Полные статьи

УДК 544.522+544.435+544.53

Фотохимия комплекса PtBr₆²⁻ в водных растворах

Е. М. Глебов,^а* В. Ф. Плюснин,^а В. П. Гривин,^а А. Б. Венедиктов,⁶ С. В. Коренев⁶

^аИнститут химической кинетики и горения Сибирского отделения Российской академии наук, Российская Федерация, 630090 Новосибирск, ул. Институтская, 3.

Факс: (383) 330 7350. E-mail: glebov@ns.kinetics.nsc.ru

^бИнститут неорганической химии Сибирского отделения Российской академии наук,

Российская Федерация, 630090 Новосибирск, просп. Акад. Лаврентьева, 3. Факс: (383) 334 4489. E-mail: korenev@che.nsk.su

Методами стационарного и лазерного импульсного фотолиза (308 нм) изучена фотохимия комплекса $PtBr_6^{2-}$ в водных растворах. В нано- и микросекундных интервалах времени происходит многоступенчатая фотоакватация комплекса без образования промежуточных комплексов платины(III).

Ключевые слова: платина(IV), галогенидные комплексы, водные растворы, фотохимия, оптические спектры, лазерный импульсный фотолиз, первичные фотохимические процессы.

Галогенидные комплексы MX_6^{2-} тяжелых благородных металлов (Pt, Ir, Os) характеризуются интенсивными полосами переноса заряда в видимой и УФ-областях спектра¹. Существование такого поглощения обычно сопровождается высокой фотохимической активностью², природа и механизмы которой для многих комплексов остаются неизвестными. Комплекс $PtBr_6^{2-}$ не является исключением — его фотохимию в водных растворах изучают на протяжении 50 лет^{2–8}, однако механизм фотопревращений до сих пор не ясен. Противоречия касаются не только интерпретации экспериментальных данных, но и их фактического содержания.

Было обнаружено³, что квантовый выход реакции фотоиндуцированного обмена лигандов в системе PtBr₆^{2–}—Br[–] намного превышает единицу. Для объяснения этого факта предложен цепной механизм, ко-

торый привлекался и для объяснения большой величины квантового выхода обмена хлорид-ионов в системе $PtCl_6^{2-}$ — $Cl^{-.9}$ Предполагалось, что первичной стадией фотолиза является гомолитический разрыв связи Pt—Br с образованием промежуточного комплекса Pt^{III} и атома брома

$$PtBr_6^{2-} \xrightarrow{hv} PtBr_5^{2-} + Br^{-}.$$
 (1)

Позднее⁴ в экспериментах по ламповому импульсному фотолизу (временное разрешение ~30 мкс) водных растворов $PtBr_6^{2-}$ не было обнаружено промежуточного поглощения, которое можно было бы приписать атому брома, комплексам Pt^{III} или продуктам их вторичных реакций. Конечными продуктами фотолиза на временах, больших нескольких десятков микросекунд, являлись акватированные комп-

© 2007 «Известия Академии наук. Серия химическая», Российская академия наук, Отделение химии и наук о материалах Российской академии наук, Институт органической химии им. Н. Д. Зелинского Российской академии наук

лексы Pt^{IV}. В качестве первичного процесса предложена⁴ реакция двухэлектронного фотовосстановления PtBr₆^{2–} с выходом молекулы Br₂ из координационной сферы и формированием комплекса платины(II) PtBr₄^{2–}:

$$PtBr_6^{2-} \xrightarrow{hv} PtBr_4^{2-} + Br_2.$$
 (2)

По мнению авторов работы⁴ комплекс $PtBr_4^{2-}$ образуется в неравновесной (неплоской) геометрии и может служить переносчиком цепи в реакции обмена лигандов. В этом случае стадия, ответственная за обрыв цепи, — обратная реакция комплексов Pt^{II} с Br_2 , возвращающая их к комплексам Pt^{IV} . Появление акватированных комплексов Pt^{IV} объяснено акватацией комплекса $PtBr_4^{2-}$.

