ВЛИЯНИЕ ВНЕШНИХ ПОЛЕЙ НА ФИЗИКО-ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ

УДК 541.141+539.196+621.039.335+564.28.02

ИНФРАКРАСНАЯ МНОГОФОТОННАЯ ДИССОЦИАЦИЯ МЕТИЛТРИФТОРСИЛАНА

© 2006 г. П. В. Кошляков, Е. Н. Чесноков, С. Р. Горелик, В. Г. Киселев, А. К. Петров

Институт химической кинетики и горения Сибирского отделения Российской академии наук, Новосибирск Поступила в редакцию 22.02.2005

Изучалась инфракрасная многофотонная диссоциация (ИК МФД) молекулы SiF₃CH₃ под действием излучения импульсного TEA-CO₂-лазера. Экспериментально исследованы основные характеристики процесса. Проанализирован состав продуктов диссоциации, сделан вывод о том, что основным каналом диссоциации является разрыв связи Si–C. Показана возможность проведения селективной по изотопам кремния ИК МФД.

1. ВВЕДЕНИЕ

В последние годы в мире растет интерес к материалам из изотопически чистого кремния, и связан он с перспективами применения таких материалов в полупроводниковой технологии. Так, например, в работах [1, 2] было показано, что теплопроводность монокристаллов из ²⁸Si значительно выше, чем теплопроводность монокристаллов с естественным изотопным составом. Этот факт может уже сейчас использоваться в полупроводниковой технологии, особенно при создании новых мощных процессоров.

Селективные по изотопам кремния реакции, индуцированные излучением инфракрасных лазеров, изучались в ряде работ [3–8]. Лучшие результаты были достигнуты при многофотонной диссоциации гексафтордисилана. В работах [5, 6] сообщается об инфракрасной многофотонной диссоциации (ИК МФД) молекул Si₂F₆ под действием излучения СО₂-лазера, протекающей с большой вероятностью диссоциации и высокой изотопной селективностью. Высокий выход диссоциации достигался при умеренных плотностях потока энергии лазерного излучения – менее 1 Дж/см². Продуктами диссоциации являются стабильная молекула SiF₄ и малоактивный радикал SiF₂. Изотопный состав образовавшегося SiF₄ изменялся в зависимости от длины волны излучения СО2-лазера. Максимальное содержание 30 Si в SiF₄ составляло около 50%, а ²⁹Si – около 12%. В работах [3–8] было продемонстрировано, что селективная ИК МФД Si₂F₆ может быть основой для технологического процесса лазерного разделения изотопов кремния. Производительность этого процесса - несколько грамм в час продуктов диссоциации, обогащенных по ³⁰Si до 33%. В работе [8] сообщается об ИК МФД Si₂F₆ под действием лазера на свободных электронах.

Хотя в этих работах были получены высокие значения изотопной селективности, нельзя быть

уверенным в том, что Si₂F₆ есть наилучший объект для лазерного разделения изотопов кремния. Молекула Si₂F₆ содержит два атома кремния, и редкие изотопы кремния присутствуют главным образом в виде смешанных молекул 28 Si $-{}^{29}$ Si, 28 Si $-{}^{30}$ Si. Это ограничивает максимальный изотопный эффект, потому что при возбуждении смешанных молекул ²⁸Si будет переходить в продукты диссоциации наравне с редким изотопом. Следует отметить, что в работах [6, 7] этот предел для величины изотопного эффекта по ³⁰Si фактически был достигнут. Кроме того, изотопный сдвиг частоты молекулярных колебаний в смешанных молекулах должен быть меньше, чем в изотопически чистых. Эти обстоятельства делают актуальной задачу поиска молекул, содержащих один атом кремния, и столь же эффективных, с точки зрения МФД, как и Si_2F_6 .

Ранее нами исследовалась многофотонная диссоциация SiH_2F_2 [9] под действием импульсного CO_2 -лазера, и МД $SiF_3C_6H_5$ [10] под действием лазера на свободных электронах. В настоящей работе мы исследуем характеристики многофотонного поглощения и диссоциации молекулы SiF_3CH_3 под действием излучения CO_2 -лазера.

