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We perform a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove
that errors in any measured quantity are bounded by a sum of a linear term and a quadratic term in the size
of a dipole d when the latter is in the range of DDA applicability. Moreover, the linear term is significantly
smaller for cubically than for noncubically shaped scatterers. Therefore, for small d, errors for cubically shaped
particles are much smaller than for noncubically shaped ones. The relative importance of the linear term de-
creases with increasing size; hence convergence of DDA for large enough scatterers is quadratic in the common
range of d. Extensive numerical simulations are carried out for a wide range of d. Finally, we discuss a number
of new developments in DDA and their consequences for convergence. © 2006 Optical Society of America
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1. INTRODUCTION

The discrete dipole approximation (DDA) is a well-known
method to solve the light-scattering problem for arbitrary
shaped particles. Since its introduction by Purcell and
Pennypacker1 (PP), it has been improved constantly. The
formulation of DDA summarized by Draine and Flatau®
more than ten years ago is still the one most widely used
for many applications,” partly owing to the publicly avail-
able high-quality and user-friendly code DDSCAT.* Al-
though modern improvements of DDA (as discussed in de-
tail in Subsection 2.F) exist, they are still in the research
stage because they are not widely used in real applica-
tions.

DDA directly discretizes the volume of the scatterer
and hence is applicable to arbitrary shaped particles.
However, the drawback of this discretization is the ex-
treme computational complexity of DDA, although it is
significantly = decreased by advanced numerical
techniques.>® That is why the usual application strategy
for DDA is single computation, where a discretization is
chosen on the basis of available computational resources
and some empirical estimates of the expected errors.®*
These error estimates are based on a limited number of
benchmark calculations® and hence are external to the
light-scattering problem under investigation. Such error
estimates have evident drawbacks; however, no better al-
ternative is available. Some results of analytical analysis
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of errors in computational electromagnetics are known,
e.g., Refs. 6 and 7; however, they typically consider the
surface-integral equations. To the best of our knowledge,
such analysis has not been done for volume-integral equa-
tions (such as DDA).

Usually errors in DDA are studied as a function of the
size parameter of the scatterer x (at a constant or few dif-
ferent total numbers of dipoles N), e.g., Refs. 2 and 8.
Only a small number of papers directly present errors
versus discretization parameter (e.g., d—the size of a
single dipole).®!" The range of d typically studied in those
papers is limited to a five-times difference between mini-
mum and maximum values, with the exception of two

1L12 where it is 15 times. Those plots of errors ver-
sus discretization parameter are always used to illustrate
the performance of a new DDA formulation and compare
it with others. No conclusions about the convergence
properties of DDA, as a function of d, have been made on
the basis of these plots. To our knowledge, no theoretical
analysis of DDA convergence has been performed; only a
few limited empirical studies have appeared in the litera-
ture.

In this paper we perform a theoretical analysis of DDA
convergence when refining the discretization (Section 2).
We derive rigorous theoretical bounds on the error in any
measured quantity for any scatterer. In Section 3 we
present extensive numerical results of DDA computations
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for five different scatterers using many different discreti-
zations. These results are discussed in Section 4 to sup-
port conclusions of the theoretical analysis. We formulate
the conclusions of the paper in Section 5. In a follow-up
paper18 (which from now on we refer to as Paper 2), the
theoretical convergence results are used for an extrapola-
tion technique to increase the accuracy of DDA computa-
tions.

2. THEORETICAL ANALYSIS

In this section we analyze theoretically the errors of DDA
computations. We formulate the volume-integral equation
for the internal electric field and its operator counterpart
in Subsection 2.A and its discretization in Subsection 2.B.
Subsection 2.C contains integral and discretized formulas
for measured quantities that are the final goal of any
light-scattering simulation. We derive the main results in
Subsection 2.D, where we consider errors of the tradi-
tional DDA formulation® without shape errors, which are
considered separately in Subsection 2.E. Finally, in Sub-
section 2.F we discuss some recent DDA improvements
from the viewpoint of our convergence theory.

A. Integral Equation
Throughout this paper we assume the exp(-iwt) time de-
pendence of all fields. The scatterer is assumed dielectric
but not magnetic (magnetic permittivity u=1), and the
electric permittivity is assumed isotropic [nonisotropic
permittivity will significantly complicate the derivations
but will not principally change the main conclusion of
Section 2—expressions (70) and (87)].

The general form of the integral equation governing the
electric field inside the dielectric scatterer is the
following™*20:

E(r) =E"™(r) + J d3r’(_}(r,r’)X(r’)E(r’) +M(Vy,r)

V\V,
- L(6V,,r)x(r)E(r), (1)

where E”¢(r),E(r) are the incident and total electric
fields at location r and x(r)=(e(r)-1)/47 is the suscepti-
bility of the medium at point r [e(r) is relative permittiv-
ity]. V is the volume of the particle (more generally, the
volume that contains all points where the susceptibility is
not zero), and V, is a smaller volume such that V,CV,

reVy\dV,. G(r,r’) is the free-space dyadic Green’s func-
tion, defined as

G(r,r') = (kT +VV)g(R)

[~ BR\ 1-ikR(_ RR
=g(R) k I—F —T I—3F 5
(2)

where T is the identity dyadic, k=w/c is the free-space
wave vector, R=r—r', R=|R|, RR is a dyadic defined as
RR w=R, R, (u, vare Cartesian components of the vector
or tensor), and g(R) is the scalar Green’s function
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exp(ikR)

g(R) = —r 3)

M is the following integral associated with the finiteness
of the exclusion volume V:

M(V,,r) = f a®r'(G(r,x")x(r)E(r') - G*(r,r' ) x(r)E(r)),

Vo
(4)
where G5(r,r’) is the static limit (¢ — 0) of G(r,r’):
_ .1 1(_ RR
G(I‘,I‘)ZVVI—%=—}? I—3? . (5)
L is the so-called self-term dyadic:
_ , AR
L(9Vy,r) = —jg d ,F’ (6)

Vo

where ' is an external (as viewed from r) normal to the
surface dV at point r’.

Equation (1) can be rewritten in operator form as fol-
lows:

A-E=E, (7

where E e H;=L1(V— C3) represents functions from V to

C3 that have finite L norm and E" ¢ H, o is a subspace of
H, containing all functions that satisfy Maxwell equa-

tions in free space. A is a linear operator: H{— H,. Al-
though the Sobolev norm is physically sounder (based on
the finiteness of energy of the electric field),%?! we use the
L' norm. A detailed discussion of all assumptions made
for the electric field is performed in Subsection 2.D.