Согласно третьей схеме^{2,5–7} разрыв связи Pt—Br является гетеролитическим и акватированный комплекс PtBr₅(H₂O)[–] представляет собой первичный продукт фотохимического процесса

$$PtBr_{6}^{2-} \xrightarrow{hv (+H_{2}O)} PtBr_{5}(H_{2}O)^{-} + Br^{-}.$$
 (3)

Комплекс PtBr₅(H₂O)⁻ подвергается дальнейшей фотоакватации с образованием следующего комплекса PtBr₄(H₂O)₂ в этой цепочке превращений¹⁰. Квантовый выход первой стадии в нейтральной среде равен⁶ 0.4±0.1 и не зависит от длины волны возбуждающего света. Высказано предположение, что это свидетельствует о быстрых безызлучательных переходах в нижнее возбужденное (предположительно триплетное) состояние, из которого и происходит фотоакватация. Отмечен⁶ рост квантового выхода фотолиза при уменьшении pH растворов.

Сопоставление имеющихся экспериментальных данных по фотообмену лигандов и фотоакватации комплекса $PtBr_6^{2-}$ позволило предположить², что обмен, в отличие от акватации, является цепным процессом, обусловленным наличием в растворах примесей молекул окислительной природы.

При фотолизе $PtBr_6^{2-}$ в кислых (pH < 1) растворах наблюдали⁸ сохранение трех изосбестических точек (215, 238, 286 нм). На основе анализа спектральных изменений сделан вывод⁸ о замене в координационной сфере в одну стадию двух ионов брома на две молекулы воды с квантовым выходом 0.3.

$$PtBr_6^{2-} \xrightarrow{h_V (+H_2O)} PtBr_4(H_2O)_2 + 2 Br^-$$
(4)

Таким образом, высказаны различные взгляды на механизм первичных фотопроцессов для $PtBr_6^{2-}$ в водных растворах. Этот факт и определил постановку задачи настоящей работы, в которой предполагалось с помощью лазерного импульсного фотолиза с наносекундным временным разрешением решить вопрос о существовании промежуточных комплексов платины(III). Такие комплексы были ранее обнаружены при фотолизе $PtCl_6^{2-}$ в метаноле^{11—13} и в воде¹⁴. Данная работа является продолжением наших исследований¹⁵ по фотохимии комплекса $PtBr_6^{2-}$ в органических и водных средах.

Экспериментальная часть

Растворы комплексов $PtBr_6^{2-}$ и $PtBr_4^{2-}$ готовили из солей $Na_2PtBr_6 \cdot H_2O$ и $K_2PtBr_4 \cdot 2H_2O$, синтезированных по описанной ранее методике¹⁶. В качестве источника свободных бромид-ионов использовали соль NaBr («Aldrich»). Растворы готовили на деионизованной воде. При необходимости для удаления кислорода из раствора образцы продували аргоном в течение 20 мин.

Оптические спектры поглощения регистрировали с помощью спектрофотометра HP 8453 с диодной линейкой. Стационарный фотолиз проводили в кювете толщиной 1 см при помощи ртутной лампы высокого давления (ДРШ-500) с набором стеклянных фильтров для выделения линии с $\lambda = 313$ нм. Интенсивность света для вычисления квантового выхода измеряли с помощью ферриоксалатного актинометра¹⁷. Опыты по лазерному импульсному фотолизу проводили на установке¹¹ с использованием эксимерного XeCl-лазера (308 нм, 15 нс, 20 мДж) также в кювете толщиной 1 см.

Согласно данным работ^{6,10} комплекс PtBr₆²⁻ в водных растворах подвергается последовательной термической акватации

$$PtBr_6^{2-} \longrightarrow PtBr_5(H_2O)^- \longrightarrow PtBr_4(H_2O)_2 \longrightarrow PtBr_3(H_2O)_3^+,$$
(5)

которая приводит к изменению оптического спектра поглощения без сохранения изосбестических точек. Однако указанные реакции протекают медленно — характерное время изменения оптического спектра составляет несколько часов. В связи с этим все опыты проводили со свежеприготовленными растворами. Акватация сопровождается изменением pH раствора, так как комплекс PtBr₅(H₂O)⁻ является слабой кислотой (p $K_a = 4.4$)¹⁰. Поэтому опыты по фотолизу проводили в буферном водном растворе при pH 6.86 (0.0315 *M* KH₂PO₄ и 0.0352 *M* Na₂HPO₄) и в 1 *M* HClO₄. Комплекс PtBr₅(H₂O)⁻ в буферном растворе превращается в PtBr₅(OH)²⁻, а в кислой среде он не диссоциирует.