2. ЭКСПЕРИМЕНТ И РАСЧЕТЫ

В работе использовался импульсный TEA-CO₂-лазер, перестраиваемый по вращательным линиям, с максимальной энергией импульса, равный 5 Дж. С помощью диафрагмы диаметром 1 см, установленной перед входным окном реакционной кюветы, выделялась центральная часть пучка. Для сильного ослабления лазерного луча использовались плоскопараллельные пластинки из CaF₂. Плавное изменение входящей энергии осуществлялось с помощью поляризатора, состоящего из двух плоскопараллельных пластинок из KRS, установленных под углом Брюстера. Поворотом поляризатора можно было плавно регулировать энергию лазерных импульсов. Измерение энергии лазерного излучения перед кюветой и на выходе из нее проводилось с помощью измерителя излучения ИМО2-Н. Для некоторых экспериментов по изотопоселективной МФД луч лазера фокусировался линзой с фокусом, равным 25 см.

Эксперименты проводились в цилиндрической стеклянной кювете диаметром 3 см и длиной 42 см с окнами из NaCl, постоянно соединенной с ионным источником масс-спектрометра через отверстие в стеклянной диафрагме размером 20 мкм, через которое содержащаяся в кювете газовая смесь непрерывно поступала в масс-спектрометр для анализа.

Метилтрифторсилан был синтезирован в реакции SiCl₃CH₃ с трехфтористой сурьмой [11]. Его очистка производилась с помощью изготовленной в лаборатории колонки для низкотемпературной ректификации.

В литературе отсутствует информация о массспектрах фторсиланов SiH_nF_{4-n}. Поэтому в настоящей работе были синтезированы такие соединения и измерены их масс-спектры. В табл. 1 приведены характерные линии масс-спектров фторсиланов SiH_nF_{4-n}, а также масс-спектров SiF₃CH₃.

Газообразными продуктами МФД SiF₃CH₃ были SiF₄, SiF₃H, C₂H₆, C₂H₄, CH₄. Количественный анализ затруднялся тем обстоятельством, что у всех кремнийсодержащих соединений, которые входили в состав анализируемой смеси, наиболее интенсивной линией в масс-спектре является ли-

ния с m/e = 85 (SiF₃⁺). Линией материнского иона

 $SiF_3CH_3^+$ с *m/e* = 100 п ользоваться было невозможно из-за большого вклада ионов Hg^{2+} в фоне масс-спектрометра. Поэтому содержание неизрасходованного в реакции SiF₃CH₃ определялось по

линии m/e = 81 (SiF₂CH₂⁺). Для определения изотопного состава SiF₃CH₃ использовались линии с m/e = 82 (²⁹Si) и m/e = 83 (³⁰Si). Содержание SiF₄ в продуктах МФД определялось по его относительно слабой материнской линии с m/e = 104. Содержание SiF₃H определялось по линии m/e = 67 (SiF₂H⁺) с учетом незначительного вклада от SiF₃CH₃. Отсутствие в масс-спектре линии с m/e = 49 указывало на то, что линия с m/e = 67 не может принадлежать SiF₂H₂. Относительная чувствительность к SiF₃H считалась такой же, как и к SiF₄.

Содержание углеводородов C_2H_6 , C_2H_4 , CH_4 определялось по линиям с m/e = 30, 27, 26, 25, 16 с использованием имеющихся в литературе масс-спектров.

Инфракрасные спектры были измерены с помощью инфракрасного фурье-спектрометра (Vector 22 производства фирмы "Bruker") с разрешени-

ХИМИЧЕСКАЯ ФИЗИКА том 25 № 5 2006

Таблица 1. Характерные линии масс-спектров некоторых соединений кремния и их интенсивности (энергия ионизирующих электронов – 70 эВ)

m/e	SiH ₃ F	SiH ₂ F ₂	SiHF ₃	SiF ₄	SiF ₃ CH ₃
26	_	_	_	_	0.75
27	-	-	-	-	0.75
28	-	-	-	-	4.34
29	-	3	_	_	0.5
30	<1.5	1.9	_	_	0
31	18	-	_	_	0
32	_	-	_	_	_
33	_	-	—	_	12.11
44	-	-	-	-	6.45
47	21	13	9.5	1.78	17.76
48	66	3.9	_	-	-
49	100	74.4	_	_	_
50	6.3	3.6	-	-	-
51	3	2	_	_	_
66	_	18.7	7.8	_	2.83
67	-	100	88	-	1.43
68	-	5.5	4.2	-	-
69	-	3	2.3	-	-
77	_	_	_	_	_
78	_	-	_	_	_
79	_	-	_	_	0.34
80	-	-	_	_	13.38
81	_	-	_	_	28.75
82	-	-	_	_	1.91
83	-	-	—	-	0.94
85	_	_	100	100	100
86	-	-	4.6	4.87	4.78
87	_	_	2.3	3.22	3.17
96	_	_	_	_	_
97	_	_	-	_	_
100	_	-	-	_	18.58
104	_	_	_	2.29	_

Примечание. Для SiF₄ и SiF₃CH₃ относительные чувствительности S_{Ar} по линии аргона (m/e = 40) равны соответственно 0.712 и 0.68.

