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Convergence of the discrete dipole approximation.
I. Theoretical analysis
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We perform a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove
that errors in any measured quantity are bounded by a sum of a linear term and a quadratic term in the size
of a dipole d when the latter is in the range of DDA applicability. Moreover, the linear term is significantly
smaller for cubically than for noncubically shaped scatterers. Therefore, for small d, errors for cubically shaped
particles are much smaller than for noncubically shaped ones. The relative importance of the linear term de-
creases with increasing size; hence convergence of DDA for large enough scatterers is quadratic in the common
range of d. Extensive numerical simulations are carried out for a wide range of d. Finally, we discuss a number
of new developments in DDA and their consequences for convergence. © 2006 Optical Society of America
OCIS codes: 290.5850, 260.2110, 000.4430.
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. INTRODUCTION
he discrete dipole approximation (DDA) is a well-known
ethod to solve the light-scattering problem for arbitrary

haped particles. Since its introduction by Purcell and
ennypacker1 (PP), it has been improved constantly. The

ormulation of DDA summarized by Draine and Flatau2

ore than ten years ago is still the one most widely used
or many applications,3 partly owing to the publicly avail-
ble high-quality and user-friendly code DDSCAT.4 Al-
hough modern improvements of DDA (as discussed in de-
ail in Subsection 2.F) exist, they are still in the research
tage because they are not widely used in real applica-
ions.

DDA directly discretizes the volume of the scatterer
nd hence is applicable to arbitrary shaped particles.
owever, the drawback of this discretization is the ex-

reme computational complexity of DDA, although it is
ignificantly decreased by advanced numerical
echniques.2,5 That is why the usual application strategy
or DDA is single computation, where a discretization is
hosen on the basis of available computational resources
nd some empirical estimates of the expected errors.3,4

hese error estimates are based on a limited number of
enchmark calculations3 and hence are external to the
ight-scattering problem under investigation. Such error
stimates have evident drawbacks; however, no better al-
ernative is available. Some results of analytical analysis
1084-7529/06/102578-14/$15.00 © 2
f errors in computational electromagnetics are known,
.g., Refs. 6 and 7; however, they typically consider the
urface-integral equations. To the best of our knowledge,
uch analysis has not been done for volume-integral equa-
ions (such as DDA).

Usually errors in DDA are studied as a function of the
ize parameter of the scatterer x (at a constant or few dif-
erent total numbers of dipoles N), e.g., Refs. 2 and 8.
nly a small number of papers directly present errors
ersus discretization parameter (e.g., d—the size of a
ingle dipole).9–17 The range of d typically studied in those
apers is limited to a five-times difference between mini-
um and maximum values, with the exception of two

apers11,12 where it is 15 times. Those plots of errors ver-
us discretization parameter are always used to illustrate
he performance of a new DDA formulation and compare
t with others. No conclusions about the convergence
roperties of DDA, as a function of d, have been made on
he basis of these plots. To our knowledge, no theoretical
nalysis of DDA convergence has been performed; only a
ew limited empirical studies have appeared in the litera-
ure.

In this paper we perform a theoretical analysis of DDA
onvergence when refining the discretization (Section 2).
e derive rigorous theoretical bounds on the error in any
easured quantity for any scatterer. In Section 3 we

resent extensive numerical results of DDA computations
006 Optical Society of America
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or five different scatterers using many different discreti-
ations. These results are discussed in Section 4 to sup-
ort conclusions of the theoretical analysis. We formulate
he conclusions of the paper in Section 5. In a follow-up
aper18 (which from now on we refer to as Paper 2), the
heoretical convergence results are used for an extrapola-
ion technique to increase the accuracy of DDA computa-
ions.

. THEORETICAL ANALYSIS
n this section we analyze theoretically the errors of DDA
omputations. We formulate the volume-integral equation
or the internal electric field and its operator counterpart
n Subsection 2.A and its discretization in Subsection 2.B.
ubsection 2.C contains integral and discretized formulas

or measured quantities that are the final goal of any
ight-scattering simulation. We derive the main results in
ubsection 2.D, where we consider errors of the tradi-
ional DDA formulation2 without shape errors, which are
onsidered separately in Subsection 2.E. Finally, in Sub-
ection 2.F we discuss some recent DDA improvements
rom the viewpoint of our convergence theory.

. Integral Equation
hroughout this paper we assume the exp�−i�t� time de-
endence of all fields. The scatterer is assumed dielectric
ut not magnetic (magnetic permittivity �=1), and the
lectric permittivity is assumed isotropic [nonisotropic
ermittivity will significantly complicate the derivations
ut will not principally change the main conclusion of
ection 2—expressions (70) and (87)].
The general form of the integral equation governing the

lectric field inside the dielectric scatterer is the
ollowing19,20:

E�r� = Einc�r� +�
V\V0

d3r�Ḡ�r,r����r��E�r�� + M�V0,r�

− L̄��V0,r���r�E�r�, �1�

here Einc�r� ,E�r� are the incident and total electric
elds at location r and ��r�= ���r�−1� /4� is the suscepti-
ility of the medium at point r [��r� is relative permittiv-
ty]. V is the volume of the particle (more generally, the
olume that contains all points where the susceptibility is
ot zero), and V0 is a smaller volume such that V0�V,
�V0\�V0 . Ḡ�r ,r�� is the free-space dyadic Green’s func-
ion, defined as

Ḡ�r,r�� = �k2Ī + �̂�̂�g�R�

= g�R��k2�Ī −
R̂R̂

R2 � −
1 − ikR

R2 �Ī − 3
R̂R̂

R2 �� ,

�2�

here Ī is the identity dyadic, k=� /c is the free-space
ave vector, R=r−r�, R= �R�, R̂R̂ is a dyadic defined as

ˆ R̂��=R�R� (�, � are Cartesian components of the vector
r tensor), and g�R� is the scalar Green’s function
g�R� =
exp�ikR�

R
. �3�

is the following integral associated with the finiteness
f the exclusion volume V0:

M�V0,r� =�
V0

d3r��Ḡ�r,r����r��E�r�� − Ḡs�r,r����r�E�r��,

�4�

here Ḡs�r ,r�� is the static limit �k→0� of Ḡ�r ,r��:

Ḡs�r,r�� = �̂�̂
1

R
= −

1

R3�Ī − 3
R̂R̂

R2 � . �5�

¯ is the so-called self-term dyadic:

L̄��V0,r� = −	
�V0

d2r�
n̂�R̂

R3 , �6�

here n̂� is an external (as viewed from r) normal to the
urface �V0 at point r�.

Equation (1) can be rewritten in operator form as fol-
ows:

Ã · Ẽ = Ẽinc, �7�

here Ẽ�H1=L1�V→C3� represents functions from V to
3 that have finite L1 norm and Ẽinc�H2 is a subspace of
1 containing all functions that satisfy Maxwell equa-

ions in free space. Ã is a linear operator: H1→H2. Al-
hough the Sobolev norm is physically sounder (based on
he finiteness of energy of the electric field),6,21 we use the
1 norm. A detailed discussion of all assumptions made

or the electric field is performed in Subsection 2.D.