Обсуждение полученных результатов

Электронный спектр поглощения и термическая акватация $PtBr_6^{2-}$. Электронная конфигурация иона $Pt^{IV} - 5d^6$, поэтому в октаэдрическом окружении верхняя заселенная орбиталь $-t_{2g}^6$ – и основной терм комплекса $PtBr_6^{2-} - {}^1A_{1g}$. Его оптический спектр (рис. 1, спектр *I*) совпадает с описанным ранее^{1,7}. Интенсивная полоса переноса заряда (СТ) с максимумом при 226 нм ($\varepsilon = 70000 \text{ л} \cdot \text{моль}^{-1} \cdot \text{см}^{-1}$) соответствует переносу электронной плотности с $t_{1u}(\sigma)$ -орбитали, локализованной на лигандах, на вакантную $e_g(\sigma^*)$ -орбиталь. Переходам с $t_{1u}(\pi)$ - и $t_{2u}(\pi)$ -орбиталей атома брома на $e_g(\sigma^*)$ -орбиталь отвечают менее интенсивные полосы переноса заряда при 310 и 365 нм ($\varepsilon = 17800$ и 7400 л · моль⁻¹ · см⁻¹ соответственно), которые перекрываются со слабыми d—d-переходами в синглетное ${}^1T_{1g}$ (435 нм) и триплетное ${}^3T_{1g}$ (525 нм) возбужденные состояния¹.

Стационарный фотолиз $PtBr_6^{2-}$ в различных условиях. Изменение оптического спектра при стационарном фотолизе $PtBr_6^{2-}$ в водном растворе показано на рисунке 1. На начальной стадии фотолиза

Рис. 1. Стационарный фотолиз комплекса $PtBr_6^{2-}(5.5 \cdot 10^{-5} \text{ моль} \cdot n^{-1})$ в водном растворе при облучении в течение 0 (*I*), 4 (*2*), 9 (*3*), 14 (*4*), 60 (*5*) и 240 с (*6*); *а* — начальная стадия фотолиза (0—14 с), *b* — более продолжительное облучение (0—240 с).

(при глубине превращения <25%) сохраняются три изосбестических точки при 216, 242 и 287 нм (см. рис. 1, *a*). При более продолжительном облучении изосбестические точки исчезают и формируется плечо в области 250 нм (см. рис. 1, *b*, спектры 5, *6*). Характер спектральных изменений при фотолизе не зависит от наличия кислорода в растворе. При фотолизе в буферном растворе (рН 6.86) динамика спектральных изменений аналогична наблюдаемым изменениям в водном растворе с небольшим смещением изосбестических точек на первой стадии фотореакции (217, 245 и 291 нм).

При фотолизе в кислом растворе картина спектральных изменений существенно отличается (рис. 2). Изменение спектра практически останавливается после уменьшения поглощения полосы с максимумом при 313 нм в ~2 раза (см. рис. 2, *b*). Изосбестические точки при 214, 239 и 284 нм сохраняются в течение всего процесса облучения, что согласуется с данными работы⁸.

Темновые реакции после облучения растворов PtBr₆^{2–}**.** При добавлении к облученным растворам свободных бромид-ионов во всех случаях снова появляется спектр исходного комплекса (рис. 3), что может происходить, если продуктами фотолиза являют-

Рис. 2. Стационарный фотолиз комплекса $PtBr_6^{2-}(5.8 \cdot 10^{-5} \text{ моль} \cdot n^{-1})$ в 1 *M* HClO₄ при облучении в течение 0 (*1*), 4 (*2*), 12 (*3*), 23 (*4*), 35 (*5*) и 180 с (*6*); *a* — начальная стадия фотолиза (0–23 с), *b* — более продолжительное облучение (0–180 с).