Рис. 1. Инфракрасный-спектр SiF₃CH₃ в области валентных Si–F-колебаний. Давление SiF₃CH₃ – 3 Торр, длина кюветы – 18 см.

ем в 1 см⁻¹. Все квантовохимические расчеты проводились с помощью программы Gaussian 98 [12]. Геометрические параметры основных состояний реагентов, продуктов и промежуточных продуктов были оптимизированы по методу B3LYP [13, 14] с базисом 6-31G(p,d). Такая же процедура использовалась для расчетов ИК-спектра. Энтальпии первичных реакций диссоциации SiF₃CH₃ были рассчитаны методом B3LYP/6-311G(p,d), а также с использованием более точной процедуры G2 [15].

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Общая характеристика ИК МФД CH₃SiF₃. Сравнение с другими кремнийсодержащими молекулами

В спектральном диапазоне вблизи 10 мкм молекула CH₃SiF₃ имеет две интенсивные полосы поглощения, соответствующие валентным Si-Fколебаниям. На рис. 1 приведен участок линейного ИК-спектра CH₃SiF₃, зарегистрированный с разрешением в 1 см⁻¹. Сечение поглощения в спектре вычислено, исходя из оптической плотности, длины кюветы и концентрации молекул SiF₃CH₃. Полоса на 982 см⁻¹ соответствует дважды вырожденному валентному Si-F-колебанию, полоса на 902 см⁻¹ симметричному валентному Si–F-колебанию. Это отнесение подтверждается квантовохимическими расчетами. Полоса на 982 см⁻¹ частично перекрывается 10R-ветвью СО₂-лазера. Максимум поглощения в линейном спектре соответствует линии 10R30 (982.0955 см⁻¹) СО₂-лазера. Большая часть измерений была проделана на линии 10R22 $(977.2 \text{ cm}^{-1}).$

На рис. 2 приведены результаты измерения поглощенной энергии в зависимости от плотности энергии лазерного импульса при многофотонном возбуждении SiF₃CH₃. Результаты представлены в виде среднего числа поглощенных квантов в расчете на одну молекулу SiF₃CH₃. Для сравнения на этом же рисунке приведены имеющиеся в литературе аналогичные зависимости для других кремнийсодержащих молекул – Si₂F₆ [16], SiF₂H₂ [9] и SiF₃C₆H₅, которые изучены нами ранее. Для молекулы SiF₃CH₃ поглощенная энергия оказывается приблизительно пропорциональной энергии лазерного импульса. Наклон прямой, проведенной на рис. 2 через экспериментальные точки, соответствует сечению поглощения $1.1 \cdot 10^{-18}$ см², что близко к сечению поглощения в линейном спектре (рис. 1).

Данные, приведенные на рис. 2, показывают, что метилтрифторсилан способен поглощать много энергии, не насыщаясь. При умеренных плотностях лазерной энергии молекулы SiF₃CH₃ поглощают десятки лазерных квантов. По этому важному показателю SiF₃CH₃ почти вдвое превосходит фенилтрифторсилан и лишь немного уступает гексафтордисилану.

Другая важная для ИК МФД характеристика, по которой можно сравнить SiF_3CH_3 с другими молекулами, это вероятность диссоциации. На рис. 3 п риведена зависимость вероятности диссоциации метилтрифторсилана от плотности энергии излучения. Штриховыми линиями показаны имеющиеся в литературе данные для других кремнийсодержащих соединений. Вероятность диссоциации SiF₃CH₃ становится измеряемой при плотностях энергии более 0.5 Дж/см², а при 0.6–0.7 Дж/см² она составляет уже несколько процентов.

Сравнение с литературными данными показывает, что по этому параметру молекула SiF₃CH₃ превосходит все исследованные соединения, за

Рис. 2. Зависимость поглощенной молекулами SiF₃CH₃ энергии от плотности потока энергии лазерного импульса. Давление SiF₃CH₃ – около 0.5 Торр. Длина волны лазерного излучения – 977.2 см⁻¹ (линия 10R22). Для сравнения приведены аналогичные зависимости для других кремнийсодержащих молекул [9, 16].