B. Discretization

To solve Eq. (1) numerically, a discretization is done in the
following way.*’ Let V=UN,V;, V;NV;=0 for i #j. N de-
notes the number of subvolumes (dipoles). Assuming
r € V; and choosing V,=V;, we can rewrite Eq. (1) as

E(r)=E™x)+ > | d®'G(r,r)x(x)Ex’)

J#Fi VJ
+M(V,,r) - L(9V,,r)x(r)E(r). (8)

The set of Eq. (8) (for all i) is exact. Further, one fixed
point r; inside each V; (its center) is chosen, and r=vr; is
set.

The usual approximation® considers E and y constant
inside each subvolume:

E(r)=E(r)=E;, x(r)=x(r)=x; forreV, (9)
Equation (8) can then be rewritten as

E;=E"+> G;VyE+ M -L)xE,  (10)

J#i

where Eﬁ"cin”c(ri), iizi(aVi,ri),
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Mi = f d3r,(a(ri3r’) - (_}s(ri’r’))’ (11)
Vi
_ 1 _
Gj=— d3r' G(r;,x"). (12)
iy,

A further approximation, which is used in almost all for-
mulations of DDA, is

Gijo) = a(ri,rj) . (13)

This assumption is made implicitly by all formulations
that start by replacing the scatterer with a set of point di-
poles, as was done originally by PP.! For a cubical (as well
as spherical) cell V; with r; located at the center of the

cell, L; can be calculated analytically, yielding??

_ 4w

Equation (10), together with Eqs. (13) and (14) and
completely neglecting IVIi, is equivalent to the original
DDA by PP.! The diagonal terms in Eq. (10) are then
equivalent to the well-known Clausius—Mossotti polariz-
ability for point dipoles. Modifications introduced by other
DDA prescriptions are discussed in Subsection 2.F.

In matrix notation, Eq. (10) reads as

AdEd — Einc,d’ (15)

where EZ, Ei"¢4 gre elements of (C3)V [vectors of size N
where each element is a three-dimensional (3D) complex

vector] and A9 is a N X N matrix where each element is a
3 X 3 tensor. d is the size of one dipole. In operator nota-
tion Eq. (8) (for r=r;) is as follows:

AE)(r) =E"(r;) = E/*. (16)
We define the discretization error function as
h{ = AE)(r,) - (A’E*%),, 17)

where E% is the exact field at the centers of the dipoles,
E?’d=ﬁ(ri), in contrast to E¢ that is only an approxima-
tion obtained from the solution of Eq. (15) [here we ne-
glect the numerical error that appears from the solution
of Eq. (15) itself, which is acceptable if this error is con-
trolled to be much less than other errors]. Using Egs.
(15)—(17), one can immediately obtain the error in inter-
nal fields due to discretization SEZ:

SE? = E¢ - E%¢ = (AY)~1h?. (18)

C. Measured Quantities

After having determined the internal electric fields, we
can calculate scattered fields and cross sections. Scattered
fields are obtained by taking the limit r — o of the integral
in Eq. (1) (see, e.g., Ref. 23):
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exp(ikr)
E*(r) = WF(II)’ (19)

where n=r/r is the unit vector in the scattering direction
and F is the scattering amplitude:

Fn)=- ik3(i - ﬂﬁ)z f d3r’ exp(-ikr’ -n)x(r")E(r').
i V;
(20)

All other differential scattering properties, such as the
amplitude and Mueller scattering matrices, and asymme-
try parameter {cos 6) can be easily derived from F(n), cal-
culated for two incident polariza‘cions.24 We consider an
incident polarized plane wave:

E"(r) = e’ exp(ik - 1), (21)

where k=*ka, a is direction of incidence, and |e°| =1 is as-
sumed. The scattering and extinction cross sections

(Cyeq,Cors) are derived from the scattering amplitude?:

1

Csca = ? f d‘Q|F(n)|2> (22)
4

Coxt = ﬁRe(F(a) -e”), (23)

where * denotes complex conjugation. The expression for
the absorption cross section (C,;,) directly uses the inter-
nal fields®:

Cabs=477kzj d3r' Im(x(x")|E(x")2. (24)
i V;

Since only values of the internal field in the centers of
dipoles are known, Egs. (20) and (24) are approximated by
(PP)

F(n) = - i1 - An) D, Vi EY exp(-ikr;-m), (25)

Cops =4k Y, V; Im(x,)[E{[. (26)

Corrections to Eq. (26) are discussed in Subsection 2.F.
Both Eqgs. (20) (for each component) and (24) can be

generalized as g?)(E) (a functional that is not necessarily
linear), which is approximated as

H(E) = ¢U(E) + 547, (27)

where ¢¢(E9) corresponds to Eq. (25) or (26), and the er-
ror 8¢? consists of two parts:

84" = [H(E) - pUE)] +[¢/(B*?) - ¢YE)].  (28)
The first one comes from discretization [similar to Eq.

(17)], and the second comes from errors in the internal
fields.



Yurkin et al.

D. Error Analysis

In this subsection we perform error analysis for the PP
formulation of DDA. Improvements of DDA are further
discussed in Subsection 2.F.

We assume cubical subvolumes with size d. We also as-
sume that the shape of the particle is exactly described by
these cubical subvolumes (we call this cubically shaped
scatterer). Moreover, y is a smooth function inside V (ex-
act assumptions on y are formulated below). An extension
of the theory to shapes that do not satisfy these conditions
is presented in Subsection 2.E. If there are several re-
gions with different values of y (smooth inside each re-
gion), the analysis is still valid, but interfaces inside V
should be considered the same way as the outer boundary
of V. We further fix the geometry of the scattering prob-
lem and incident field. Therefore we will be interested
only in variation of discretization (which is characterized
by the single parameter d); for reasons that will become
clear in the sequel, we assume that kd <2 (this bound is
not limiting, since otherwise DDA is generally
inapplicable?).

We switch to dimensionless parameters by assuming
k=1, which is equivalent to measuring all the distances in
units of 1/k. The unit of the electric field can be chosen
arbitrary but constant. In all further derivations we will
use two sets of constants: y; and ¢;. y;—7;3 are basic con-
stants that do not depend on the discretization d but do
depend directly on all other problem parameters—size pa-
rameter x=kR,, (R, is the volume-equivalent radius), m,
shape, and incident field—or some of them. On the con-
trary, c;—cgy are auxiliary values that either are numeri-
cal constants or can be derived in terms of constants y;.
Although the dependencies of ¢; on v; are not explicitly de-
rived in this paper, one can easily obtain them following
the derivations of this section. That is the main motiva-
tion for using such a vast amount of constants instead of
an order-of-magnitude formalism. However, such explicit
derivation has limited application because, as we will see
further, constants in the final result depend on almost all
basic constants. Qualitative analysis of these dependen-
cies will be performed at the end of this subsection. It
should be noted that the main theoretical results concern-
ing DDA convergence [boundedness of errors by a qua-
dratic function, cf. expression (70)] can be formulated and
applied without consideration of any constants (which is
simpler). However, our full derivation enables us to make
additional conclusions related to the behavior of specific
error terms.