ся акватированные комплексы Pt^{IV}. Рассмотрим происходящие реакции на примере фотолиза водных растворов $PtBr_6^{2-}$ (см. рис. 1). На первой стадии, соот-

Рис. 3. Процесс восстановления спектра $PtBr_6^{2-}$ (1.5 · 10⁻⁴ моль · n^{-1}) после фотолиза в водном растворе, содержащем 0.4 *M* NaBr: *1* — исходный спектр, *2* — после облучения (2 мин), *3* и *4* — спектры после выдерживания в темноте в течение 12 и 93 мин соответственно.

ветствующей замещению одного иона Br⁻ и образованию комплекса PtBr₅(H₂O)⁻, наблюдается сохранение трех изосбестических точек (см. рис. 1, *a*). При дальнейшем облучении формируется комплекс PtBr₄(H₂O)₂, которому согласно опубликованным ранее¹⁰ данным соответствует поглощение в области 250 нм (см. рис. 1, *b*, спектр 5). При очень длительном облучении происходит фотоакватация комплекса PtBr₄(H₂O)₂, сопровождающаяся исчезновением поглощения при 250 нм. Таким образом, квантовые выходы фотоакватации PtBr₆²⁻ и PtBr₅(H₂O)⁻ сравнимы по величине, тогда как квантовый выход PtBr₄(H₂O)₂ на порядок меньше.

Кинетические кривые, демонстрирующие появление спектра $PtBr_6^{2-}$ в облученном водном растворе после добавления иона Br⁻, приведены на рисунке 4. Основной вклад в поглощение при 313 и 365 нм дает комплекс $PtBr_6^{2-}$, а при 268 нм в большей степени поглощают акватированные комплексы. Кинетические кривые можно описать двумя экспоненциальными зависимостями с характерными временами 170±10 и 1200±200 с. Две стадии отвечают последовательному замещению двух молекул воды в координационной сфере на бромид-ионы

 $PtBr_4(H_2O)_2 \longrightarrow PtBr_5(H_2O)^- \longrightarrow PtBr_6^{2-}$.

Ранее кинетика замещения молекулы воды на бромид-ион в комплексе $PtBr_5(H_2O)^-$ была изучена^{18,19} в кислой среде (0.5 *M* HClO₄). Обнаружено^{18,19}, что наблюдаемая константа скорости (k_{app}) замещения зависит от концентрации бромид-ионов следующим образом:

$$k_{app} = k_1[Br^-] + k_2[Br^-]^2,$$
 (6)

где $k_1 = 1.8 \cdot 10^{-3}$ л · моль⁻¹ · c⁻¹ и $k_2 = 4.5 \cdot 10^{-2}$ л² · моль⁻² · c⁻¹. Наличие квадратичной зависимости k_{app} от концентрации Br⁻ было объяснено образованием внешнесферного комплекса бромид-иона с Pt^{IV}. При концентрации [Br⁻] ≈ 1 моль · л⁻¹ приведенные значения k_1 и k_2 дают величину характерного време-

Рис. 4. Кинетика изменения оптической плотности при $\lambda = 268$ (1), 313 (2) и 365 нм (3) после фотолиза PtBr₆²⁻ (5.8 · 10⁻⁵ моль · л⁻¹) в водном растворе, содержащем 1 *M* NaBr.

ни замещения H_2O на Br^- в комплексе $PtBr_5(H_2O)^$ в кислом растворе ~20 с. Из рисунка 4 следует, что в нейтральном водном растворе время жизни $PtBr_5(H_2O)^-$ примерно на два порядка больше (~1200 с). Сопоставление этих времен свидетельствует о наличии каталитического эффекта ионов $[H]^+$ в рассматриваемой реакции и дает представление о его масштабе.