. Discretization
o solve Eq. (1) numerically, a discretization is done in the
ollowing way.20 Let V=�i=1

N Vi, Vi�Vj=0” for i� j. N de-
otes the number of subvolumes (dipoles). Assuming
�Vi and choosing V0=Vi, we can rewrite Eq. (1) as

E�r� = Einc�r� + 

j�i
�

Vj

d3r�Ḡ�r,r����r��E�r��

+ M�Vi,r� − L̄��Vi,r���r�E�r�. �8�

he set of Eq. (8) (for all i) is exact. Further, one fixed
oint ri inside each Vi (its center) is chosen, and r=ri is
et.

The usual approximation20 considers E and � constant
nside each subvolume:

E�r� = E�ri� = Ei, ��r� = ��ri� = �i for r � Vi. �9�

quation (8) can then be rewritten as

Ei = Ei
inc + 


j�i
ḠijVj�jEj + �M̄i − L̄i��iEi, �10�

here Einc=Einc�r �, L̄ = L̄��V ,r �,
i i i i i
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M̄i =�
Vi

d3r��Ḡ�ri,r�� − Ḡs�ri,r���, �11�

Ḡij =
1

Vj
�

Vj

d3r�Ḡ�ri,r��. �12�

further approximation, which is used in almost all for-
ulations of DDA, is

Ḡij
�0� = Ḡ�ri,rj�. �13�

his assumption is made implicitly by all formulations
hat start by replacing the scatterer with a set of point di-
oles, as was done originally by PP.1 For a cubical (as well
s spherical) cell Vi with ri located at the center of the
ell, L̄i can be calculated analytically, yielding22

L̄i =
4�

3
Ī. �14�

Equation (10), together with Eqs. (13) and (14) and
ompletely neglecting M̄i, is equivalent to the original
DA by PP.1 The diagonal terms in Eq. (10) are then
quivalent to the well-known Clausius–Mossotti polariz-
bility for point dipoles. Modifications introduced by other
DA prescriptions are discussed in Subsection 2.F.
In matrix notation, Eq. (10) reads as

ĀdEd = Einc,d, �15�

here Ed, Einc,d are elements of �C3�N [vectors of size N
here each element is a three-dimensional (3D) complex
ector] and Ād is a N�N matrix where each element is a
�3 tensor. d is the size of one dipole. In operator nota-
ion Eq. (8) (for r=ri) is as follows:

�ÃẼ��ri� = Ẽinc�ri� = Ei
inc,d. �16�

e define the discretization error function as

hi
d = �ÃẼ��ri� − �ĀdE0,d�i, �17�

here E0,d is the exact field at the centers of the dipoles,

i
0,d=Ẽ�ri�, in contrast to Ed that is only an approxima-

ion obtained from the solution of Eq. (15) [here we ne-
lect the numerical error that appears from the solution
f Eq. (15) itself, which is acceptable if this error is con-
rolled to be much less than other errors]. Using Eqs.
15)–(17), one can immediately obtain the error in inter-
al fields due to discretization �Ed:

�Ed = Ed − E0,d = �Ād�−1hd. �18�

. Measured Quantities
fter having determined the internal electric fields, we
an calculate scattered fields and cross sections. Scattered
elds are obtained by taking the limit r→	 of the integral

n Eq. (1) (see, e.g., Ref. 23):
Esca�r� =
exp�ikr�

− ikr
F�n�, �19�

here n=r /r is the unit vector in the scattering direction
nd F is the scattering amplitude:

F�n� = − ik3�Ī − n̂n̂�

i
�

Vi

d3r� exp�− ikr� · n���r��E�r��.

�20�

ll other differential scattering properties, such as the
mplitude and Mueller scattering matrices, and asymme-
ry parameter �cos 
� can be easily derived from F�n�, cal-
ulated for two incident polarizations.24 We consider an
ncident polarized plane wave:

Einc�r� = e0 exp�ik · r�, �21�

here k=ka, a is direction of incidence, and �e0 � =1 is as-
umed. The scattering and extinction cross sections
Csca ,Cext� are derived from the scattering amplitude23:

Csca =
1

k2 � d��F�n��2, �22�

Cext =
4�

k2 Re�F�a� · e0��, �23�

here * denotes complex conjugation. The expression for
he absorption cross section �Cabs� directly uses the inter-
al fields23:

Cabs = 4�k

i
�

Vi

d3r� Im���r����E�r���2. �24�

Since only values of the internal field in the centers of
ipoles are known, Eqs. (20) and (24) are approximated by
PP)

F�n� = − ik3�Ī − n̂n̂�

i

Vi�iEi
d exp�− ikri · n�, �25�

Cabs = 4�k

i

Vi Im��i��Ei
d�2. �26�

orrections to Eq. (26) are discussed in Subsection 2.F.
Both Eqs. (20) (for each component) and (24) can be

eneralized as �̃�Ẽ� (a functional that is not necessarily
inear), which is approximated as

�̃�Ẽ� = �d�Ed� + ��d, �27�

here �d�Ed� corresponds to Eq. (25) or (26), and the er-
or ��d consists of two parts:

��d = 
�̃�Ẽ� − �d�E0,d�� + 
�d�E0,d� − �d�Ed��. �28�

he first one comes from discretization [similar to Eq.
17)], and the second comes from errors in the internal
elds.
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. Error Analysis
n this subsection we perform error analysis for the PP
ormulation of DDA. Improvements of DDA are further
iscussed in Subsection 2.F.
We assume cubical subvolumes with size d. We also as-

ume that the shape of the particle is exactly described by
hese cubical subvolumes (we call this cubically shaped
catterer). Moreover, � is a smooth function inside V (ex-
ct assumptions on � are formulated below). An extension
f the theory to shapes that do not satisfy these conditions
s presented in Subsection 2.E. If there are several re-
ions with different values of � (smooth inside each re-
ion), the analysis is still valid, but interfaces inside V
hould be considered the same way as the outer boundary
f V. We further fix the geometry of the scattering prob-
em and incident field. Therefore we will be interested
nly in variation of discretization (which is characterized
y the single parameter d); for reasons that will become
lear in the sequel, we assume that kd
2 (this bound is
ot limiting, since otherwise DDA is generally

napplicable2).
We switch to dimensionless parameters by assuming

=1, which is equivalent to measuring all the distances in
nits of 1/k. The unit of the electric field can be chosen
rbitrary but constant. In all further derivations we will
se two sets of constants: �i and ci. �1–�13 are basic con-
tants that do not depend on the discretization d but do
epend directly on all other problem parameters—size pa-
ameter x=kReq (Req is the volume-equivalent radius), m,
hape, and incident field—or some of them. On the con-
rary, c1–c94 are auxiliary values that either are numeri-
al constants or can be derived in terms of constants �i.
lthough the dependencies of ci on �i are not explicitly de-
ived in this paper, one can easily obtain them following
he derivations of this section. That is the main motiva-
ion for using such a vast amount of constants instead of
n order-of-magnitude formalism. However, such explicit
erivation has limited application because, as we will see
urther, constants in the final result depend on almost all
asic constants. Qualitative analysis of these dependen-
ies will be performed at the end of this subsection. It
hould be noted that the main theoretical results concern-
ng DDA convergence [boundedness of errors by a qua-
ratic function, cf. expression (70)] can be formulated and
pplied without consideration of any constants (which is
impler). However, our full derivation enables us to make
dditional conclusions related to the behavior of specific
rror terms.

