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The dependence of the surface tension of Lennard–Jones liquid droplets on equimolar radii has been calculated by molecular dynamics method. It has been found that the “mechanical” surface tension is different from “thermodynamical” surface tension for drops of 50 – 2000 molecules and is equal for drops of more than 2000 molecules. It is shown that both the mechanical and thermodynamical surface tensions decrease with the decrease of the equimolar radius of a drop, and reach zero at the same R0. The radii of surface tension also reach zero. 

Intreduction

Surface tension of a critical cluster is an important parameter in a classical nucleation theory (CNT), since it is responsible for the work of its formation [1,2]. Though often inadequate, this theory and its modifications are still used to interpret experimental evidence [3,4]. The discrepancy between CNT and experiment may be due to the dependence of the surface tension of a critical cluster on its radius that is often ignored. J.Gibbs  points out that surface tension (
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) of a droplet is to decrease with decreasing surface tension radius (
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Based on thermodynamic considerations [5], Tolmen obtained the surface tension dependence of a drop on its radius 
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where 
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 is the surface tension of liquid – gas flat surface, 
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 is the difference between equimolar radius and 
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. Formula (1) is often used to interpret experimental data in CNT (see, for example, [7]). However, this is not correct, since formula (1) is valid solely for large drops. Thus the problem arises of how to establish the surface tension dependence of a droplet on its radius and temperature.



Another aspect of the problem is surface tension definition of droplets itself. In thermodynamics, surface tension occurs when real drop with “spread” density profile is replaced by homogeneous liquid phase [5]. The phase radius is 
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. Sometimes, internal liquid phase is called a comparison phase. The difference in pressure between comparison phase and the surrounding vapor obeys the Laplace formula [5]:
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 where 
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 are pressures of  liquid in comparison phase and vapor, respectively. It is common practice to distinguish mechanic and thermodynamic definitions of a droplet surface tension [8,9]. Mechanic definition  assumes equal forces and force moments in real and model systems. Equations of mechanic equilibrium of a drop are employed. Thermodynamic surface tension is included in thermodynamic potentials of the system and their variations in thermodynamic processes. It is supposed that these two definitions of surface tension are to give different values of  
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 and 
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, though the cause is not quite clear. J Gibbs defined surface tension of a drop in conditions of equal chemical potentials of  comparison phase and real system [5]. Thus the problem is to elucidate the difference between thermodynamic and mechanic definitions of surface tension, and to calculate their dependences on the drop radius and the system temperature.

Computational methods and results

In our work, surface tension of droplets was calculated by molecular dynamics method. Calculations were made in the system containing 100-4500 molecules in a cubic  cell  with periodic boundary conditions. Interaction between molecules was specified by Lennard-Jones potential with truncation at 
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 are Lennard-Jones potential parameters, 
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 is the molecule mass. Variables labeled by an asterisk are dimensional. Calculations were performed at the system temperature 
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= 0.65. A special procedure was used to obtain an equilibrium system composed of a liquid drop in the center of a cell and vapor occupying the remaining space. We call such a drop obtained in numerical experiment real. The size of the drop depended on the number of particles in the cell and the mean density of the system. Profile densities, chemical potential of the system, equimolar radii and surface tension radii of drops, mechanic and “Gibbs” surface tensions were calculated. The details are given in [8].


In the obtained systems the pressure 
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 is a tensor with two components different from zero – normal 
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 calculated by molecular dynamics method. Mechanic surface tension is expressed in terms of pressure tensor by the familiar formulae [9,10,11]
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These formulae were used to find 
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Formulae (3) assume [11] that the pressure in the comparison phase is equal to the pressure in the center of a real drop. At the same time, chemical potential of the comparison phase will not correspond to chemical potential of vapor surrounding the drop. Thus mechanic surface tension determined by formulae (3) cannot be applied in thermodynamics equations where chemical potential of the comparison phase is equal to chemical potential of vapor.


To calculate surface tension of drops according to J.Gibbs definition, it is necessary to equate chemical potential of the comparison phase to chemical potential of the surrounding vapor, i.e., the comparison phase pressure and density must be identical to those of massive liquid for a given chemical potential. To do this, first, one should know the dependence of chemical potential of massive liquid phase on pressure, and, second, chemical potential of vapor. To solve the first problem, we have made calculations of massive liquid phase chemical potential by molecular dynamics method. First, we obtained the equilibrium system consisting of  flat liquid phase layer surrounded by vapor from two sides. The layer thickness exceeded the molecules interaction radius three times. Computations have shown that vapor above such a flat separating surface is an ideal gas, i.e., the ideal gas equations 
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 is vapor concentration) holds accurate to 1%. Chemical potential of vapor, and, therefore, liquid layer was calculated by formula 
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 suitable for classical ideal gas. Then calculations were made of a similar system with two repulsing walls on the opposite sides of the cell that served as plungers compressing a flat liquid layer. Reducing the cell volume, we obtained liquid phases at different pressures. Thus the equation of liquid state at a given temperature has been derived. Chemical potential of the liquid phase was calculated by the formula
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Approximation curve of dependences 
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 Chemical potential of vapor has also been calculated by formula (4) with 
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 replaced by 
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 and 
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 – by 
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. Vapor condition equation has been obtained from molecular dynamics data for equilibrium systems containing liquid drop surrounded by its own vapor, i.e., from the calculations of surface tension of drops. Vapor pressure and density were taken far away from the drop at the distance exceeding the interaction radius of molecules.


For the calculation of the drop surface tension according to the Gibbs definition, the second formula in (3) would not do [11], while the first one is valid. Formula (2) can also be applied. Thus, after determination of chemical potential around the drop we equate it to chemical potential of the comparison phase, and obtain 
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 comparison phases using the approximation curve of the dependence of these quantities on chemical potential of the liquid.  Then, we calculated 
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 for the “Gibbs” surface tension by formula (2) and the first equation from (3).


Equimolar radii of drops were defined by the formula [11]
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Here 
[image: image51.wmf]g

l

r

r

,

 are the densities in the comparison phase and in the pair, respectively. 
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 is the system density profile.



The figure presents the principal result of the work. Essential decrease both in “mechanic” and in “Gibbs” surface tensions with the decrease in equimolar radius of the drop is observed. At certain equimolar radius 
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 both surface tensions go to zero. This radius corresponds to the drop containing about 50 molecules. Surface tension radius 
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 simultaneously goes  to zero. With further decrease in equimolar radius, surface tension becomes  negative, though in conditions of numerical experiment the drop remains stable. As is seen from the figure, the surface tension calculated according to Gibbs definition coincides with “mechanic” surface tension for relatively large drops containing 2000 and more molecules.  For drops containing less molecules, “Gibbs” surface tension exceeds “mechanic” one until they disappear at 
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. Hatched line shows the dependence  of “mechanic” surface tension on equimolar radius 
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 that is universal  relative to the temperature at which numerical experiment is conducted [8].

Conclusion


So numerical calculations have demonstrated that both “mechanic” and “thermodynamic” surface tensions decrease with decreasing size of drops, and simultaneously go to zero.
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The figure to expanded theses of G.V.Kharlamov, A.A.Onischuk, P.A.Purtov, S.V.Vosel, A.V.Bolesta “On the problem of surface tension definition of droplets”
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Figure caption in theses of G.V.Kharlamov, A.A.Onischuk, P.A.Purtov, S.V.Vosel, A.V.Bolesta “On the problem of surface tension definition of droplets”:

Fig. Dependence of “mechanic” (□) and “Gibbs” (+)  surface tensions on equimolar radius 
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. Dotted curve – approximation of a universal dependence of “mechanic” surface tension 
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