УФ-спектры продуктов акватации. При фотолизе $PtBr_6^{2-}$ в буферном растворе с pH 6.86 первичным продуктом фотоакватации является комплекс PtBr₅(OH)²⁻, рассчитанный спектр которого представлен на рисунке 5 (спектр 2, две полосы с максимумами при 268 и 343 нм и коэффициентами поглощения $\varepsilon \approx 18000$ и 4600 л • моль⁻¹ • см⁻¹ соответственно). Для расчета использовали начальные участки кинетических кривых зависимости поглощения от продолжительности облучения (области сохранения изосбестических точек). В соответствии с опубликованными данными⁶ принято, что коэффициент поглощения для PtBr₅(OH)²⁻ при 313 нм равен 7000 л • моль $^{-1}$ • см $^{-1}$. При фотолизе PtBr₆²⁻ в кислом растворе (1 *M* HClO₄) можно предположить, что первичным продуктом фотоакватации является комплекс $PtBr_5(H_2O)^-$ (см. рис. 5, спектр 3). При расчете принимали, что коэффициент поглощения PtBr₅(H₂O)при 313 нм равен 10000 л • моль⁻¹ • см⁻¹.¹⁸

Резкое замедление фотохимических превращений в кислом растворе при неполном превращении (см. рис. 2) может быть связано с тем, что комплекс $PtBr_4(H_2O)_2$ (продукт второй стадии фотоакватации) быстро превращается обратно в $PtBr_5(H_2O)^-$. Выше уже было показано, что в кислой среде процессы замещения воды на бромид-ион в бромидных комплексах Pt^{IV} существенно ускоряются.

Квантовый выход фотолиза $PtBr_6^{2-}$. При определении квантового выхода первой стадии фотолиза $PtBr_6^{2-}$ использовали тот же коэффициент экстинкции для $PtBr_5(H_2O)^-$ при 313 нм, что и при вычислении УФ-спектра. Измеренный квантовый выход для водного раствора (0.39±0.05) совпадает с получен-

Рис. 5. Оптические спектры комплексов $PtBr_6^{2-}$ (1), $PtBr_5(OH)^{2-}(2)$ и $PtBr_5(H_2O)^{-}(3)$.

ной в работе⁶ величиной (0.4 ± 0.1) . В буферном растворе (pH 6.86) квантовый выход немного меньше (0.29 ± 0.05) , а в кислом растворе $(1 \ M \ HClO_4)$ существенно больше (0.60 ± 0.06) . В последнем случае квантовый выход в 2 раза выше значения, приведенного в работе⁸ $(0.5 \ M \ HClO_4)$.

Лазерный импульсный фотолиз водных растворов $PtBr_6^{2-}$. В опытах по лазерному импульсному фотолизу водных растворов PtBr₆²⁻ не обнаружено какого-либо промежуточного поглощения. Кинетические кривые имели ступенчатый характер, свидетельствующий о том, что все процессы протекают за времена <50 нс (временное разрешение установки). В спектральном диапазоне 285-500 нм оптическая плотность после лазерного импульса уменьшается, а при $\lambda < 285$ нм появляется сигнал поглощения (рис. 6). На рисунке 6 представлен разностный спектр комплексов PtBr₆²⁻ и продукта первой стадии фотолиза в водном растворе (см. рис. 1, а). Совпадение спектральных кривых, полученных при стационарном облучении и импульсном фотолизе, свидетельствует о том, что первая стадия фотоакватации протекает за время <50 нс. Для буферных растворов (рН 6.86) отсутствие промежуточного поглощения означает, что установление кислотно-основного равновесия между комплексами $PtBr_5(H_2O)^-$ и $PtBr_5(OH)^{2-}$ происходит также достаточно быстро.

Обсуждение механизма реакций. Стационарные измерения показали, что основным процессом в фотопревращениях комплекса $PtBr_6^{2-}$ в водных растворах является последовательная акватация комплексов платины. Импульсные эксперименты продемонстрировали, что этот процесс протекает быстрее нескольких десятков наносекунд без участия бимолекулярных реакций. Если бы промежуточные продукты выходили в объем растворителя, реакции этих частиц, приводящие в итоге к акватации и протекающие даже

с диффузионной константой скорости, протекали бы за время порядка микросекунд и могли быть зарегистрированы ($\tau \sim (k_{\text{diff}}C)^{-1} \sim 10^{-5} - 10^{-4}$ с, где $C \sim 10^{-5} - 10^{-6}$ л · моль⁻¹ — концентрация промежуточных частиц после лазерного импульса, $k_{\text{diff}} \approx$ 5 · 10⁹ л · моль⁻¹ · c⁻¹ — диффузионная константа скорости в воде). Таким образом, все процессы, приводящие к фотоакватации, быстро завершаются в непосредственной близости от возбужденного комплекса.