The total number of dipoles used to discretize the scat-
erer is

N = �1d−3. �29�

e assume that the internal field Ẽ is at least four times
ifferentiable and all these derivatives are bounded in-
ide V:

�E�r�� � �2, ���E�r�� � �3, �����E�r�� � �4,

�������E�r�� � �5, ���������E�r�� � �6

for r � V and " �,�,�,�. �30�

his assumption is acceptable, since there are no inter-
aces inside V; therefore Ẽ should be a smooth function. � · �
enotes the Euclidian �L2� norm, which is used for all 3D
bjects: vectors and tensors. We use the L1 norm, � · �1, for
-dimensional vectors and matrices as well as for func-

ions and operators. Expressions (30) immediately imply
hat Ẽ�L1�V�. We require that � satisfies expressions
30) with constants �7–�11. Further, we will state an es-
imate for the norm of Ḡ�R� and its derivatives. One can
asily obtain from Eq. (2) that for R�1 Ḡ�R� satisfies ex-
ressions (30) (with constants c1–c5), while for R�2

�Ḡ�R�� � c6R−3, ���Ḡ�R�� � c7R−4,

�����Ḡ�R�� � c8R−5, �������Ḡ�R�� � c9R−6,

���������Ḡ�R�� � c10R
−7 for " �,�,�,�. �31�

Next, we state two auxiliary facts that will be used
ater. Let Vc be a cube with size d and with its center at
he origin and f�r� be a four-times differentiable function
nside Vc. Then

� 1

d3�
Vc

d3rf�r� − f�0�� � c11d
2 max

��,r�Vc

�����f�r��, �32�

� 1

d3�
Vc

d3rf�r� − f�0�� �
d2

24
���2f�r��r=0�

+ c12d
4 max

����,r�Vc

���������f�r��.

�33�

xpressions (32) and (33) are the corollary of expanding f
nto a Taylor series. Odd orders of the Taylor expansion
anish because of cubical symmetry.

Our first goal is to estimate �hd�1. Starting from Eq.
17), we write hi

d as

hi
d = 


j�i
��

Vj

d3r�Ḡ�ri,r��P�r�� − d3Ḡij
�0�Pj� + M�Vi,ri�,

�34�

here we have introduced the polarization vector for con-
iseness:

P�r� = ��r�E�r�, Pi = P�ri�. �35�

t is evident that P�r� also satisfies expressions (30) (with
onstants c13–c17). We start by estimating �M�Vi ,ri��. Sub-
tituting a Taylor expansion of P�r�,

P�R� = P�0� + 

�

R����P��0� +
1

2

��

R�R������P��r̃��,�,R��,

�36�

here 0� r̃ �R , into Eq. (4) gives
� �
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M�Vi,ri� =�
Vi

d3R�Ḡ�R� − Ḡs�R��Pi

+
1

2�Vi

d3RḠ�R�

��

R�R������P��r̃��,�,R��.

�37�

he norms of these two terms can be estimated as

��
Vi

d3R�Ḡ�R� − Ḡs�R��Pi� = �2

3
ĪPi�

Vi

d3Rg�R�� � c18d
2,

�38�

��
Vi

d3RḠ�R�

��

R�R������P��r̃��,�,R���
� 3c15�

Vi

d3R�Ḡ�R��R2 � c19d
2. �39�

xpression (38) follows directly from the definitions in
qs. (2) and (5). To derive expression (39), we used expres-
ions (31) and the fact that 
�� �R�R� � �3R2. Finally, ex-
ressions (37)–(39) lead to

�M�Vi,ri�� � c20d
2. �40�

To estimate the sum in Eq. (34), we consider separately
hree cases: (1) dipole j lies in a complete shell of dipole i
we define the shell below); (2) j lies in a distant shell of
ipole i—Rij= �rj−ri � �1; and (3) all j that fall between the
rst two cases (see Fig. 1). We define the first shell 
S1�i��
f a cubical dipole as a set of dipoles that touch it (includ-
ng touching in one point only). The second shell 
S2�i�� is

set of dipoles that touch the outer surface of the first
hell, and so on. The lth shell 
Sl�i�� is then a set of all
ipoles that lie on the boundary of the cube with size
2l+1�d and center coinciding with the center of the origi-
al dipole. We call a shell complete if all its elements lie

nside the volume of the scatterer V. A shell is called a dis-
ant shell if all its elements satisfy Rij�1; i.e., if its order
�Kmax= 
1/d�. Let K�i� be the order of the first incom-
lete shell, which is an indicator of how close dipole i is to
he surface. We demand K�i��Kmax to separate cases (1)

ig. 1. Partition of the scatterer’s volume into three regions
elative to dipole i.
nd (2) described above. All j that fall in the third case
atisfy Rij
2 (the exact value of this constant—slightly
arger than �3—depends on d). The number of dipoles in

shell Sl (which can be incomplete)—ns�l�—can be esti-
ated as

ns�l� � �2l + 1�3 − �2l − 1�3 � c21l
2. �41�

he sum of the error over all dipoles that lie in complete
hells is then



l=1

K�i�−1



j�Sl�i�

��
Vj

d3r�Ḡ�ri,r��P�r�� − d3Ḡij
�0�Pj� . �42�

ince each shell in expression (42) is complete, it can be
ivided into pairs of dipoles that are symmetric over the
enter of the shell (j and −j). For convenience we set
=0. The inner sum in expression (42) can then be rewrit-
en as

1

2 

j�Sl�i�

��
Vj

d3r�Ḡ�r���P�r�� + P�− r��� − d3Ḡij
�0��Pj + P−j�� .

�43�

urther, we introduce the auxiliary function

u�r�� =
1

2
�P�r�� + P�− r��� − P�0�, �44�

hich satisfies the following inequalities [follows from ex-
ressions (30) for P�r� and Taylor series]:

�u�r�� � c22r
2, ���u�r�� � c23r,

�����u�r�� � c24 for " �,�. �45�

hen expression (43) is equivalent to



j�Sl�i�

��
Vj

d3r�Ḡ�r��u�r�� − d3Ḡij
�0�uj�

+ 

j�Sl�i�

��
Vj

d3r�Ḡ�r�� − d3Ḡij
�0��Pi, �46�

here uj=u�rj�. To estimate the first term, we apply ex-
ression (32) to the whole function under the integral. Us-
ng expressions (31) and (45), one may obtain

max
��,r��Vj

������Ḡ�r��u�r���� � c25Rij
−3 �47�

nd hence



j�Sl�i�

��
Vj

d3r�Ḡ�r��u�r�� − d3Ḡij
�0�uj�

� 

j�Sl�i�

c26d
5Rij

−3 � c27d
2l−1, �48�

here we have used expression (41) and Rij� ld for
�Sl�i�.