The total number of dipoles used to discretize the scat-
terer is

N= 71d_3 . (29)

We assume that the internal field E is at least four times
differentiable and all these derivatives are bounded in-
side V:

|E(l‘)| = Yo, |&,LLE(I‘)| = Vs |(7M(9VE(I')| = Y
|(9“(9V(9PE(I‘)| =, |a,u81/(9pa7E(r)| =%
forr e Vand V u,v,p,7. (30)

This assumption is acceptable, since there are no inter-
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faces inside V; therefore E should be a smooth function. -]
denotes the Euclidian (L?) norm, which is used for all 3D
objects: vectors and tensors. We use the L' norm, ||-||;, for
N-dimensional vectors and matrices as well as for func-
tions and operators. Expressions (30) immediately imply
that E e LY(V). We require that y satisfies expressions
(30) with constants y;—7;. Further, we will state an es-

timate for the norm of (_}(R) and its derivatives. One can

easily obtain from Eq. (2) that for R>1 (_}(R) satisfies ex-
pressions (30) (with constants ¢;—c5), while for R=2

IGR)| =cgR™®, [9,G(R)|=cR™,
10,0,GR)| = csR™®, 9,0,0,G(R)| = coR™®,

|9,0,0,0,GR)| < c1oR™" for V p,v,p,7.  (31)

Next, we state two auxiliary facts that will be used
later. Let V, be a cube with size d and with its center at
the origin and f(r) be a four-times differentiable function
inside V.. Then

=cy1d* max [9,0,f(r)], (32)

pvreV,

dS

1
- f d’rf(r) - f(0)
V,

c

d2
7 = QWZIC (1))l

1
3 f d*rflr) - f(0)
\%

c

+c19d* max [9,0,0,0f(r)|.
pvprreV,

(33)

Expressions (32) and (33) are the corollary of expanding f
into a Taylor series. Odd orders of the Taylor expansion
vanish because of cubical symmetry.

Our first goal is to estimate |h9|;. Starting from Eq.
(17), we write h? as

hé=> (f d*'G(r;,r')P(x') - d3(_}g-))Pj> +M(V,,r),
i \Jv

(34)

where we have introduced the polarization vector for con-
ciseness:

P(r) = x(r)E(r), P;=P(r). (35)

It is evident that P(r) also satisfies expressions (30) (with
constants cy3—c17). We start by estimating |M(V;,r;)|. Sub-
stituting a Taylor expansion of P(r),

1
PR)=P(0)+ >, R,(,P)(0) + 52 R R (3,0P)F(p,7,R)),
P pT

(36)

where OSrILSRM, into Eq. (4) gives
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M(V,,r;) = f d°R(G(R) - G*(R))P;
V.

i

1 —
+5 J d°’RG(R) D) R,R (4,0.P)E(p, 7, R)).
v; pT

(37)
The norms of these two terms can be estimated as
_ _ 2_
f d’R(GR) - G*R))P;| = —IPlf d®Rg(R) | = cq5d?,
v, 3 7
(38)
f d°’RG(R) Y, R R (3,0.P)F(p,7,R))
v, pr
= 3¢5 f d®R|G(R)|R? = ¢19d?. (39)
v

Expression (38) follows directly from the definitions in
Eqgs. (2) and (5). To derive expression (39), we used expres-
sions (31) and the fact that 3,,|R,R,| =3R2. Finally, ex-
pressions (37)—(39) lead to

IM(V;,1;)| < ca0d”. (40)

To estimate the sum in Eq. (34), we consider separately
three cases: (1) dipole j lies in a complete shell of dipole ¢
(we define the shell below); (2) j lies in a distant shell of
dipole i—R;;=r;—r;| >1; and (3) all j that fall between the
first two cases (see Fig. 1). We define the first shell [S;(i)]
of a cubical dipole as a set of dipoles that touch it (includ-
ing touching in one point only). The second shell [S5(i)] is
a set of dipoles that touch the outer surface of the first
shell, and so on. The /th shell [S;(i)] is then a set of all
dipoles that lie on the boundary of the cube with size
(2l+1)d and center coinciding with the center of the origi-
nal dipole. We call a shell complete if all its elements lie
inside the volume of the scatterer V. A shell is called a dis-
tant shell if all its elements satisfy R;;>1; i.e., if its order
I>K,.x=[1/d]. Let K(i) be the order of the first incom-
plete shell, which is an indicator of how close dipole i is to
the surface. We demand K(i) =K., to separate cases (1)

..............

® L)
Y E
kD D Kpw |
vacuum [T T°°°°7 !
scatterer

Fig. 1. Partition of the scatterer’s volume into three regions
relative to dipole .
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and (2) described above. All j that fall in the third case
satisfy R;;<2 (the exact value of this constant—slightly
larger than \s’g—depends on d). The number of dipoles in
a shell S; (which can be incomplete)—n (/)—can be esti-
mated as

n(l) = (20 +1)3 - (21 - 1)® = cqyl2. (41)

The sum of the error over all dipoles that lie in complete
shells is then

K(i)-1
S
=1 jeSi) \Jv

J

a%r'G(r;,x")P(r') - d3é§;’>Pj) . (42)

Since each shell in expression (42) is complete, it can be
divided into pairs of dipoles that are symmetric over the
center of the shell (j and —j). For convenience we set
r=0. The inner sum in expression (42) can then be rewrit-
ten as

1 s (f
2;és\Jv

J

Er'G)(P') + P(- 1) - d*GY(P; + P_,-)> .

(43)

Further, we introduce the auxiliary function
1
u(r’) = §(P(I") +P(-1')) - P(0), (44)

which satisfies the following inequalities [follows from ex-
pressions (30) for P(r) and Taylor series]:

2

u(r)| = coor?, [d,u(r)| = cogr,

ld,0u(r) <cqyy for V u,v. (45)

Then expression (43) is equivalent to

5 (],

jesiiy \J;

&*r'G(ru(r’) - d?’(_}g-))uj)

+ > ( J d3r’(_}(r’)—d3é§]‘-))>Pi, (46)

Je8)(0)

where u;=u(r;). To estimate the first term, we apply ex-

pression (32) to the whole function under the integral. Us-
ing expressions (31) and (45), one may obtain

max [d,,(G(r )u(r))| = cysR;? (47)
/l,v,r'EVj
and hence
> ( f d3r'é(r')u(r')—d3é§;>>uj)
jesin \J;
= E C26d5Ri_j3§C27d2l_l, (48)
JjeS8,)

where we have used expression (41) and R;=Id for
JjeS).
It is straightforward to show that

_ 2_
> d3r’G(r’)=§I >

jesi v jesi v

d’r'g(r’),  (49)
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_ 2_
> GP=-T> zR&;. (50)
Jje8;@) JjesS(i)

The derivation is based on Eq. (2) and the equivalence

RR /R2<:>§i in all sums and integrals that satisfy cubical
symmetry. Then the second part of expression (46) is
transformed to

> ( f d3r’(_}(r’)—d3(_}g-)>)Pi
V.