исключением Si_2F_6 . Причиной, по которой вероятность диссоциации SiF_3CH_3 превосходит вероятность диссоциации SiF_2H_2 , является отсутствие "узкого вращательного горла" при возбуждении SiF_3CH_3 . Для молекулы SiF_2H_2 , наоборот, эффект "узкого горла" определяет характер возбуждения – с лазерным излучением взаимодействует около 10% молекул [9].

Более высокая вероятность диссоциации SiF_3CH_3 по сравнению с $SiF_3C_6H_5$, по-видимому, связана с большим числом колебательных степеней свободы $SiF_3C_6H_5$. Оценки времени жизни колебательно-возбужденных молекул $SiF_3C_6H_5$ по теории PPKM показывают, что достаточно быстрый распад происходит при возбуждении значительно выше порога диссоциации. Чтобы время жизни возбужденных молекул $SiF_3C_6H_5$ было меньше времени между столкновениями молекул при давлении 1 Торр, энергия возбужденных $SiF_3C_6H_5$ как минимум должна быть вдвое выше барьера диссоциации.

Очевидно, превосходство Si_2F_6 по этому параметру связано с низкой энергией диссоциации молекулы $Si_2F_6 - 47$ ккал/моль [17].

Рис. 3. Вероятность диссоциации молекул SiF₃CH₃ в зависимости от плотности потока энергии лазерного импульса. Давление SiF₃CH₃ около 0.5 Торр. Длина волны лазерного излучения 977.2 см⁻¹ (линия 10R22). Для сравнения приведены аналогичные зависимости для других кремнийсодержащих молекул [9, 16].

Рис. 4. Зависимость концентрации кремнийсодержащих соединений от количества лазерных импульсов. Начальное давление SiF₃CH₃ – около 0.5 Торр. Длина волны лазерного излучения – 977.2 см⁻¹ (линия 10R22). Штриховая линия – баланс по кремнию.

3.2. Состав продуктов ИК МФД SiF₃CH₃. Каналы диссоциации

Газообразными продуктами многофотонной диссоциации SiF₃CH₃ были SiF₄, SiF₃H, углеводороды С₂H₆, С₂H₄, СH₄ и молекулярный водород H₂. Состав газовой смеси в зависимости от числа лазерных импульсов приведен на рис. 4 и 5. На рис. 4 приведены концентрации газообразных кремнийсодержащих продуктов SiF₄, SiF₃H и исходного вещества – SiF₃CH₃. По мере увеличения числа лазерных импульсов концентрация исходного SiF₃CH₃ падает, а концентрации продуктов SiF₄, SiF₃H нарастают. Штриховой линией показана суммарная концентрация кремнийсодержащих компонент газовой смеси. Видно, что суммарная концентрация по мере увеличения глубины реакции падает, что указывает на существование конденсированных (негазообразных) продуктов. Сопоставляя количество газообразных продуктов SiF₄, SiF₃H с количеством израсходовавшегося SiF₃CH₃, получаем, что в конденсированные продукты переходит около 40% кремния.

Рис. 5. Зависимость концентрации углеводородов от количества лазерных импульсов. Начальное давление SiF₃CH₃ – около 0.5 Торр. Длина волны лазерного излучения – 977.2 см⁻¹ (линия 10R22). Штриховая линия – баланс по углероду.

На рис. 5 приведены концентрации углеродсодержащих компонент газовой смеси SiF₃CH₃, C_2H_6 , C_2H_4 , CH₄. Штриховая линия на рис. 5 показывает, что суммарная концентрация углеродсодержащих компонент практически не изменяется – расходование SiF₃CH₃ в реакции сопровождается эквивалентным увеличением концентрации C₂H₆, C₂H₄, CH₄. Это означает, что конденсированные продукты практически не содержат углерода.

Были проведены квантовохимические расчеты энтальпии реакций распада SiF₃CH₃ по различным каналам. В табл. 2 приведены расчетные значения энтальпии (ΔH_{298}) реакций разрыва связей Si–C или C–H, а также реакции распада с перегруппировкой, в которой образуется стабильная молекула SiHF₃ и метилен в синглетном состоянии (¹CH₂). Видно, что самыми низкими по энергии каналами распада молекулы SiF₃CH₃ являются разрывы связей Si–C или C–H.