It is straightforward to show that



j�S �i�

�
V

d3r�Ḡ�r�� =
2

3
Ī 


j�S �i�
�

V

d3r�g�r��, �49�

l j l j
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j�Sl�i�

Ḡij
�0� =

2

3
Ī 


j�Sl�i�
g�Rij�. �50�

he derivation is based on Eq. (2) and the equivalence
ˆ R̂ /R2Û 1

3 Ī in all sums and integrals that satisfy cubical
ymmetry. Then the second part of expression (46) is
ransformed to

� 

j�Sl�i�

��
Vj

d3r�Ḡ�r�� − d3Ḡij
�0��Pi�

� c28 

j�Sl�i�

��
Vj

d3r�g�r�� − d3g�Rij�� � c29d
4l + c30d

2l−3,

�51�

here we apply expression (33) to derive the second in-
quality and use the identity �2g�r�=−g�r� and the follow-
ng inequalities:

�g�R�� � c31R
−1, ���������g�R�� � c32R

−5 for " �,�,�,�.

�52�

ubstituting expressions (48) and (51) into expression
42), one can obtain



l=1

K�i�−1



j�Sl�i�

��
Vj

d3r�Ḡ�ri,r��P�r�� − d3Ḡij
�0�Pj�

� �c33 + c34 ln K�i��d2, �53�

sing the fact that K�i�d�1.
We now consider the second part of the sum in Eq. (34)

where Rij�1). We first apply expression (32), then use
xpressions (30) for P�r� and Ḡ�r�, and finally invoke Eq.
29):



,Rij�1

��
Vj

d3r�Ḡ�ri,r��P�r�� − d3Ḡij
�0�Pj�

� 

j,Rij�1

c35d
5 � Nc35d

5 � c36d
2. �54�

To analyze the third part of the sum in Eq. (34), we
gain sum over shells; however, since they are incom-
lete, we cannot use symmetry considerations. We apply
xpression (33) to the whole function under the integral
nd proceed analogously to the derivation of expression
51). Using the identity

�2Ḡ�r� = − Ḡ�r� �55�

since we have assumed k=1), we obtain

��2�Ḡ�r�P�r��r=Rij
� � c37Rij

−4, �56�

max
����,r��Vj

����������Ḡ�r��P�r���� � c38Rij
−7, �57�

hich leads to


j�Sl�i�

��
Vj

d3r�Ḡ�ri,r��P�r�� − d3Ḡij
�0�Pj� � c39dl−2 + c40l

−5

�58�

nd then analogously to expression (53),



l=K�i�

Kmax



j�Sl�i�

��
Vj

d3r�Ḡ�ri,r��P�r�� − d3Ḡij
�0�Pj�

� c41dK−1�i� + c42K
−4�i�. �59�

ollecting expressions (40), (53), (54), and (59), we finally
btain

�hi
d� � c41dK−1�i� + c42K

−4�i� + �c43 + c44 ln K�i��d2.

�60�

hen

�hd�1 = 

i=1

N

�hi
d� � �c43 + c44 ln Kmax�Nd2

+ 

K=1

Kmax

n�K��c41dK−1 + c42K
−4�, �61�

here n�K� is the number of dipoles whose order of the
rst incomplete shell is equal to K. It is clear that

n�K� � n�1� � �12Nd, �62�

here �12 is the surface-to-volume ratio of the scatterer.
inally, we obtain

�hd�1 � N
�c43 − c45 ln d�d2 + c46d�. �63�

he last term in expression (63) is mostly determined by
ipoles that lie on the surface (or few dipoles deep) be-
ause it comes from the K−4 term in expression (61)
which rapidly decreases when moving from the surface).

e define surface errors as those associated with the lin-
ar term in expression (63). Our numerical simulation
see Subsection 3.B) shows that this term is small com-
ared with other terms for typical values of d; however, it
s always significant for small enough values of d.

From Eq. (18) we directly obtain

��Ed�1 � ��Ād�−1�1�hd�1. �64�

e assume that a bounded solution of Eq. (7) uniquely ex-
sts for any Ẽinc�H2; moreover, we assume that if
Ẽinc�1=1, then �Ẽ�1��13. These assumptions are equiva-
ent to the fact that �Ã−1�1 exists and is finite (the opera-
or Ã−1 is bounded). Because Ād is a discretization of Ã,
ne would expect that

lim
d→0

��Ād�−1�1 = �Ã−1�1 = �13. �65�

lthough Eq. (65) seems intuitively correct, its rigorous
roof, even if feasible, lies outside the scope of this paper.
or an intuitive understanding, one may consult the pa-
er by Rahola,25 where he studied the spectrum of the dis-
retized operator (for scattering by a sphere) and showed
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hat it does converge to the spectrum of the integral op-
rator with decreasing d. It should, however, be noted
hat convergence of the spectrum implies only the conver-
ence of the spectral �L2� norm of the operator and not
ecessarily the convergence of the L1 norm. Therefore Eq.

65) should be considered an assumption. It implies that
here exists a d0 such that

for d 
 d0 ��Ād�−1�1 � c47, �66�

here c47 is an arbitrary constant larger than �13 (al-
hough d0 depends on its choice). For example, c47=2�13
hould lead to a rather large d0 (a rigorous estimate of d0
oes not seem feasible). Therefore ��Ed�1 satisfies the
ame constraint as �hd�1 [expression (63)] but with con-
tants c48–c50.

Next, we estimate the errors in the measured quanti-
ies and start with the discretization error [first part in
q. (28)]. Examining Eqs. (20) and (24), one can see that
xpression (32) may be directly applied, leading to

��̃�Ẽ� − �d�E0,d�� � 

i

c51d
5 � c52d

2. �67�

he second part in Eq. (28) is estimated as

��d�E0,d� − �d�Ed�� � 

i

c53d
3��Ei

d� � c53d
3��Ed�1

� �c54 − c55 ln d�d2 + c56d, �68�

here we used Eq. (29). The estimation of the error for
abs additionally uses the fact ��Ei

d�2�c57 ��Ei
d �

c57=max
d
2,i

��Ei
d � �.