Можно представить два механизма, приводящих к быстрой фотоакватации комплекса $PtBr_6^{2-}$. Если комплекс, возбужденный первоначально в состояние с переносом заряда (¹CT, 308 нм), релаксирует в возбужденное d—d-состояние (³T_{1g}), в качестве первичного процесса может происходить гетеролитический разрыв связи Pt—Br⁻ и последующая акватация

$$PtBr_{6}^{2-}({}^{1}A_{1g}) \xrightarrow{h_{V}} (PtBr_{6}^{2-})^{*}({}^{1}CT) \longrightarrow$$
$$\longrightarrow (PtBr_{6}^{2-})^{*}({}^{1}T_{1g}), \qquad (7)$$

$$(PtBr_6^{2-})^* ({}^{1}T_{1g}) \longrightarrow (PtBr_6^{2-})^* ({}^{3}T_{1g}) \longrightarrow$$
$$(PtBr_5^{-\cdots}Br^{-}), \qquad (8)$$

 $(PtBr_5^{-\cdots}Br^{-}) - H_2O \longrightarrow PtBr_5(H_2O)^{-} + Br^{-}.$ (9)

В этом случае центральный атом платины в ходе всего процесса остается в четырехвалентном состоянии. Качественная зависимость энергии термов комплекса $PtBr_6^{2-}$ от расстояния Pt-Br показана на рисунке 7. Термы с d-d-возбуждением (${}^{1}T_{1g}$, ${}^{3}T_{1g}$), отвечающие только угловому перераспределению электронной плотности, должны иметь минимум энергии при расстояниях, близких к минимальному расстоянию для основного ${}^{1}A_{1g}$ -терма. Состояния с переносом заряда (CT) из-за значительного радиального смещения электронной плотности имеют минимумы энергии на больших расстояниях. По этой причине полосы поглощения d-d-переходов могут быть смещены в длинноволновую область относительно полос переноса заряда, однако минимум энергии для

Рис. 6. Лазерный импульсный фотолиз $PtBr_6^{2-}$ (2.8 · 10⁻⁵ моль · π^{-1}) в водном растворе: I — изменение оптической плотности образца после импульса (50 нс), 2 — изменение оптической плотности при стационарном фотолизе водного раствора $PtBr_6^{2-}$ (разность спектров I и 2 см. рис. 1).

Рис. 7. Основной (${}^{1}A_{1g}$) и нижние по энергии возбужденные термы комплекса PtBr₆²⁻. Кривые *1* и 2 отвечают двум возможным расположениям нижнего по энергии состояния с переносом заряда (CT) относительно d—d-возбужденного терма (${}^{3}T_{1g}$).

нижнего СТ-состояния может быть как выше минимума ${}^{3}T_{1g}$ -терма (см. рис. 7, кривая *I*), так и существенно ниже (кривая *2*). Механизм фотоакватации, представленный реакциями (7)—(9), относится к случаю, когда СТ-состояние лежит относительно высоко (кривая *I*), конверсия ${}^{3}T_{1g} \rightarrow$ СТ невозможна и фотоакватация происходит из ${}^{3}T_{1g}$ -состояния. Этот механизм совпадает с точкой зрения^{2,5–7} на фотохимические превращения комплекса PtBr₆^{2–} в водном растворе, и, скорее всего, он наиболее вероятен.

Однако нельзя полностью исключить возможность того, что нижнее по энергии СТ-состояние имеет более глубоко лежащий минимум по сравнению с ${}^{3}T_{1g}$ -термом (см. рис. 7, кривая 2). Тогда вероятна конверсия ${}^{3}T_{1g} \rightarrow CT$ и фотохимические реакции могут начинаться исходя из СТ-состояния

$$(PtBr_6^{2-})^* ({}^{3}T_{1g}) \longrightarrow (PtBr_6^{2-})^* (CT).$$
(10)