Можно полагать, что для первых двух каналов активационный барьер близок к энтальпии реакции $\Delta H_{298} \approx 104$ ккал/м оль (метод G2). Для третьего канала он должен быть больше, чем энталь-

Таблица 2. Расчетные значения энтальпии реакций распада метилтрифторсилана при 298 К

№ п.п.	Реакция	ΔH_{298} , ккал/моль		
	i cartini	B3LYP/6-311G(p,d)	G2	
1	$SiF_3CH_3 \longrightarrow SiF_3 + CH_3$	98.1	104.1	
2	$SiF_3CH_3 \longrightarrow SiF_3CH_2 + H$	101.5	104.4	
3	$SiF_3CH_3 \longrightarrow SiF_3H + CH_2$	122.6	120.7	

Рис. 6. Зависимость выхода SiF₃H и вероятности диссоциации от давления акцептора. Начальное давление SiF₃CH₃ – 0.1 Topp, линия R14.

пия реакции $\Delta H_{298} = 120.7$ ккал/моль (метод G2), и, следовательно, распад метилтрифторсилана по третьему пути маловероятен.

Присутствие в продуктах реакции небольших количеств SiF₃H, казалось бы, указывает на то, что часть возбужденных молекул SiF₃CH₃ все-таки распадается по третьему каналу. Однако SiF₃H может образоваться не только в результате распада SiF₃CH₃, но и во вторичных реакциях радикала SiF₃.

Для получения дополнительной информации о каналах распада SiF_3CH_3 были проведены эксперименты с добавками Br_2 в качестве акцептора радикалов. Молекулярный бром является очень хорошим акцептором для атомов водорода. Константа скорости соответствующей реакции:

$$H + Br_2 \longrightarrow HBr + Br, \qquad (1)$$

равна 7.2 · 10^{-11} см³/с [18]. Данных о константе скорости реакции

$$SiF_3 + Br_2 \longrightarrow SiF_3Br + Br$$
 (2)

нет. Однако известно, что силильный радикал SiH₃ и его хлорсодержащие аналоги SiCl₃, SiCl₂H реагируют с молекулярным бромом с высокой скоростью. Значения констант скоростей этих реакций лежат в интервале $(6-10.5) \cdot 10^{-11}$ см³/с [19]. Можно полагать, что константа скорости реакции (2) того же порядка.

Было обнаружено, что добавки акцептора в интервале давлений 0–0.25 Торр практически не влияют на скорость расходования SiF₃CH₃, но полностью изменяют состав продуктов. На рис. 6 приведена зависимость выхода SiF₃H от концентрации Br₂. По мере увеличения концентрации молекулярного брома выход SiF₃H падает, при дав-

ХИМИЧЕСКАЯ ФИЗИКА том 25 № 5 2006

лении Br₂ более 0.15 Торр образование SiF₃H прекращается. При этом в продуктах реакции наблюдается SiF₃Br, количество которого примерно равно количеству прореагировавшего SiF₃CH₃. Наблюдается и образование HBr, но его выход составлял (6.1 ± 2.4)% от количества распавшегося SiF₃CH₃.

Совокупность полученных экспериментальных результатов, как нам кажется, указывает на то, что основным каналом распада колебательновозбужденных молекул SiF₃CH₃ является разрыв связи Si–C (первый канал, табл. 2). Канал с отщеплением атомов водорода не превышает 10%, о чем свидетельствует малый выход HBr в экспериментах с добавками Br₂. Образование SiF₄ можно объяснить рекомбинацией радикала SiF₃ по реакции

$$SiF_3 + SiF_3 \longrightarrow SiF_4 + SiF_2.$$
 (3)

Известно, что частицы SiF₂, образующиеся при этом, обладают малой реакционной способностью [20–24]. Они диффундируют к стенке, где образуют нелетучие высокомолекулярные соединения [5, 6].

$$SiF_2 \longrightarrow Стенка (Полимер).$$
 (4)

Реакция (4) приводит к тому, что количество образовавшегося SiF_4 составляет только половину от количества радикалов SiF_3 , вступивших в реакцию (3).