By combining expressions (67) and (68), we obtain the
nal result of this subsection:

���d� � �c58 − c55 ln d�d2 + c56d. �69�

t is important to remember that the derivation was per-
ormed for constant x, m, shape, and incident field. There
re 13 basic constants ��1–�13�. �1 [Eq. (29)] characterizes
he total volume of the scatterer; hence it depends only on
. �–�11 [expressions (30) for ��r�] can be easily obtained
iven the function ��r�; moreover, it is completely trivial
n the common case of homogenous scatterers. �12
surface-to-volume ratio, expression (62)] depends on the
hape of the scatterer and is inversely proportional to x. It
s not feasible (except for certain simple shapes) to obtain
he values of constants �2–�6 [expressions (30)], since an
xact solution for the internal fields is required. These
onstants definitely depend on all the parameters of the
cattering problem. Moreover, these dependencies can be
apidly varying, especially near the resonance regions.
he same is true for �13 [L1 norm of the inverse of the in-
egral operator, Eq. (65)]. Finally, there is the important
onstant d0 that also depends on all the parameters; how-
ver, one may expect it to be large enough (e.g., d0�2) for
ost of the problems—then its variation can be neglected.
Before proceeding, we introduce the discretization pa-

ameter y= �m �kd. We employ the commonly used formula
s proposed by Draine8; however, the exact dependence on

is not important because all the conclusions are still
alid for constant m. Replacing d by y does not signifi-
antly change the dependence of the constants in expres-
ion (69), since they all already depend on m through the
asic constants �2–�11, �13. This leads to

���y� � �c59 − c60 ln y�y2 + c61y. �70�

t is not feasible to make any rigorous conclusions about
he variation of the constants in expression (70) with
arying parameters because all these constants depend
n �2–�6, �13, which, in turn, depend in a complex way on
he parameters of the scattering problem. However, we
an make one conclusion about the general trend of this
ependency.
Following the derivation of expression (70), one can ob-

erve that c61 is proportional to �12, whereas c59 and c60 do
ot directly depend on it (at least part of the contributions
o them is independent of �12). Therefore the general
rend will be a decrease of the ratio c61/c59 with increas-
ng x (when all other parameters are fixed). This is a

athematical justification of the intuitively evident fact
hat surface errors are less significant for larger particles.

In the analysis of the results of the numerical simula-
ions (Subsection 3.B), we will neglect the variation of the
ogarithm. Expression (70) then states that error is
ounded by a quadratic function of y (for d�d0). However,
eep in mind that our derivation does not lead to an op-
imal error estimation; i.e., it overestimates the error and
an be improved. For example, the constants �2–�6 are
sually largest inside a small volume fraction of the scat-
erer (near the surface or some internal resonance re-
ions), whereas in the rest of the scatterer the internal
lectric field and its derivatives are bounded by signifi-
antly smaller constants. However, the order of the error
s estimated correctly, as we will see in the numerical
imulations.

It is important to note that expression (70) does not im-
ly that ��y (which is a signed value) actually depends on
as a quadratic function, but we will see later that it is

he case for small enough y (Subsection 3.B, see detailed
iscussion in Paper 2). Moreover, the coefficients of linear
nd quadratic terms for ��y may have different signs,
hich may lead to zero error for nonzero y (however, this
, if it exists, is unfortunately different for each measured
uantity).

. Shape Errors
n this subsection we extend the error analysis as pre-
ented in Subsection 2.D to shapes that cannot be de-
cribed exactly by a set of cubical subvolumes.

We perform the discretization the same way as in Sub-
ection 2.B, but some of the Vi are not cubical (for i��V,
hich denotes that dipole i lies on the boundary of the
olume V). We set ri to be still in the center of the cube
circumscribing Vi), not to break the regularity of the lat-
ice. The standard PP prescription uses equal volumes
Vi=d3� in Eqs. (10), (14), (25), and (26); i.e., the discreti-
ation changes the shape of the particle a little bit. We
ill estimate the errors introduced by these boundary di-
oles. These errors should then be added to those ob-
ained in Subsection 2.D. We start by estimating �hd�1.
irst, we consider hd for i��V:
i
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hi
d = 


j��V
��

Vj

d3r�Ḡ�ri,r��P�r�� − d3Ḡij
�0�Pj� , �71�

hich is just a reduction of Eq. (34). For i��V, hi
d is the

ame plus the error in the self-term:

hi
d = 


j��V
j�i

��
Vj

d3r�Ḡ�ri,r��P�r�� − d3Ḡij
�0�Pj� + M�Vi,ri�

− �L̄��Vi,ri� −
4�

3
Ī��iEi. �72�

et us define

hij
sh =�

Vj

d3r�Ḡ�ri,r��P�r�� − d3Ḡij
�0�Pj, �73�

hii
sh = M�Vi,ri� − �L̄��Vi,ri� −

4�

3
Ī��iEi. �74�

e estimate each of the terms in Eq. (73) separately
since there is actually no significant cancellation and the
rror is of the same order of magnitude as the values
hemselves) using expressions (30) for P�r� and Ḡ�r� and
xpressions (31). This leads to

�hij
sh� � �c62d

3Rij
−3, Rij 
 2

c63d
3, Rij � 1

. �75�

o estimate hii
sh, we assume that the surface of the scat-

erer is a plane on the scale of the size of the dipole. A fi-
ite radius of curvature only changes the constants in the
ollowing expressions. We will prove that

�hii
sh� � c64; �76�

herefore we do not need to consider the third term in Eq.
74) (coming from the unity tensor) at all, since it is
ounded by a constant:

M�Vi,ri� =�
Vi

d3r��Ḡ�ri,r�� − Ḡs�ri,r���P�r��

+�
Vi

d3r�Ḡs�ri,r���P�r�� − P�ri�� �77�

he function in the first integral is always bounded by
65 �r�−ri�−2. If ri�Vi, the same is true for the second in-
egral, and hence

�M�Vi,ri�� � c66d. �78�

f ri�Vi, we introduce an auxiliary point r� that is sym-
etric to ri, over the particle surface and apply the iden-

ity

P�r�� − P�ri� = �P�r�� − P�r��� + �P�r�� − P�ri�� �79�

o the second integral in Eq. (77). Using a Taylor expan-
ion of P near r� and the fact that �r�−r� � � �r�−ri� for

�V , one can show that
� i
�M�Vi,ri�� � c67d + c68��
Vi

d3r�Ḡs�ri,r��� , �80�

here the remaining integral can be proven to be equal to
L̄��Vi ,ri�. The last proof left [see expressions (74) and

80)] is to demonstrate that L̄��Vi ,ri� is bounded by a con-
tant. The only potential problem may come from the sub-
urface of �Vi that is part of the particle surface (because
t may be close to ri). This subsurface is assumed planar.

e will calculate the integral in Eq. (6) over the infinite
lane r�−ri=�+r such that � ·r=0. Then n�= ±� /� and

L̄�infinite plane, ri� = ��
R2

d2r
�̂�̂

���2 + r2�3/2 = � 2�
�̂�̂

�2 ,

�81�

hich is bounded. The rest of the integral (over the part of
he cube surface) is bounded by a constant, which is a
anifestation of a more general fact that (by its defini-

ion) L̄��Vi ,ri� does not depend on the size but only on the
hape of the volume. Finally, we have

�L̄��Vi,ri�� � c69, �82�

hich, together with expressions (74), (78), and (80),
roves expression (76).
Using expressions (75) and (76), we obtain

�hd�1 � 

i



j��V

�hij
sh� + 


j��V
�hii

sh� � 

j��V

� 

l=1

Kmax

c62ns�l�l−3

+ c70� � Nd�c71 − c72 ln d�, �83�

here we have changed the order of the summation in the
ouble sum and split the summation over cubical shells
or l�Kmax and l�Kmax. Then we have grouped every-
hing into one sum over boundary dipoles. Expressions
41) and (62) were used in the last inequality. Combining
xpressions (63) and (83), one can obtain the total esti-
ate of �hd�1 for any scatterer:

�hd�1 � N
�c43 − c45 ln d�d2 + �c73 − c72 ln d�d�. �84�

sing expression (66), we immediately obtain the same
stimate for ��Ed�1.