JjeS)

= Cog 2

Jjes@)

= C29d4l + 030d21_3,

f d’r'g(r') - d’g(R;))
v
(51)

where we apply expression (33) to derive the second in-
equality and use the identity V2g(r)=—g(r) and the follow-
ing inequalities:
|g(R)| = CglR_l, |(9u(?v[9p(97g(R)‘ = CSZR_5 fOI' v MV, P, T
(52)

Substituting expressions (48) and (51) into expression
(42), one can obtain

K(@i)-1
> > ( f d% ' G(r;,r")P(r') -d3G§J‘?>Pj>
=1 JjeS, @) VJ
= (cg3+ ¢34 In K(@))d?, (53)

using the fact that K(i)d=1.

We now consider the second part of the sum in Eq. (34)
(where R;;>1). We first apply expression (32), then use
expressions (30) for P(r) and G(r), and finally invoke Eq.
(29):

> ( f d3r’(_3‘r(ri,r’)P(r’)—d3(_}g-))Pj>
%A

JRj>1

= E C35d5 = NC35d5 = C36d2. (54)
JR;>1

To analyze the third part of the sum in Eq. (34), we
again sum over shells; however, since they are incom-
plete, we cannot use symmetry considerations. We apply
expression (33) to the whole function under the integral
and proceed analogously to the derivation of expression

(51). Using the identity

V2G(r) = - G(r) (55)

(since we have assumed £=1), we obtain

IVA(G@)P®))-r,| = caiRi}", (56)
max |9,0,0,0(G@)P(x)| =csRy’,  (57)
pvpr,r’ ev;

which leads to
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)

J

3|

d*'G(r;,r')P(r') - d3('}§;>>1>j) = Caqdl ™2+ cyol™®
JjeS;()

(58)
and then analogously to expression (53),

Kmax
S
1=K(0) jeS;) \J v,

J

4% G(r;,r")P(r') - d3('}§;>>Pj)

= dK1G0) + c5K4(G). (59)

Collecting expressions (40), (53), (54), and (59), we finally
obtain

|he| = ¢, dK71G) + 4K () + (cq3 + c44 In K(i))d2.

(60)
Then
N
[h; = >, |hf| < (c43+ c4g In Ky )Nd?
i=1
Kmax
+ >, n(K)(cydK ' +cpK™), (61)
K=1

where n(K) is the number of dipoles whose order of the
first incomplete shell is equal to K. It is clear that

n(K) =n(l) = yuNd, (62)

where v, is the surface-to-volume ratio of the scatterer.
Finally, we obtain

thH1 = Nl(cg3 - cs5Ind)d® + cy6d]. (63)

The last term in expression (63) is mostly determined by
dipoles that lie on the surface (or few dipoles deep) be-
cause it comes from the K~* term in expression (61)
(which rapidly decreases when moving from the surface).
We define surface errors as those associated with the lin-
ear term in expression (63). Our numerical simulation
(see Subsection 3.B) shows that this term is small com-
pared with other terms for typical values of d; however, it
is always significant for small enough values of d.
From Eq. (18) we directly obtain

1By = (A~ (64)

We assume that a bounded solution of Eq. (7) uniquely ex-
ists for any Einc ¢ Hy; moreover, we assume that if
|Ein¢||,=1, then |[E|; = y13. These assumptions are equiva-
lent to the fact that [A-!; exists and is finite (the opera-

tor A~! is bounded). Because A? is a discretization of A,
one would expect that

gn3||<xd)-1||1 =AYy = y3. (65)

Although Eq. (65) seems intuitively correct, its rigorous
proof, even if feasible, lies outside the scope of this paper.
For an intuitive understanding, one may consult the pa-
per by Rahola,?® where he studied the spectrum of the dis-
cretized operator (for scattering by a sphere) and showed
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that it does converge to the spectrum of the integral op-
erator with decreasing d. It should, however, be noted
that convergence of the spectrum implies only the conver-
gence of the spectral (L2) norm of the operator and not
necessarily the convergence of the L! norm. Therefore Eq.
(65) should be considered an assumption. It implies that
there exists a d such that

ford<dy |AY;=cqr, (66)

where c47 is an arbitrary constant larger than y;3 (al-
though d, depends on its choice). For example, c47=2v3
should lead to a rather large d, (a rigorous estimate of d,,
does not seem feasible). Therefore |SE?|; satisfies the
same constraint as |[h?)|; [expression (63)] but with con-
stants c4g—cs0-

Next, we estimate the errors in the measured quanti-
ties and start with the discretization error [first part in
Eq. (28)]. Examining Egs. (20) and (24), one can see that
expression (32) may be directly applied, leading to

|(E) - ¢* B = X cs1d® = csod”. (67)

The second part in Eq. (28) is estimated as
|p1(EO) - ¢ (B[ = ) c55d®|TE| = c55dl OBy

= (54— ¢55 In d)d® + c56d, (68)

where we used Eq. (29). The estimation of the error for
C.s additionally uses the fact |6EY2=cs;|oEY]
(057=?%X|5E?|).

S

By combining expressions (67) and (68), we obtain the
final result of this subsection:

|6 = (c55— cs5 In d)d® + c56d. (69)

It is important to remember that the derivation was per-
formed for constant x, m, shape, and incident field. There
are 13 basic constants (y;—7y13). 71 [Eq. (29)] characterizes
the total volume of the scatterer; hence it depends only on
x. y—1vy11 lexpressions (30) for y(r)] can be easily obtained
given the function x(r); moreover, it is completely trivial
in the common case of homogenous scatterers. vy
[surface-to-volume ratio, expression (62)] depends on the
shape of the scatterer and is inversely proportional to x. It
is not feasible (except for certain simple shapes) to obtain
the values of constants y,—yg [expressions (30)], since an
exact solution for the internal fields is required. These
constants definitely depend on all the parameters of the
scattering problem. Moreover, these dependencies can be
rapidly varying, especially near the resonance regions.
The same is true for ;3 [L! norm of the inverse of the in-
tegral operator, Eq. (65)]. Finally, there is the important
constant d that also depends on all the parameters; how-
ever, one may expect it to be large enough (e.g., dy=2) for
most of the problems—then its variation can be neglected.