Отсутствие SiF_3H в продуктах реакции при наличии в смеси акцептора радикалов означает, что трифторсилан образуется во вторичных реакциях радикалов, возникших при диссоциации SiF_3CH_3 . Наиболее естественной выглядит реакция отрыва атома водорода радикалом SiF $_3$ от молекулы SiF $_3$ CH $_3$:

$$SiF_3 + SiF_3CH_3 \longrightarrow SiF_3H + SiF_3CH_2.$$
(5)

Для того чтобы реакция (5) обеспечила превращение 10% исходного вещества в SiF₃H, 10% радикалов SiF₃ должны вступить в эту реакцию за время своей жизни. Время жизни радикалов определяется диффузией радикалов к стенке и их расходованием в реакции (3). Время, за которое радикалы диффундируют к стенке, можно оценить по формуле [25]

$$\tau_{dif} = (0.173R)^2 / D,$$

где D – коэффициент диффузии, R = 1.5 см – радиус кюветы. При давлении SiF₃CH₃, равном 0.5 Торр, коэффициент диффузии можно оценить как D = 100 см²/с, что дает $\tau_{dif} = 4 \cdot 10^{-3}$ с.

Характерное время расходования радикалов SiF₃ в реакции (3) можно оценить как $\tau_{rec} = 1/(2k_6[SiF_3]_0)$, где $[SiF_3]_0 -$ начальная концентрация радикалов. Вероятность диссоциации под действием лазерного импульса составляет величину порядка 10^{-2} . При давлении 0.5 Торр соответствующая начальная концентрация радикалов составляет $[SiF_3]_0 = 10^{14} \text{ см}^{-3}$. Если для константы скорости реакции (3) положить характерное для реакций рекомбинации радикалов значение $k_6 = 10^{-11} \text{ см}^{-3}$ с, то характерное время расходования радикалов в этой реакции можно оценить как 5×10^{-4} с. Это время примерно на порядок меньше, чем время диффузии к стенке.

Объяснить экспериментально наблюдаемое количество SiF₃H при столь малом времени жизни радикалов можно, предположив, что реакция (5) достаточно быстрая. Действительно, чтобы 10% радикалов SiF₃ успело вступить в реакцию (5), константа скорости этой реакции должна удовлетворять условию

$$k_8 > 0.1/(\tau_{rec}[SiF_3CH_3]) \approx 10^{-14} \text{ cm}^3/\text{c.}$$
 (6)

Однако, согласно расчетам методом G2, теплота реакции (5) положительна, хотя и мала ($\Delta H_{298} = 2.7$ ккал/моль). Чтобы удовлетворить условию (6) активационный барьер для реакции (5) должен быть не более, чем 3–5 ккал/моль, что практически равно ΔH_{298} . Это выглядит необычно, так как реакции отрыва атомов радикалами, как правило, имеют активационный барьер. По правилу Поляни–Семенова [26] активационный барьер для этой реакции должен быть около 10 ккал/моль, что приводит к величине $k_8 \approx 10^{-17}$ см³/с.

Причиной необычно быстрого протекания реакции (5) может быть участие в ней колебательно-возбужденных молекул SiF_3CH_3 . Поскольку в экспериментальных условиях каждая молекула SiF_3CH_3 поглощает в среднем около 20 квантов лазерного излучения, большая часть молекул

SiF₃CH₃ оказывается колебательно-возбужденной. Реакция отрыва атома водорода от таких молекул может протекать с большей скоростью.

Среди углеродсодержащих продуктов диссоциации SiF₃CH₃ наибольшую концентрацию имеет CH₄. Этот результат тоже является необычным. Наиболее вероятной реакцией, приводящей к образованию CH₄, является отрыв атома водорода метильным радикалом от молекулы SiF₃CH₃:

$$CH_3 + SiF_3CH_3 \longrightarrow CH_4 + SiF_3CH_2.$$
 (7)

Однако образовавшиеся при диссоциации радикалы CH₃ заведомо должны вступать в реакции рекомбинации:

$$CH_3 + CH_3 \longrightarrow C_2H_6,$$
 (8)

$$CH_3 + SiF_3 \longrightarrow SiF_3CH_3.$$
 (9)

Рекомбинация радикалов СН₃ хорошо изучена [27]. Константа скорости реакции (8) при давлении 0.5 Торр, рассчитанная по интерполяционной формуле Трое [28] с параметрами, рекомендованными в [29], составляет $3 \cdot 10^{-11}$ см³/с. При концентрации [CH₃]₀ = 10^{14} см⁻³ это дает для времени жизни радикалов СН₃ следующую оценку: $\tau_{rec} =$ = $1/(2k_{11}$ [CH₃]₀) $\approx 1.5 \cdot 10^{-4}$ с. Поэтому большое количество СН₄ может образоваться только в том случае, когда константа скорости реакции (10) достаточно велика:

$$k_{10} > 1 /(\tau_{rec}[SiF_3CH_3]) \approx 4 \cdot 10^{-13} \text{ cm}^3/\text{c}.$$