The derivation of the errors in the measured quantities
s slightly modified, compared with Subsection 2.D, by the
resence of the shape errors. Expressions (67) and (68)
re changed to

��̃�Ẽ� − �d�E0,d�� � 

i

c51d
5 + 


i��V
c74d

3 � c52d
2 + c75d,

�85�

��d�E0,d� − �d�Ed�� � c53d
3��Ed�1 � �c54 − c55 ln d�d2

+ �c76 − c77 ln d�d. �86�

he second term in expression (85) comes from surface di-
oles for which errors are the same order as the values
hemselves. Finally, the generalization of expression (70)
s
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���y� � �c59 − c60 ln y�y2 + �c78 − c79 ln y�y. �87�

he shape errors reinforce the surface errors (the linear
erm of discretization error), and, although both of them
enerally decrease with increasing size parameter x, one
ay expect the linear term in expression (87) to be sig-

ificant up to higher values of y than in expression (70).
All the derivations in this subsection can, in principle,

e extended to interfaces inside the particle, i.e., when a
urface, which cannot be described exactly as a surface of
set of cubes, separates two regions where ��r� varies

moothly. Two parts of the cubical dipole on the interface
hould be considered separately the same way as was
one above. This will, however, not change the main con-
lusion of this subsection—expression (87)—but only the
onstants.

. Different Discrete Dipole Approximation
ormulations
n this subsection we discuss how different DDA formula-
ions modify the error estimates derived in Subsections
.D and 2.E.
Most of the improvements of PP proposed in the litera-

ure are concerned with the self-term M�Vi ,ri�. They are
he radiative reaction correction8 (RR), the digitized
reen’s function,23 the formulation by Lakhtakia,26,27 the
1-term method,28,29 the lattice dispersion relation30

LDR), the formulation by Peltoniemi31 (PEL), and the
orrected LDR.32 All of them provide an expression for

�Vi ,ri� that is of order d2 (except for RR, which is of or-
er d3). For instance, LDR is equivalent to

M�Vi,ri� = 
�b1 + b2m2 + b3m2S�d2 + �2/3�id3�Pi �88�

remember that we assumed k=1), where b1 ,b2 ,b3 are
umerical constants and S is a constant that depends
nly on the propagation and polarization vectors of the in-
ident field. However, none of these formulations can ex-
ctly evaluate the integral in expression (39) because the
ariation of the electric field is not known beforehand
PEL solves this problem but only for a spherical dipole).
herefore they (it is hoped) decrease the constant in ex-
ression (40), thus decreasing the overall error in the
easured quantities. However, these formulations are

ot expected to change the order of the error from d2 to
ome higher order.

We do not analyze the improvements by Rahmani et
l.33,34 and the surface-corrected LDR,17 as they are lim-
ted to certain particle shapes.

There exist two improvements of the interaction term
n PP: filtered coupled dipoles12 (FCD) and integration of
reen’s tensor35 (IT). A rigorous analysis of FCD errors is
eyond the scope of this paper, but it seems that FCD is
ot designed to reduce the linear term in expression (63)
hat comes from the incomplete (nonsymmetric) shells.
his is because FCD employs sampling theory to improve
he accuracy of the overall discretization for regular cubi-
al grids. FCD does not improve the accuracy of a single
¯

ij calculation (approximation of an integral over one
ubvolume).
IT, which numerically evaluates the integral in Eq.
12), has a more pronounced effect on the error estimate.
onsider dipole j from the lth shell (incomplete) of dipole

, then

�
Vj

d3r�Ḡ�ri,r��P�r�� − d3ḠijPj

=�
Vj

d3r�Ḡ�ri,r���P�r�� − Pj�

� c80�
Vj

d3r�r�2 max
�,r��Vj

���Ḡ�ri,r���

+ c81�
Vj

d3r��Ḡ�ri,r���r�2 � c82dl−4. �89�

ere we have used Eq. (36) and a Taylor expansion of
reen’s tensor up to the first order. Expression (89) states

hat the second term in expression (58) is completely
liminated and so is the linear term in expressions (69)
nd (70) (surface errors). Therefore convergence of DDA
ith IT for cubically shaped scatterers is expected to be
urely quadratic (neglecting the logarithm). However, for
oncubically shaped scatterers the linear term reappears,
wing to the shape errors. Both IT and FCD also modify
he self-term; however, the effect is basically the same as
or the other formulations.

Several papers aimed to reduce shape errors.10,11,36 The
rst one—the generalized semi-analytical method10—
odifies the whole DDA scheme, and the other two pro-

ose averaging of the susceptibility over the boundary di-
oles. We will analyze here weighted discretization (WD)
y Piller,11 which is probably the most advanced method
o reduce shape errors available today.

WD modifies the susceptibility and self-term of the
oundary subvolume. We slightly modify the definition of
he boundary subvolume used in Subsections 2.B and 2.E
o automatically take into account interfaces inside the
catterer. We define Vi to be always cubical but with a
ossible interface inside. The particle surface, crossing
he subvolume Vi, is assumed planar and divides the sub-
olume into two parts: the principal volume Vi

p (contain-
ng the center) and the secondary volume Vi

s with suscep-
ibilities �i

p��i, �i
s and electric fields Ei

p�Ei, Ei
s,

espectively. The electric fields are considered constant in-
ide each part and related to each other via the boundary-
ondition tensor T̄i:

Ei
s = T̄iEi. �90�

n WD the susceptibility of the boundary subvolume is re-
laced by an effective one, defined as

�̄i
e = �Vi

p�i
pĪ + Vi

s�i
sT̄i�/d3, �91�

hich gives the correct total polarization of the cubical di-
ole. The effective self-term is directly evaluated starting
rom Eq. (4), considering � and E constant inside each
art,
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M̄�Vi,r� = ��
Vi

p
d3r��Ḡ�ri,r�� − Ḡs�ri,r����i

p

+�
Vi

s
d3r��Ḡ�r,r�� − Ḡs�ri,r����i

sT̄i�Ei.