Before proceeding, we introduce the discretization pa-
rameter y =|m|kd. We employ the commonly used formula
as proposed by Draine®; however, the exact dependence on
m is not important because all the conclusions are still
valid for constant m. Replacing d by y does not signifi-
cantly change the dependence of the constants in expres-
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sion (69), since they all already depend on m through the
basic constants y5—711, y13- This leads to

|6¢”| = (59— co Iny)y® + co1y. (70)

It is not feasible to make any rigorous conclusions about
the variation of the constants in expression (70) with
varying parameters because all these constants depend
on yo— 7%, Y13, Which, in turn, depend in a complex way on
the parameters of the scattering problem. However, we
can make one conclusion about the general trend of this
dependency.

Following the derivation of expression (70), one can ob-
serve that cg; is proportional to y;9, whereas c59 and cgy do
not directly depend on it (at least part of the contributions
to them is independent of v;5). Therefore the general
trend will be a decrease of the ratio cg1/c59 with increas-
ing x (when all other parameters are fixed). This is a
mathematical justification of the intuitively evident fact
that surface errors are less significant for larger particles.

In the analysis of the results of the numerical simula-
tions (Subsection 3.B), we will neglect the variation of the
logarithm. Expression (70) then states that error is
bounded by a quadratic function of y (for d =d,). However,
keep in mind that our derivation does not lead to an op-
timal error estimation; i.e., it overestimates the error and
can be improved. For example, the constants y,—vyg are
usually largest inside a small volume fraction of the scat-
terer (near the surface or some internal resonance re-
gions), whereas in the rest of the scatterer the internal
electric field and its derivatives are bounded by signifi-
cantly smaller constants. However, the order of the error
is estimated correctly, as we will see in the numerical
simulations.

It is important to note that expression (70) does not im-
ply that 6¢” (which is a signed value) actually depends on
y as a quadratic function, but we will see later that it is
the case for small enough y (Subsection 3.B, see detailed
discussion in Paper 2). Moreover, the coefficients of linear
and quadratic terms for 8¢’ may have different signs,
which may lead to zero error for nonzero y (however, this
y, if it exists, is unfortunately different for each measured
quantity).

E. Shape Errors

In this subsection we extend the error analysis as pre-
sented in Subsection 2.D to shapes that cannot be de-
scribed exactly by a set of cubical subvolumes.

We perform the discretization the same way as in Sub-
section 2.B, but some of the V; are not cubical (for i € §V,
which denotes that dipole i lies on the boundary of the
volume V). We set r; to be still in the center of the cube
(circumscribing V;), not to break the regularity of the lat-
tice. The standard PP prescription uses equal volumes
(V;=d?) in Egs. (10), (14), (25), and (26); i.e., the discreti-
zation changes the shape of the particle a little bit. We
will estimate the errors introduced by these boundary di-
poles. These errors should then be added to those ob-
tained in Subsection 2.D. We start by estimating ||h9;.
First, we consider h? for i ¢ oV
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hi= ( f d3r'("}(ri,r')P(r')-d3(';§;>>Pj>, (71)
V.

jedv

which is just a reduction of Eq. (34). For i € 6V, h;-"’ is the
same plus the error in the self-term:

hi= > ( f d3r’(_}(ri,r’)P(r')—dség))Pj)+M(Vi,1'i)
V.

jedv
G

_ 4ar_
- L(3Vi,1‘i)—?1 XiEi. (72)

Let us define
h{ = f d®'G(r;,r")P(x') - d°G)'P;, (73)
Vi
Y _ 4a_
hj' =M(V,,r;) - L(3Vi;ri)—?1 XiEi. (74)

We estimate each of the terms in Eq. (73) separately
(since there is actually no significant cancellation and the
error is of the same order of magnitude as the values

themselves) using expressions (30) for P(r) and (_}(r) and
expressions (31). This leads to

3p-3
|hsh - cﬁzd RU >
ij | = 3
ce3d”,

To estimate hfih, we assume that the surface of the scat-

terer is a plane on the scale of the size of the dipole. A fi-
nite radius of curvature only changes the constants in the
following expressions. We will prove that

R;<2
R;>1

(75)

ISl < g3 (76)

therefore we do not need to consider the third term in Eq.
(74) (coming from the unity tensor) at all, since it is
bounded by a constant:

M(Vi,ri)=f d3r'((_;(ri,r')—(_}s(l'i,l"))P(l")

Vi

+f &' G, r)(P(x') - P(xr))  (77)
Vi

The function in the first integral is always bounded by

cgs|r’ —1;|72. If r; € V,, the same is true for the second in-
tegral, and hence

|M(Vi,ri)| = Ce6d. (78)

If r; ¢ V;, we introduce an auxiliary point r” that is sym-
metric to r;, over the particle surface and apply the iden-
tity

P(') - P(r)=P') -Px") + PE") -P(r;)) (79)

to the second integral in Eq. (77). Using a Taylor expan-
sion of P near r” and the fact that |r'—r"|<|r’-r;| for
r’ € V;, one can show that
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IM(V;,1)| = cg7d + ces , (80)

J d3r'G*(x;,r")
Vi

where the remaining integral can be proven to be equal to
—i(&Vi,ri). The last proof left [see expressions (74) and
(80)] is to demonstrate that i(r?Vi,ri) is bounded by a con-
stant. The only potential problem may come from the sub-
surface of dV; that is part of the particle surface (because
it may be close to r;). This subsurface is assumed planar.
We will calculate the integral in Eq. (6) over the infinite
plane r’'—r;=p+r such that p-r=0. Then n’=+p/p and

_ pp PP
L(infinite plane, r;) = F f d?r 53 = + 275,
R2 plp™+717) P
(81)

which is bounded. The rest of the integral (over the part of
the cube surface) is bounded by a constant, which is a
manifestation of a more general fact that (by its defini-

tion) i(aVi ,r;) does not depend on the size but only on the
shape of the volume. Finally, we have

IL(aV;,x)| = cgo, (82)

which, together with expressions (74), (78), and (80),
proves expression (76).
Using expressions (75) and (76), we obtain

Kmax
Iy => > b+ > b= > (E ceans (DI

i jedv jedv Jjedv \ I=1
+C70) SNd(C71—C72 lnd), (83)

where we have changed the order of the summation in the
double sum and split the summation over cubical shells
for [=K . and [>K, ... Then we have grouped every-
thing into one sum over boundary dipoles. Expressions
(41) and (62) were used in the last inequality. Combining
expressions (63) and (83), one can obtain the total esti-
mate of [h?|; for any scatterer:

|h?; = Nl(cys - ca5 Ind)d? + (cr3 - crp Ind)d].  (84)

Using expression (66), we immediately obtain the same
estimate for ||6EY;.