В этом случае может происходить гомолитический разрыв связи с образованием первичной радикальной пары

$$(\mathsf{PtBr}_6^{2-})^*(\mathsf{CT}) \longrightarrow (\mathsf{PtBr}_5^{2-\cdots}\mathsf{Br}^{\bullet}), \tag{11}$$

которая способна быстро превращаться во вторичную радикальную пару

$$(PtBr_5^{2-\dots}Br^{\bullet}) - H_2O \longrightarrow [PtBr_5(H_2O)^{2-\dots}Br^{\bullet}].$$
(12)

Если бы атом брома из вторичной радикальной пары выходил в объем растворителя, то в импульсных экспериментах, согласно указанным выше оценкам, в микросекундном временном диапазоне можно было ожидать появления поглощения промежуточного комплекса платины(III) PtBr₅(H₂O)^{2–}. Отсутствие такого поглощения может быть обусловлено быстрым обратным переносом электрона

$$[PtBr_{5}(H_{2}O)^{2-\cdots}Br^{-}] \longrightarrow [PtBr_{5}(H_{2}O)^{-\cdots}Br^{-}] \longrightarrow$$

$$\longrightarrow PtBr_{5}(H_{2}O)^{-} + Br^{-}.$$
(13)

Обратный перенос электрона конкурирует с диффузионным разделением вторичной радикальной пары, время жизни которой $\tau_{dif} = R^2/D \approx 0.4 \text{ Hc},^{20}$ где $R \approx 6.5 \text{ Å} - \text{суммарный радиус партнеров (комплекс$ $PtBr₅(H₂O)^{2–} и атом Br[•]), <math>D \approx 10^{-5} \text{ см}^2 \cdot \text{c}^{-1} - \text{суммар-}$ ный коэффициент диффузии. Таким образом, для подавления диффузионного разделения пары обратный перенос электрона должен происходить менее чем за ~40 пс.

Второй механизм основан на представлениях^{3,21}, развитых на примере фотохимических процессов с участием галогенидных комплексов $CoX(H_2O)_5^{2+}$. В обоих возможных механизмах быстро появляющимися конечными частицами являются ионы $PtBr_5(H_2O)^-$ и Br⁻, поэтому в наносекундных импульсных экспериментах эти процессы невозможно дифференцировать.

В процесс фотоакватации хлоридного комплекса PtCl₆^{2–} могут вносить вклад как гетеролитический, так и гомолитический разрыв связи Pt—Cl с образо-

ванием промежуточных комплексов платины(III). При определенных условиях это приводит к развитию цепных процессов и появлению зависимости квантового выхода фотолиза от концентрации исходного комплекса²²⁻²⁴. При реализации второго механизма разница в процессах фотоакватации комплексов PtBr₆²⁻ и PtCl₆²⁻ может определяться разными константами скорости обратного переноса электрона во вторичной радикальной паре. Ранее было высказано предположение²⁵, что эти различия обусловлены большой разницей в константах скорости реакций хлоридных и бромидных комплексов Pt^{III} и Pt^{IV}, которые могли быть ответственны за развитие цепей. Однако в настоящей работе при импульсном фотолизе PtBr₆²⁻ в наносекундном временном диапазоне не обнаружено спектральных проявлений комплексов Pt^{III} (в отличие от фотолиза водных растворов $PtCl_6^{2-})^{14}$.

Таким образом, для детального изучения процессов, происходящих при возбуждении комплекса PtBr₆²⁻, необходимо проведение экспериментов с пико- или фемтосекундным временным разрешением. Второе направление возможных исследований акцептирование атома брома, который может находиться во вторичной радикальной паре. Однако если эта пара, благодаря обратному переносу электрона, живет в течение ~40 пс, необходимые концентрации акцептора могут достигать неприемлемо высоких величин (>5 моль $\cdot \pi^{-1}$). Для комплекса $IrCl_6^{2-}$ использование в качестве акцептора атома хлора свободного иона Cl⁻ с концентрацией ~1 моль · л⁻¹ позволило оценить обратный перенос электрона (~100 пс)²⁶, который не полностью подавлял диффузионное расхождение вторичной радикальной пары. По этой причине для комплекса IrCl₆²⁻ зарегистрированы процессы как фотоакватации, так и фотовосстановления.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 05-03-32474, № 06-03-32110, № 05-03-39007-ГФЕН, № 06-03-90890-Мол и № 07-02-91016-АФ) и междисциплинарных и международных интеграционных грантов Сибирского отделения Российской академии наук (гранты 77 и 4.16).