Из-за реакции (9) время жизни радикалов CH₃ должно быть еще короче, что, соответственно, приводит к еще большему значению k_{10} . С другой стороны, при комнатной температуре реакции отрыва водорода метильным радикалом по связи С–Н имеют достаточно низкие значения констант скорости, 10^{-17} – 10^{-20} см³/с [30–34]. Это несоответствие тоже может быть объяснено участием в реакции колебательно-возбужденных молекул SiF₃CH₃.

4. СЕЛЕКТИВНАЯ ПО ИЗОТОПАМ ДИССОЦИАЦИЯ SiF₃CH₃

Представляет интерес проведение селективной по изотопам кремния многофотонной диссоциации SiF₃CH₃. Все эксперименты по изучению селективной по изотопам кремния ИК МФД молекулы SiF₃CH₃ проводились без добавок акцептора радикалов и инертного газа. Селективность определялась как отношение скоростей расходования молекул, содержащих различные изотопы кремния. На рис. 7 приведены примеры экспериментальных зависимостей концентрации различных изотопных молекул SiF₃CH₃ от числа лазерных импульсов. Концентрации изотопных молекул определялись по линиям с m/e = 81, 82, 83. Эти линии в масс-спектре SiF₃CH₃ соответствуют оско-

Рис. 7. Зависимости концентраций молекул SiF₃CH₃, содержащих различные изотопы кремния, от числа лазерных импульсов. Слева – лазер работает в коротковолновой части рабочей области (982.10 см⁻¹), справа – в длинноволновой (936.81 см⁻¹).

лочному иону $SiF_3CH_2^+$, который отсутствует в продуктах диссоциации.

Скорость расходования молекул, содержащих различные изотопы, w_i , определялась из наклона прямой линии, проведенной в координатах $\ln c_i - N_{pulses}$. Селективность определялась как отношение скоростей расходования изотопных молекул:

$$\operatorname{Sel}_{28/29} = w_{28}/w_{29}; \quad \operatorname{Sel}_{28/30} = w_{28}/w_{30}.$$

На рис. 8 приведена зависимость селективностей по 29 и 30 изотопам кремния от частоты настройки CO_2 -лазера. Давление SiF_3CH_3 в этих экспериментах было около 0.3 Торр. При настройке лазера в область 10R-ветви (970–985 см⁻¹) наблюдается более быстрое расходование молекул ²⁸SiF₃CH₃, чем молекул, содержащих редкие изотопы ²⁹Si, ³⁰Si. По мере увеличения частоты лазерного излучения, селективность возрастает и достигает примерно 3 на линии 10R30 (982.09 см⁻¹). При дальнейшем увеличении частоты лазерного излучения уменьшается скорость диссоциации, что связано как с уменьшением энергии лазерного импульса, так и с уменьшением поглощенной энергии.

ХИМИЧЕСКАЯ ФИЗИКА том 25 № 5 2006

Более быстрого расходования редких изотопов ²⁹Si, ³⁰Si, удается достигнуть, лишь перестроив CO₂-лазер на линию 10P28 (936.80 см⁻¹), которая лежит более чем на 40 см⁻¹ ниже по частоте колебаний. Селективность при этом составляет около 30%, что намного меньше, чем в высокочастотной области.

При уменьшении давления селективность значительно возрастает. На рис. 9 приведена зависимость селективности от давления SiF₃CH₃, измеренная на линии 10R16 (973.2885 см⁻¹). Максимальная селективность составляла 10 по изотопу ³⁰Si и около 4 по изотопу ²⁹Si. Сравнительно высокие значения селективности являются дополнительным косвенным аргументом в пользу предположения о том, что во вторичных химических реакциях участвуют колебательно-возбужденные молекулы. Участие во вторичных реакциях (5) и (7) радикалов SiF₃ и радикалов CH₃ с невозбужденными молекулами SiF₃CH₃ должно снижать изотопическую селективность. Селективность, равная 10, означает, что либо вклад вторичных реакций в расходование SiF₃CH₃ не превышает 1/10, либо вторичные реакции не снижают изотоп-

Рис. 8. Зависимости селективности многофотонной диссоциации SiF_3CH_3 от частоты излучения CO_2 -лазера при давлении SiF_3CH_3 , равном 0.3 Торр. Кружками показана селективность по изотопу ³⁰Si, квадратиками – селективность по изотопу ²⁹Si. Штриховая линия – участок ИК-спектра SiF_3CH_3 , попадающий в этот спектральный диапазон.