The derivation of the errors in the measured quantities
is slightly modified, compared with Subsection 2.D, by the
presence of the shape errors. Expressions (67) and (68)
are changed to

|<75(f3) - pUEY)| = E csd’ + 2 crad® = c5od® + c5d,

iedV

(85)
|A(E") — ¢ (BY)| = c53d%| SE||; = (c54 - 55 In d)d?
+ (076 —C77 In d)d (86)

The second term in expression (85) comes from surface di-
poles for which errors are the same order as the values
themselves. Finally, the generalization of expression (70)
is
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|66”| = (c59— coo In y)y* + (c75— c79 Iny)y. (87)

The shape errors reinforce the surface errors (the linear
term of discretization error), and, although both of them
generally decrease with increasing size parameter x, one
may expect the linear term in expression (87) to be sig-
nificant up to higher values of y than in expression (70).

All the derivations in this subsection can, in principle,
be extended to interfaces inside the particle, i.e., when a
surface, which cannot be described exactly as a surface of
a set of cubes, separates two regions where x(r) varies
smoothly. Two parts of the cubical dipole on the interface
should be considered separately the same way as was
done above. This will, however, not change the main con-
clusion of this subsection—expression (87)—but only the
constants.

F. Different Discrete Dipole Approximation
Formulations

In this subsection we discuss how different DDA formula-
tions modify the error estimates derived in Subsections
2.D and 2.E.

Most of the improvements of PP proposed in the litera-
ture are concerned with the self-term M(V;,r;). They are
the radiative reaction correction® (RR), the digitized
Green’s function,? the formulation by Lakhtakia,?®* the
a;-term method,?®?° the lattice dispersion relation®
(LDR), the formulation by Peltoniemi®! (PEL), and the
corrected LDR.?? All of them provide an expression for
M(V,,r;) that is of order d? (except for RR, which is of or-
der d®). For instance, LDR is equivalent to

M(V,,x;) =[(by + bym? + bym?2S)d? + (2/3)id®|P; (88)

(remember that we assumed k=1), where b1,b5,b3 are
numerical constants and S is a constant that depends
only on the propagation and polarization vectors of the in-
cident field. However, none of these formulations can ex-
actly evaluate the integral in expression (39) because the
variation of the electric field is not known beforehand
(PEL solves this problem but only for a spherical dipole).
Therefore they (it is hoped) decrease the constant in ex-
pression (40), thus decreasing the overall error in the
measured quantities. However, these formulations are
not expected to change the order of the error from d? to
some higher order.

We do not analyze the improvements by Rahmani et
al.3*** and the surface-corrected LDR,'” as they are lim-
ited to certain particle shapes.

There exist two improvements of the interaction term
in PP: filtered coupled dipoles'? (FCD) and integration of
Green’s tensor® (IT). A rigorous analysis of FCD errors is
beyond the scope of this paper, but it seems that FCD is
not designed to reduce the linear term in expression (63)
that comes from the incomplete (nonsymmetric) shells.
This is because FCD employs sampling theory to improve
the accuracy of the overall discretization for regular cubi-
cal grids. FCD does not improve the accuracy of a single

(_}L-j calculation (approximation of an integral over one
subvolume).
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IT, which numerically evaluates the integral in Eq.
(12), has a more pronounced effect on the error estimate.
Consider dipole j from the /th shell (incomplete) of dipole
i, then

f d3r’(_}(ri,r')P(r’) - ds(_}UP]
\Z

J

_ f &r'Glr,r')(P(r') - P)
V.

J

= CSOJ d?'r'? max |duG(r;,r')|
V; wmr' eV;
3.4 ’ 12 -4
+081J d°r ‘G(ri,r )|r = Cszdl . (89)
%

J

Here we have used Eq. (36) and a Taylor expansion of
Green’s tensor up to the first order. Expression (89) states
that the second term in expression (58) is completely
eliminated and so is the linear term in expressions (69)
and (70) (surface errors). Therefore convergence of DDA
with IT for cubically shaped scatterers is expected to be
purely quadratic (neglecting the logarithm). However, for
noncubically shaped scatterers the linear term reappears,
owing to the shape errors. Both IT and FCD also modify
the self-term; however, the effect is basically the same as
for the other formulations.

Several papers aimed to reduce shape errors.'*11%6 The
first one—the generalized semi-analytical method*—
modifies the whole DDA scheme, and the other two pro-
pose averaging of the susceptibility over the boundary di-
poles. We will analyze here weighted discretization (WD)
by Piller,"! which is probably the most advanced method
to reduce shape errors available today.

WD modifies the susceptibility and self-term of the
boundary subvolume. We slightly modify the definition of
the boundary subvolume used in Subsections 2.B and 2.E
to automatically take into account interfaces inside the
scatterer. We define V; to be always cubical but with a
possible interface inside. The particle surface, crossing
the subvolume V;, is assumed planar and divides the sub-
volume into two parts: the principal volume V7 (contain-
ing the center) and the secondary volume V7 with suscep-
tibilities ' =yx;, x; and electric fields E’=E; E;,
respectively. The electric fields are considered constant in-
side each part and related to each other via the boundary-

condition tensor T;:
E‘lS = TiEi . (90)

In WD the susceptibility of the boundary subvolume is re-
placed by an effective one, defined as

X; = (VO4T+ VixiT,)/d®, (91)

which gives the correct total polarization of the cubical di-
pole. The effective self-term is directly evaluated starting
from Eq. (4), considering y and E constant inside each
part,
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M(V,,r) = (f &r'(Gr,r') - G (r,x") ¥
VP

i

+ f d3r’((_}(r,r’)—(_S‘rs(ri,r’))xf’i‘i>Ei.
Vi

(92)

Piller evaluated the integrals in Eq. (92) numerically.11
To take a smooth variation of the electric field and sus-
ceptibility into account, we define x{=x(r") (r” is defined
in Subsection 2.E), and T, is calculated at the surface be-
tween r; and r'. PP=P;, and P$=) E$=T,E;. Then
[P(x") - Pj| < cg3 minfr -1y, (93)
reV;

where we have assumed that expressions (30) for y(r) and
E(r) are also valid in V3.
We start estimating errors of WD with hf}l [cf. Eq. (73)]:

hgj.’l:f d3r’((_}(ri,r’)P(I")—GEJQ)Pf)
V;’

0 f @' (G(r;,r )P(x') - GVPY). (94)
v

Using Taylor expansions of P(r') near r; and r” in V7 and
VJS-, correspondingly, and expression (93), one may find
that the main contribution comes from the derivative of
Green’s tensor, leading to [cf. expression (75)]

4p-4

hsh _ Cg4d R’J .
| iy | - d4
Cgs5Q

R;<2

(95)
h{" is the following [cf. Eq. (74)]:

hit = (M(V,,r;) - L(3V,,r)P?) - ( f a®r' (G(r;,r')
Ve

- G(r;,r"))P? + f a*r'(G(r,r') - G*(r;,r"))P¢
Ve

i

- I_-l(é'viari))_(fEi>

= f d®r'G(r;,x")(P(x') - P?)
VP

i

+ J d*r' G(r;,r)(P(x') - P)
VS

+ f d%r' G (x;,x') (P - PP)
‘/S

i

+L(dV;,r)XE; - L(3V,,r,)P?. (96)

The first two integrals can be easily shown to be =cggd [cf.