Список литературы

- 1. C. K. Jorgensen, Mol. Phys., 1959, 2, 309.
- V. Balzani and V. Carassiti, *Photochemistry of Coordination Compounds*, Academic Press, New York, 1970, 432 p.
- A. W. Adamson and A. H. Sporer, J. Am. Chem. Soc., 1958, 80, 3865.
- 4. S. A. Penkett and A. W. Adamson, J. Am. Chem. Soc., 1965, 87, 2514.
- V. Balzani, V. Carassiti, and F. Scandola, *Gazz. Chim. Ital.*, 1966, 96, 1213.
- V. Balzani, M. F. Manfrin, and L. Moggi, *Inorg. Chem.*, 1967, 6, 354.
- 7. V. Balzani and V. Carassiti, J. Phys. Chem., 1968, 72, 383.
- В. В. Васильев, К. П. Балашев, Г. А. Шагисултанова, *Координац. химия*, 1982, **8**, 1235 [Sov. J. Coord. Chem., 1982, **8** (Engl. Transl.)].

- 9. R. L. Rich and H. Taube, J. Am. Chem. Soc., 1954, 76, 2608.
- 10. C. M. Davidson and R. F. Jameson, *Trans. Faraday Soc.*, 1965, **61**, 2462.
- V. P. Grivin, I. V. Khmelinski, and V. F. Plyusnin, J. Photochem. Phohobiol. A: Chem., 1990, 51, 379.
- V. P. Grivin, I. V. Khmelinski, V. F. Plyusnin, I. I. Blinov, and K. P. Balashev, J. Photochem. Photobiolog. A: Chem., 1990, 51, 167.
- V. P. Grivin, I. V. Khmelinski, and V. F. Plyusnin, J. Photochem. Phohobiol. A: Chem., 1991, 59, 153.
- 14. I. V. Znakovskaya, Yu. A. Sosedova, E. M. Glebov, V. P. Grivin, and V. F. Plyusnin, *Photochem. Photobiol. Sci.*, 2005, 4, 897.
- Е. М. Глебов, В. Ф. Плюснин, А. Б. Венедиктов, С. В. Коренев, Изв. АН. Сер. хим., 2003, 1234 [Russ. Chem. Bull., Int. Ed., 2003, 52, 1305].
- Синтез комплексных соединений металлов платиновой еруппы, под ред. И. И. Черняева, Наука, Москва, 1964, 339 с.
- 17. K. C. Kurien, J. Chem. Soc. B, 1971, 2081.

- 18. L. I. Elding and L. Gustafson, Inorg. Chim. Acta, 1971, 5, 643.
- L. I. Elding and L. Gustafson, *Inorg. Chim. Acta*, 1977, **22**, 201.
 R. M. Noyes, *Progress in Reaction Kinetics*, Pergamon, New York, 1961, Vol. **1**, Ch. 5.
- 21. J. F. Endicott, G. J. Ferraudi, and J. R. Barber, J. Phys. Chem., 1975, 79, 630.
- 22. L. E. Cox, D. G. Peters, and E. L. Wehry, J. Inorg. Nucl. Chem., 1972, 14, 297.
- 23. R. C. Wright and G. S. Laurence, J. Chem. Soc., Chem. Commun., 1972, 132.
- 24. К. П. Балашев, В. В. Васильев, А. М. Зимняков, Г. А. Шагисултанова, *Координац. химия*, 1984, **10**, 976 [*Sov. J. Coord. Chem.*, 1984, **10** (Engl. Transl.)].
- 25. P. G. Ford, J. D. Petersen, and R. E. Hintze, *Coord. Chem. Rev.*, 1974, **14**, 67.
- 26. E. M. Glebov, V. F. Plyusnin, N. V. Tkachenko, and H. Lemmetyinen, *Chem. Phys.*, 2000, **257**, 79.

Поступила в редакцию 2 марта 2007; после доработки — 17 мая 2007