correction factor for the Lennard-
Jones fluid by the numerical simulation for the reduced tem-
perature range 0.7–0.9 �the reduced temperature �T�� is de-
fined as T�=kBT /�, where � is the characteristic energy of
the Lennard-Jones potential�. Here in this section we will
compare the correction factor � /N1 as estimated via Eq. �51�
for Ar with that as determined by Kusaka ��K /N1�. To com-
pare � /N1 with �K /N1 one needs to know the density � of
the reference bulk liquid, the sound velocity u in the bulk
liquid, the supersaturation ratio S, and n1

sat. The density of the
bulk liquid can be retrieved from Kusaka’s computer simu-
lation results8 as a function of temperature

� = 2.03 – 8.3 � 10−3 T�K� �g/cm3� . �52�

The supersaturation ratio can be obtained using the com-
puter simulation data of ten Wolde and Frenkel24 for the
homogeneous gas-liquid nucleation in the Lennard-Jones
system. To use these data one should bring into correspon-
dence the radius of the surface of tension RS �used by
Kusaka8� with the equimolar radius Re �which is a character-
istic of the clusters studied by ten Wolde and Frenkel�. These
two radii are related by the equation Re=RS+�, where � is
the so-called Tolman length. The radius of the surface of
tension was chosen RS=1.8, 2.0, 2.5 �in Lennard-Jones units�
in Kusaka’s numerical simulation.8 The Lennard-Jones pa-
rameters for Ar are �LJ=0.34 nm and � /kB=119.8 K. Thus,
one gets RS=0.61, 0.68, and 0.85 nm, respectively. The Tol-
man length was determined by Bartell25 for Ar for the re-
duced temperature T�=0.74 as a function of RS. For RS

=0.61, 0.68, and 0.85 nm the Tolman length reads25 �
=0.20, 0.18, and 0.14 nm, which gives Re=0.81, 0.86, and
0.99 nm, respectively. Thus, for example, using Eq. �52� we
have for Re=0.86 nm the number of molecules in the drop
m=52. The critical supersaturation for the clusters of that
size is24 S	2. Therefore, we used this value of the super-
saturation ratio in our estimations of the correction factor.

For T�=0.74 the pressure in the bulk reference phase
�which has the same chemical potential as the gas at super-
saturation S=2� was taken from Ref. 24 as equal to 0.36 �in
Lennard-Jones units� which is about 150 atm. for argon. The
argon sound velocity for this pressure can be approximated
by the equation26–28 u=1.46�105–6.34�102 T�cm /s�. Fi-
nally, �max was evaluated as �max=u /2r=u /�LJ. To evaluate
n1

sat the expression for the saturated vapor pressure of argon
was used,29 log10�P /Torr�=7.76–420.62 /T.

Figure 1 shows the correction factor � /N1 as calculated
via Eq. �51� for RS=2.0 as well as the contributions to this
factor from �R /N1, Qrot

K and �Qv�−3. What is important is that
the contribution from the translational degrees of freedom
�R /N1 is in the range 3�102–104, while the main contribu-
tion comes from the rotational degrees of freedom Qrot

K ,
which is about 3�107 in the temperature range 80–110 K.
The vibrational contribution �Qv�−3 is small enough being in
the range 1–8, which corresponds to the range of Qv from 1
to 0.5. Such a small magnitude of the vibrational partition
function corresponds to the condition kBT	h�max, i.e., to the
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low-temperature limit where the quantum nature of the os-
cillator is to be accounted; that is why the Eq. �45� was
written in the quantum form.

Figure 2 compares the correction factor � /N1 and that of
Kusaka �K /N1 for RS=1.8, 2.0, and 2.5. One can see that
these two factors are in a good agreement with each other.
� /N1 and �K /N1 coincide ideally for RS=2.5; and for RS

=2.0 and 1.8 the agreement is within the factor of 2. The
temperature dependence of � /N1 is in an excellent agree-
ment with that of �K /N1. As one can see from Fig. 1 the
dominant contribution to the temperature dependence comes
from the Reiss factor �R /N1 �the temperature dependence of
this factor is mainly governed by the concentration n1

sat�.
However, the last factor �Qv�−3 in Eq. �51� also depends
significantly on temperature. The temperature dependence
for �Qv�−3 is mainly governed by the first factor in Eq. �45�
which is to account the zero-point vibrations. Not accounting
this factor one will lose the agreement between the tempera-
ture dependencies of � /N1 and �K /N1.

The excellent agreement between the temperature depen-
dencies for � /N1 and �K /N1 supports our assumption that
the internal degrees of freedom which are to be deactivated
are, actually, the torsion vibrations. One may also note that

the agreement between the temperature dependencies for
� /N1 and �K /N1 means, in particular, that the enlargement
of free volume in the liquid phase during the temperature
increase is not so high to influence essentially the character
of the rotational motion of the embedded cluster. One can
state with high enough accuracy that after the temperature
increase this motion is still vibrational but not a free rotation
�which would give the partition function exaggerated by or-
ders of magnitude�. In this case one may expect that some
change in pressure in the liquid at T=const also would not
give any noticeable change in the character of rotational mo-
tion. Note that the numerical simulation8 has shown that the
Kusaka correction factor was really insensitive to the liquid
pressure.