�92�

iller evaluated the integrals in Eq. (92) numerically.11

To take a smooth variation of the electric field and sus-
eptibility into account, we define �i

s=��r�� (r� is defined
n Subsection 2.E), and T̄i is calculated at the surface be-
ween ri and r� . Pi

p�Pi, and Pi
s=�i

sEi
s=�i

sT̄iEi. Then

�P�r�� − Pi
s� � c83 min

r�Vi
s
�r − ri�, �93�

here we have assumed that expressions (30) for ��r� and
�r� are also valid in Vi

s.
We start estimating errors of WD with hij

sh [cf. Eq. (73)]:

hij
sh =�

Vj
p
d3r��Ḡ�ri,r��P�r�� − Ḡij

�0�Pj
p�

+�
Vj

s
d3r��Ḡ�ri,r��P�r�� − Ḡij

�0�Pj
s�. �94�

sing Taylor expansions of P�r�� near rj and r� in Vj
p and

j
s, correspondingly, and expression (93), one may find

hat the main contribution comes from the derivative of
reen’s tensor, leading to [cf. expression (75)]

�hij
sh� � �c84d

4Rij
−4, Rij 
 2

c85d
4, Rij � 1

. �95�

ij
sh is the following [cf. Eq. (74)]:

hii
sh = �M�Vi,ri� − L̄��Vi,ri�Pi

p� − ��
Vi

p
d3r��Ḡ�ri,r��

− Ḡs�ri,r���Pi
p +�

Vi
s
d3r��Ḡ�r,r�� − Ḡs�ri,r���Pi

s

− L̄��Vi,ri��̄i
eEi�

=�
Vi

p
d3r�G�ri,r���P�r�� − Pi

p�

+�
Vi

s
d3r�Ḡ�ri,r���P�r�� − Pi

s�

+�
Vi

s
d3r�Ḡs�ri,r���Pi

s − Pi
p�

+ L̄��Vi,ri��̄i
eEi − L̄��Vi,ri�Pi

p. �96�

he first two integrals can be easily shown to be �c86d [cf.
q. (77)], and the third one is transformed to L̄ the same
ay as in expression (80), thus
�hii
sh� � c86d + �L̄��Vi

p,ri�Pi
p + L̄��Vi

s,ri�Pi
s − L̄��Vi,ri��̄i

eEi�,

�97�

here the second term comes from the fact that averaged
¯ P is not the same as L̄ times averaged P. This error de-
ends on the geometry of the interface inside Vi and gen-
rally is of order unity. For example, if the plane interface
s described as z=zi+�, taking the limit �→0 gives the er-
or �2��Pi

p−Pi
s�z� [using Eq. (81)]. Therefore WD does not

rincipally improve the error estimate of hii
sh, given by ex-

ression (76), although it may significantly decrease the
onstant. On the other hand, since L̄��Vi

p ,ri� and
¯ ��Vi

s ,ri� can be (analytically) evaluated for a cube inter-
ected by a plane, WD can be further improved to reduce
he error in hii

sh to linear in d, which is a subject of future
esearch.

Proceeding analogously to the derivation of expression
83), one can obtain

�hd�1 � 

j��V

� 

l=1

Kmax

c84ns�l�l−4 + c87 + c88d� � c89Nd.

�98�

t can be shown that for the scattering amplitude [Eq.
25)] the error estimate given by expression (85) can be
mproved, since WD correctly evaluates the zeroth order
f value for the boundary dipoles, leading to

��̃�Ẽ� − �d�E0,d�� � 

i

c51d
5 + 


i��V
c90d

4 � c91d
2. �99�

n his original paper11 Piller did not specify the expres-
ion that should be used for Cabs. Direct application of the
usceptibility provided by WD into Eq. (26) does not re-
uce the order of error when compared with the exact Eq.
24) (except when �i

s=0), since they are not linear func-
ions of the electric field. However, if we consider sepa-
ately Vi

p and Vi
s [which is equivalent to replacing

i Im���i
¯ eEi� ·Ei

*� by Vi
p Im��i

p� �Ei�2+Vi
s Im��i

s� � T̄iEi�2], the
ame estimate as in expression (99) can be derived for
abs.
Using expressions (98) and (99), and the first part of ex-

ression (86), one can derive the final error estimate for
D:

���y� � �c92 − c93 ln y�y2 + c94y, �100�

here the constant before the linear term, as compared
ith expression (87), does not contain a logarithm and is
xpected to be significantly smaller because several fac-
ors contributing to it are eliminated in WD. Although

D has a potential for improving, it does not seem fea-
ible to completely eliminate the linear term in the shape
rror. The accuracy of evaluation of the interaction term
ver the boundary dipole [cf. Eq. (94)] can be improved by
T over Vi

p and Vi
s separately but that would ruin the

lock-Toeplitz structure of the interaction matrix and
inder the fast Fourier transform–based algorithm for
he solution of linear equations.5 Since there is no compa-
able alternative to fast Fourier transform nowadays, this
ethod seems inapplicable.
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Minor modifications of the expression for Cabs are pos-
ible. Draine8 proposed a modification of Eq. (26) that was
idely used afterward and that was further modified by
haumet et al.35 However, for many cases these expres-
ions are equivalent, and, even when they are not, the dif-
erence is of order d3, which is neglected in our error
nalysis.

. NUMERICAL SIMULATIONS
. Discrete Dipole Approximation
he basics of the DDA method were summarized by
raine and Flatau.2 In this paper we use the LDR pre-

cription for dipole polarizability,30 which is most widely
sed nowadays, e.g., in the publicly available code DDSCAT

.1.4 We also employ dipole size correction8 for noncubi-
ally shaped scatterers to ensure that the cubical approxi-
ation of the scatterer has the correct volume; this is be-

ieved to diminish shape errors, especially for small
catterers.2 We use a standard discretization scheme as
escribed in Subsection 2.E, without any improvements
or boundary dipoles. It is important to note that all the
onclusions are valid for any DDA implementation but
ith a few changes for specific improvements, as dis-

ussed in Subsection 2.F.
Our code—AMSTERDAM DDA37—is capable of running on
cluster of computers (parallelizing a single DDA compu-

ation), which allows us to use a practically unlimited
umber of dipoles, since we are not limited by the
emory of a single computer.38,39 We used a relative error

f residual 
10−8 as a stopping criterion for the iterative
olution of the DDA linear system. Tests suggest that the
elative error of the measured quantities due to the itera-
ive solver is then 
10−7 (data not shown) and hence can
e neglected (total relative errors in our simulations are
10−6÷10−5—see Subsection 3.B). More details about our

ode can be found in Paper 2. All DDA simulations were
arried out on the Dutch national computer cluster
ISA.40

. Results
e study five test cases: one cube with kD=8; three

pheres with kD=3,10,30; and a particle obtained by a
ubical discretization of the kD=10 sphere using 16 di-
oles per D (total 2176 dipoles, x equal to that of a sphere;
ee detailed description in Paper 2). By D we denote the
iameter of a sphere or the edge size of a cube. All scat-
erers are homogenous with m=1.5. Although DDA errors
ignificantly depend on m (see, e.g., Ref. 14), we limit our-
elves to one single value and study effects of size and
hape of the scatterer.