Eq. (77)], and the third one is transformed to L the same
way as in expression (80), thus
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Ihi?| = cged + [L(aV2,x)P? + L(aV5,1)P; - L(0V,,r)XE/],
(97)

where the second term comes from the fact that averaged

LP is not the same as L times averaged P. This error de-
pends on the geometry of the interface inside V; and gen-
erally is of order unity. For example, if the plane interface
is described as z=z;+ ¢, taking the limit e— 0 gives the er-
ror [27(P?-P?),| [using Eq. (81)]. Therefore WD does not
principally improve the error estimate of hflh , given by ex-
pression (76), although it may significantly decrease the

constant. On the other hand, since i(an,ri) and

i(&Vf,ri) can be (analytically) evaluated for a cube inter-
sected by a plane, WD can be further improved to reduce
the error in hflh to linear in d, which is a subject of future
research.

Proceeding analogously to the derivation of expression
(83), one can obtain

Kmax
I, = >, ( > can (Dl +cgr + Cssd) = cgolNd.

jeav \ I=1
(98)

It can be shown that for the scattering amplitude [Eq.
(25)] the error estimate given by expression (85) can be
improved, since WD correctly evaluates the zeroth order
of value for the boundary dipoles, leading to

|G(E) - B = D esid®+ 2 cqod” =cqrd®. (99)

iedV

In his original paper11 Piller did not specify the expres-
sion that should be used for C,;,. Direct application of the
susceptibility provided by WD into Eq. (26) does not re-
duce the order of error when compared with the exact Eq.
(24) (except when x;=0), since they are not linear func-
tions of the electric field. However, if we consider sepa-
rately V2 and V; [which is equivalent to replacing

12
V. Im((x“E,)-E;) by V2 Im(¢) | 2+ V; Im(x}) | T2, the
same estimate as in expression (99) can be derived for
Cabs-
Using expressions (98) and (99), and the first part of ex-
pression (86), one can derive the final error estimate for
WD:

|6¢”| = (g2 — co3 Iny)y® + cogy, (100)

where the constant before the linear term, as compared
with expression (87), does not contain a logarithm and is
expected to be significantly smaller because several fac-
tors contributing to it are eliminated in WD. Although
WD has a potential for improving, it does not seem fea-
sible to completely eliminate the linear term in the shape
error. The accuracy of evaluation of the interaction term
over the boundary dipole [cf. Eq. (94)] can be improved by
IT over V¥ and V7 separately but that would ruin the
block-Toeplitz structure of the interaction matrix and
hinder the fast Fourier transform-based algorithm for
the solution of linear equations.5 Since there is no compa-
rable alternative to fast Fourier transform nowadays, this
method seems inapplicable.
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Minor modifications of the expression for C,;, are pos-
sible. Draine® proposed a modification of Eq. (26) that was
widely used afterward and that was further modified by
Chaumet et al.>® However, for many cases these expres-
sions are equivalent, and, even when they are not, the dif-
ference is of order d?, which is neglected in our error
analysis.

3. NUMERICAL SIMULATIONS

A. Discrete Dipole Approximation
The basics of the DDA method were summarized by
Draine and Flatau.? In this paper we use the LDR pre-
scription for dipole polarizability,>® which is most widely
used nowadays, e.g., in the publicly available code DDSCAT
6.1.* We also employ dipole size correction® for noncubi-
cally shaped scatterers to ensure that the cubical approxi-
mation of the scatterer has the correct volume; this is be-
lieved to diminish shape errors, especially for small
scatterers.? We use a standard discretization scheme as
described in Subsection 2.E, without any improvements
for boundary dipoles. It is important to note that all the
conclusions are valid for any DDA implementation but
with a few changes for specific improvements, as dis-
cussed in Subsection 2.F.

Our code—AMSTERDAM DDA’ —is capable of running on
a cluster of computers (parallelizing a single DDA compu-
tation), which allows us to use a practically unlimited
number of dipoles, since we are not limited by the
memory of a single computer.®®*° We used a relative error
of residual <1078 as a stopping criterion for the iterative
solution of the DDA linear system. Tests suggest that the
relative error of the measured quantities due to the itera-
tive solver is then <1077 (data not shown) and hence can
be neglected (total relative errors in our simulations are
>1076+10"5—see Subsection 3.B). More details about our
code can be found in Paper 2. All DDA simulations were
carried out on the Dutch national computer cluster
LISA.*

B. Results

We study five test cases: one cube with 2D=8; three
spheres with £D=3,10,30; and a particle obtained by a
cubical discretization of the #D=10 sphere using 16 di-
poles per D (total 2176 dipoles, x equal to that of a sphere;
see detailed description in Paper 2). By D we denote the
diameter of a sphere or the edge size of a cube. All scat-
terers are homogenous with m=1.5. Although DDA errors
significantly depend on m (see, e.g., Ref. 14), we limit our-
selves to one single value and study effects of size and
shape of the scatterer.

The maximum number of dipoles per D (np) was 256.
The values of np that we used are of the form {4,5,6,7} (2P)
(p is an integer), except for the discretized sphere, where
all np are multiples of 16 (this is required to exactly de-
scribe the shape of the particle composed from a number
of cubes). The minimum values for np were 8 for the 2D
=3 sphere; 16 for the cube, the 2D=10 sphere, and the
discretized sphere; and 40 for the 2D =30 sphere.

All the computations use a direction of incidence paral-
lel to one of the principal axes of the cubical dipoles. The
scattering plane is parallel to one of the faces of the cubi-
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cal dipoles. In this paper we show results only for the ex-
tinction efficiency Q,,; (for incident light polarized paral-
lel to one of the principal axes of the cubical dipoles) and
phase function S;;(#) as the most commonly used in ap-
plications. However, the theory applies to any measured
quantity. For instance, we have also confirmed it for other
Mueller matrix, elements (data not shown).