Formula �51� is considered as semiquantitative. Thus, for
example, the choice of the torsion vibration frequency is
rather approximate. Nevertheless this formula agrees with
Kusaka’s simulation results with a factor of 2 which is
within the accuracy of simulation. Therefore it seems to be
of no reason to try to find a more exact �and, consequently,
more complicated� expression for the correction factor. We
believe that the simple formula Eq. �51� will be useful for
specialists in the field of nucleation from vapor to evaluate
the nucleation rate and to have a reference when comparing
different systems.
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APPENDIX:

In this section we will evaluate the exponent in Eq. �50�
for the drops which are in an unstable equilibrium with the
vapor. In order to make this evaluation it is useful to consider
the Gibbs reversible process of formation of a spherical liq-
uid drop at rest inside the bulk vapor phase.11 In accordance
with the nomenclature of Gibbs11 we will refer, respectively,
to ���, ���, and �N� as the excesses of energy, entropy, and
number of molecules inside and around the drop with regard
to those in the space without the drop �i.e., filled only with
the vapor�. We shall refer to �V� , �V� , and 
� as the densities of
energy, entropy, and number of molecules in the vapor phase,
respectively. As the total system volume V and mass are very
large, the densities of energy, entropy, and number of mol-
ecules can be considered as constant during the process. The
gas pressure P� �nominated as P in Eq. �50�� is constant as
well. However, strictly speaking, after the drop formation the
pressure in the real gas will be equal to P� only far enough

FIG. 1. Correction factor � /N1 �Eq. �51�� and contributions from �R /N1

�Eqs. �23� and �40��, Qrot
K �Eqs. �42� and �43��, and �Qv�−3 �Eq. �45� for RS

=2.0� �in Lennard-Jones units�.

FIG. 2. Free energy correction factor for different values of the drop radius
RS vs temperature. Symbols: numerical calculations by Kusaka �Ref. 8�.
Lines: as evaluated via Eq. �51�. The magnitudes of Rs are shown in
Lennard-Jones units.
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from the drop. Near the drop the gas pressure will differ from
P� due to the interaction between the gas molecules and the
drop. By definition,

��� = 

V

��V − �V��dv , �A1�

��� = 

V

��V − �V��dv , �A2�

�N� = 

V

�
 − 
��dv , �A3�

where �V, �V, and 
 are the densities of energy, entropy, and
molecules, respectively, in the real system of volume V. The
number of molecules n in the cluster �which enters into Eq.
�50�� can be defined in different ways. However, if the num-
ber of such molecules in the cluster �whatever its definition
might be� is n, the cluster’s volume vn is the volume occu-
pied by these molecules. Thus, for example, for the energy �n

of the n-sized cluster at rest one gets

�n = 

vn

�vdv . �A4�

Taking into account that

��� = 

V

��v − �v��dv = 

vn

�vdv − �v�vn + 

V−vn

��v − �v��dv ,

�A5�

one gets

�n = ��� + �v�vn − 

V−vn

��v − �v��dv , �A6�

where the integration is done over the volume outside the
drop.

Similar speculations can be provided for the drop en-
tropy �n and number of molecules n and we get

�n = ��� + �v�vn − 

V−vn

��v − �v��dv , �A7�

n = �N� + 
�vn − 

V−vn

�
 − 
��dv . �A8�

Then, it is easy to demonstrate that the numerator of the
exponent in Eq. �50� for the drop being in an unstable equi-
librium with the neighboring vapor is equal to the work W of
the drop formation in the reversible Gibbs process. Indeed,
using Eqs. �A6�–�A8�, one gets

fn
rest + P�vn − �n = �n − T�n + P�vn − �n

= ��� − T��� − ��N� + vn��v� − T�v� − �
�

+ P�� + 

V−vn

��v� − T�v� − �
� − �v + T�v

+ �
�dv . �A9�

Taking into account that P� is the vapor pressure one gets11

�v� − T�v� − �
� + P� = 0, �A10�

i.e., the second term in Eq. �A9� is equal to zero.
Using Eq. �A10� one can write the last term in Eq. �A9�

as

− 

V−vn

P�dv − 

V−vn

��v − T�v − �
�dv

= − 

V−vn

P�dv − 

V−vn

�d� − Td� + �dN�

= 

V−vn

Prealdv − 

V−vn

P�dv

= 

V−vn

�Preal − P��dv , �A11�

where Preal is the real pressure of the gas. The integrand
Preal− P� is the excess of the gas pressure in the neighbor-
hood of the drop. This excess is caused by the interaction
between the gas molecules being around the drop and the
molecules which belong to the drop. Due to the weakness of
the intermolecular interaction the magnitude of this integrand
is small enough. Neglecting the interaction between the gas
molecules and the drop, one can consider the last term in Eq.
�A9� as equal to zero. One should note that Eq. �50� was also
derived under the assumption that there was no interaction
between the gas molecules and the drop �see Eq. �47��.

According to Gibbs11 the reversible work of drop forma-
tion is equal to

W = ��� − T��� − ��N� �A12�

�i.e., to the first term in Eq. �A9��. Thus, finally we can
summarize that the numerator of the exponent in Eq. �50� is
equal to the work of the drop formation under the ideal gas
mixture approximation,

fn
rest + P�vn − �n = W . �A13�

The error of Eq. �A13� is equal to the value of the last
integral in Eq. �A11�. As to this error, note that the magni-
tude of this integral depends not only on the potential of the
interaction between the vapor molecules and the n-sized
cluster, but on its volume vn as well. On the other hand, this
volume and the number n of molecules in the cluster depend
on the model which is chosen to define the cluster. Thus, this
integral is model dependent. The magnitude of this integral
and, as a consequence, the error of Eq. �A13� will be less in
the model which gives relatively large values of n and vn.
Recently Reiss and co-workers30–32 developed a new theory.
In terms of this theory it is possible to give a rigorous defi-
nition for a cluster with a very large volume involving both
drop and vapor �the so-called ELMD-DNT cluster�. It is in-
teresting to note that the work of formation of this cluster is
strictly equal to the change of the Gibbs potential in the
process of the cluster formation.32
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