The maximum number of dipoles per D �nD� was 256.
he values of nD that we used are of the form {4,5,6,7} �2p�

p is an integer), except for the discretized sphere, where
ll nD are multiples of 16 (this is required to exactly de-
cribe the shape of the particle composed from a number
f cubes). The minimum values for nD were 8 for the kD
3 sphere; 16 for the cube, the kD=10 sphere, and the
iscretized sphere; and 40 for the kD=30 sphere.
All the computations use a direction of incidence paral-

el to one of the principal axes of the cubical dipoles. The
cattering plane is parallel to one of the faces of the cubi-
al dipoles. In this paper we show results only for the ex-
inction efficiency Qext (for incident light polarized paral-
el to one of the principal axes of the cubical dipoles) and
hase function S11�
� as the most commonly used in ap-
lications. However, the theory applies to any measured
uantity. For instance, we have also confirmed it for other
ueller matrix, elements (data not shown).
Exact results of S11�
� for all five test cases are shown

n Fig. 2. For spheres this is the result of Mie theory (the
elative accuracy of the code we used24 is at least 
10−6)
nd for the cube and discretized sphere an extrapolation
ver the five finest discretizations (the extrapolation tech-
ique is presented in Paper 2, together with all details of
btaining these results, including their estimated errors).
e use such “exact” results because analytical theory is

navailable for these shapes and because errors of the
est discretization are larger than that of the extrapola-
ion. Their use as references for computing real errors
difference between the computed and the exact values) of
ingle DDA calculations is justified because all these real
rrors are significantly larger than the errors of the ref-
rences themselves (see Paper 2; in general, real errors
btained this way have an uncertainty of reference error).
xact values of Qext for all test cases are presented in
able 1.
In the following we show the results of DDA conver-

ence. Figures 3 and 4 present relative errors (absolute
alues) of S11 at different angles 
 and maximum error
ver all 
 versus y in a log–log scale. In many cases the
aximum errors are reached at an exact backscattering

irection, then these two sets of points overlap. Deep
inima that happen at intermediate values of y for some

Table 1. Exact Values of Qext for the Five Test
Cases

article Qext

D=8 cube 4.490
iscretized kD=10 sphere 3.916
D=3 sphere 0.753
D=10 sphere 3.928
D=30 sphere 1.985

ig. 2. S11�
� for all five test cases in logarithmic scale. The re-
ult for the kD=3 sphere is multiplied by 10 for convenience.
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alues of 
 (and also sometimes for Qext—Fig. 5) are due
o the fact that the differences between simulated and ref-
rence values change sign near these values of y (see Pa-
er 2 for a detailed description of this behavior). The solid
ines are linear fits to all or some points of maximum er-
or. The slopes of these lines are depicted in the figures.
igure 5 shows relative errors of Qext for all five studied
ases in a log–log scale. A linear fit through the five finest
iscretizations of the kD=3 sphere is shown. More results
f these numerical simulations are presented in Paper 2.

. DISCUSSION
onvergence of DDA for cubically shaped particles (Fig. 3)
hows the following trends. All curves have linear and
uadratic parts (the nonmonotonic behavior of errors for
ome 
 is also a manifestation of the fact that the signed
ifference can be approximated by a sum of linear and
uadratic terms that have different signs). The transition
etween these two regimes occurs at different y (which in-
icates the relative importance of linear and quadratic co-
fficients). Although for maximum errors that are close to
hose of the backscattering direction the linear term is
ignificant for larger y, it is much smaller and not signifi-
ant in the whole range of y studied for side scattering

=90° �. Results of DDA convergence for spheres (Fig. 4)
how a different behavior for different sizes. Errors for
he small �kD=3� sphere converge purely linear [except

ig. 3. Relative errors of S11 at different angles 
 and maximum
ver all 
 versus y for (a) the kD=8 cube, (b) the cubical discreti-
ation of the kD=10 sphere. A log–log scale is used. A linear fit of
aximum over 
 errors is shown �m=1.5�.
or a small deviation of errors of S11�90° � for large values
f y]. Similar results are obtained for the kD=10 sphere
ut with significant oscillations superimposed on the gen-
ral trend. Convergence for the large �kD=30� sphere is
uadratic or even faster in the range of y studied, also
ith significant oscillations.
Comparing Figs. 3 and 4 [especially Figs. 3(b) and 4(b)

howing results for almost the same particles], one can
educe the following differences in DDA convergence for
ubically and noncubically shaped scatterers. The linear
erm for cubically shaped scatterers is significantly
maller, resulting in smaller total errors, especially for
mall y. All these conclusions, together with the size de-
endence of the significance of the linear term in the total

ig. 4. Same as Fig. 3 but for (a) kD=3, (b) kD=10, and (c)
D=30 spheres.
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rrors, are in perfect agreement with the theoretical pre-
ictions made in Subsections 2.D and 2.E. Errors for non-
ubically shaped particles exhibit quasi-random oscilla-
ions that are not present for cubically shaped particles.
his can be explained by the sharp variations of shape er-
ors with changing y (discussed in detail in Paper 2). Os-
illations for the kD=3 sphere [Fig. 4(a)] are very small
but still clearly present), which is due to the small size of
he particle and hence featurelessness of its light-
cattering pattern—the surface structure is not that im-
ortant, and one may expect rather small shape errors.
esults for Qext (Fig. 5) fully support the conclusions. Er-
ors of Qext for the large sphere at small values of y are
nexpectedly smaller than for smaller spheres. This fea-
ure requires further study before any firm conclusions
re made; however, there is definitely no similar tendency
or S11�
� (cf. Fig. 4).

We have also studied a kD=8 porous cube that was ob-
ained by dividing a cube into 27 smaller cubes and then
emoving randomly nine of them. All the conclusions are
he same as those reported for the cube but with slightly
igher overall errors (data not shown).
In this paper we have used a traditional DDA

ormulation2 for numerical simulations. However, as we
howed in Subsection 2.E, several modern improvements
f DDA (namely, IT and WB) should significantly change
ts convergence behavior. IT should completely eliminate
he linear term for cubically shaped scatterers, which
hould improve the accuracy especially for small y. WD
hould significantly decrease shape and hence total errors
or noncubically shaped particles; moreover, it should sig-
ificantly decrease the amplitude of quasi-random error
scillations because it takes into account the location of
he interface inside the boundary dipoles. Numerical test-
ng of DDA convergence using IT and WD is a subject of a
uture study.

. CONCLUSION
o the best of our knowledge, we conducted for the first
ime a rigorous theoretical convergence analysis of DDA.
n the range of DDA applicability �kd
2�, errors are

ig. 5. Relative errors of Qext versus y for all five test cases. A
og–log scale is used. A linear fit through five finest discretiza-
ions of the kD=3 sphere is shown.
ounded by a sum of a linear term and a quadratic term
n the discretization parameter y; the linear term is sig-
ificantly smaller for cubically than for noncubically
haped scatterers. Therefore for small y, errors for cubi-
ally shaped particles are much smaller than for noncubi-
ally shaped ones. The relative importance of the linear
erm decreases with increasing size; hence convergence of
DA for large enough scatterers is quadratic in the com-
on range of y. All these conclusions were verified by ex-

ensive numerical simulations.
Moreover, these simulations showed that errors are not

nly bounded by a quadratic function (as predicted in Sec-
ion 2) but actually can be (with good accuracy) described
y a quadratic function of y. This fact provides a basis for
he extrapolation technique presented in Paper 2.

Our theory predicts that modern DDA improvements
namely, IT and WD) should significantly change the con-
ergence of DDA; however, numerical testing of these pre-
ictions is left for future research.
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