Exact results of S11(6) for all five test cases are shown
in Fig. 2. For spheres this is the result of Mie theory (the
relative accuracy of the code we used?* is at least <1076)
and for the cube and discretized sphere an extrapolation
over the five finest discretizations (the extrapolation tech-
nique is presented in Paper 2, together with all details of
obtaining these results, including their estimated errors).
We use such “exact” results because analytical theory is
unavailable for these shapes and because errors of the
best discretization are larger than that of the extrapola-
tion. Their use as references for computing real errors
(difference between the computed and the exact values) of
single DDA calculations is justified because all these real
errors are significantly larger than the errors of the ref-
erences themselves (see Paper 2; in general, real errors
obtained this way have an uncertainty of reference error).
Exact values of @,,, for all test cases are presented in
Table 1.

In the following we show the results of DDA conver-
gence. Figures 3 and 4 present relative errors (absolute
values) of S;; at different angles 6§ and maximum error
over all 0 versus y in a log-log scale. In many cases the
maximum errors are reached at an exact backscattering
direction, then these two sets of points overlap. Deep
minima that happen at intermediate values of y for some

1074+ ——cube kD=8
10°4
g ]
o 10 -'
101-E
100-:
. ' 1 M 1 i I 4 1 M I 4 1
0 30 60 90 120 150 180

8, deg

Fig. 2. S;,(0) for all five test cases in logarithmic scale. The re-
sult for the 2D =3 sphere is multiplied by 10 for convenience.

Table 1. Exact Values of Q,,; for the Five Test

Cases
Particle Qext
kD=8 cube 4.490
Discretized £D =10 sphere 3.916
kD=3 sphere 0.753
kD =10 sphere 3.928
kD =30 sphere 1.985
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Fig. 3. Relative errors of Sy; at different angles # and maximum
over all # versus y for (a) the 2D =8 cube, (b) the cubical discreti-
zation of the 2D =10 sphere. A log—log scale is used. A linear fit of
maximum over 6 errors is shown (m=1.5).

values of 6 (and also sometimes for @,,,—Fig. 5) are due
to the fact that the differences between simulated and ref-
erence values change sign near these values of y (see Pa-
per 2 for a detailed description of this behavior). The solid
lines are linear fits to all or some points of maximum er-
ror. The slopes of these lines are depicted in the figures.
Figure 5 shows relative errors of @,,, for all five studied
cases in a log—log scale. A linear fit through the five finest
discretizations of the £D =3 sphere is shown. More results
of these numerical simulations are presented in Paper 2.

4. DISCUSSION

Convergence of DDA for cubically shaped particles (Fig. 3)
shows the following trends. All curves have linear and
quadratic parts (the nonmonotonic behavior of errors for
some 6 is also a manifestation of the fact that the signed
difference can be approximated by a sum of linear and
quadratic terms that have different signs). The transition
between these two regimes occurs at different y (which in-
dicates the relative importance of linear and quadratic co-
efficients). Although for maximum errors that are close to
those of the backscattering direction the linear term is
significant for larger y, it is much smaller and not signifi-
cant in the whole range of y studied for side scattering
(#=90°). Results of DDA convergence for spheres (Fig. 4)
show a different behavior for different sizes. Errors for
the small (kD=3) sphere converge purely linear [except
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for a small deviation of errors of S1;(90°) for large values
of y]. Similar results are obtained for the 2ZD=10 sphere
but with significant oscillations superimposed on the gen-
eral trend. Convergence for the large (kD=30) sphere is
quadratic or even faster in the range of y studied, also
with significant oscillations.

Comparing Figs. 3 and 4 [especially Figs. 3(b) and 4(b)
showing results for almost the same particles], one can
deduce the following differences in DDA convergence for
cubically and noncubically shaped scatterers. The linear
term for cubically shaped scatterers is significantly
smaller, resulting in smaller total errors, especially for
small y. All these conclusions, together with the size de-
pendence of the significance of the linear term in the total
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Fig. 4. Same as Fig. 3 but for (a) kD=3, (b) £D=10, and (c)
kD =30 spheres.
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Fig. 5. Relative errors of @,,, versus y for all five test cases. A
log—log scale is used. A linear fit through five finest discretiza-
tions of the £D =3 sphere is shown.

errors, are in perfect agreement with the theoretical pre-
dictions made in Subsections 2.D and 2.E. Errors for non-
cubically shaped particles exhibit quasi-random oscilla-
tions that are not present for cubically shaped particles.
This can be explained by the sharp variations of shape er-
rors with changing y (discussed in detail in Paper 2). Os-
cillations for the £D=3 sphere [Fig. 4(a)] are very small
(but still clearly present), which is due to the small size of
the particle and hence featurelessness of its light-
scattering pattern—the surface structure is not that im-
portant, and one may expect rather small shape errors.
Results for Q,,; (Fig. 5) fully support the conclusions. Er-
rors of @,,, for the large sphere at small values of y are
unexpectedly smaller than for smaller spheres. This fea-
ture requires further study before any firm conclusions
are made; however, there is definitely no similar tendency
for S11(6) (cf. Fig. 4).

We have also studied a £D =8 porous cube that was ob-
tained by dividing a cube into 27 smaller cubes and then
removing randomly nine of them. All the conclusions are
the same as those reported for the cube but with slightly
higher overall errors (data not shown).

In this paper we have used a traditional DDA
formulation? for numerical simulations. However, as we
showed in Subsection 2.E, several modern improvements
of DDA (namely, IT and WB) should significantly change
its convergence behavior. IT should completely eliminate
the linear term for cubically shaped scatterers, which
should improve the accuracy especially for small y. WD
should significantly decrease shape and hence total errors
for noncubically shaped particles; moreover, it should sig-
nificantly decrease the amplitude of quasi-random error
oscillations because it takes into account the location of
the interface inside the boundary dipoles. Numerical test-
ing of DDA convergence using IT and WD is a subject of a
future study.

5. CONCLUSION

To the best of our knowledge, we conducted for the first
time a rigorous theoretical convergence analysis of DDA.
In the range of DDA applicability (kd<2), errors are

Yurkin et al.

bounded by a sum of a linear term and a quadratic term
in the discretization parameter y; the linear term is sig-
nificantly smaller for cubically than for noncubically
shaped scatterers. Therefore for small y, errors for cubi-
cally shaped particles are much smaller than for noncubi-
cally shaped ones. The relative importance of the linear
term decreases with increasing size; hence convergence of
DDA for large enough scatterers is quadratic in the com-
mon range of y. All these conclusions were verified by ex-
tensive numerical simulations.

Moreover, these simulations showed that errors are not
only bounded by a quadratic function (as predicted in Sec-
tion 2) but actually can be (with good accuracy) described
by a quadratic function of y. This fact provides a basis for
the extrapolation technique presented in Paper 2.

Our theory predicts that modern DDA improvements
(namely, IT and WD) should significantly change the con-
vergence of DDA; however, numerical testing of these pre-
dictions is left for future research.
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