ную селективность. Поскольку количество CH_4 в продуктах составляет почти половину от израсходованного SiF_3CH_3 (см. рис. 5), вклад реакции (7) не может быть столь малым. Если же в реакции (5) и (7) участвуют колебательно-возбужденные молекулы, то эти вторичные процессы могут быть тоже изотопически селективными.

При увеличении давления SiF₃CH₃ селективность снижается (рис. 9). Максимальная селективность по 30 Si составила около 10, по 29 Si около 4. По этому показателю МФД SiF₃CH₃ оказывается сопоставимой с МФД Si₂F₆. Например, при возбуждении Si₂F₆ лазером на свободных электронах максимальные изотопные селективности составили 5.5 и 2 для изотопов ³⁰Si и ²⁹Si соответственно [8], а при возбуждении СО2-лазером максимальные изотопные селективности составили 17 и 5 [5, 6]. Следует отметить, что в наших экспериментах, в отличие от Si₂F₆, большие селективности наблюдались в высокочастотной области спектра, когда преимущественно диссоциирует ²⁸Si. В низкочастотной области мы наблюдали значительно меньшие изотопные эффекты.

В работе [35] было получено следующее выражение для аппроксимации зависимости изотопной селективности МФД молекул CF₃I от давления:

$$\operatorname{Sel}\left(\frac{i}{k}\right) = \frac{3\alpha_0(i/k) - (1 - x_0)[\alpha_0(i/k) - 1]\tau k_{vv}p}{3 + x_0[\alpha_0(i/k) - 1]\tau k_{vv}p},(10)$$

Рис. 9. Зависимости селективности многофотонной диссоциации SiF_3CH_3 от давления. Кружками показана селективность по изотопу ³⁰Si, квадратиками – селективность по изотопу ²⁹Si.

где α_0 – предельное значение селективности при давлении $p \longrightarrow 0$, k_{vv} – феноменологическая константа скорости *V*–*V*-обмена, x_0 – природное содержание *i*-го изотопа, τ – длительность лазерного импульса (≈1 мкс), p – полное давление газа.

В основе этого выражения лежит предположение, что уменьшение селективности происходит в результате обмена колебательным возбуждением при столкновении молекул с различными изотопами в течение лазерного импульса. Молекулы, возбужденные таким образом, продолжают неселективно поглощать излучение вплоть до диссоциации.

Формула (10) получена в приближении малых выходов диссоциации и для малых давлений, при которых выполняется условие $1/2k_{vv}\tau p \ll 1$. Эту формулу мы использовали для аппроксимации зависимости Sel_{28/30} на рис. 9, варьируя два параметра – предельное значение селективности – α_0 и константу скорости *V*–*V*-обмена – k_{vv} . Результат аппроксимации при $\alpha_0 = 13$ и $k_{vv} = 3 \cdot 10^6$ Торр⁻¹ · с⁻¹ приведен на рис. 9 сплошной линией. В качестве x_0 бралось суммарное содержание 28-го и 29-го изотопов кремния. Видно, что рассчитанная по формуле (10) кривая хорошо ложится на экспериментальные точки.

На рис. 10 приведены результаты расчетов времени жизни возбужденных молекул SiF_3CH_3 по теории PPKM. Необходимые для этого частоты колебаний SiF_3CH_3 были рассчитаны методом B3LYP/6-31G(p,d). Энергия переходного состояния принималась равной 100 ккал/моль, частоты колебаний активированного комплекса для простоты считались равными частотам колебаний исходной молекулы за исключением валентного

Рис. 10. Рассчитанная по теории РРКМ зависимость константы скорости мономолекулярного распада SiF₃CH₃ от колебательной энергии молекулы.

Si–C-колебания, которое переходит в координату реакции. Учитывалось внутреннее вращение в SiF₃CH₃.

Проведенные расчеты показали, что для того чтобы молекулы распадались за время лазерного импульса, равное ≈1 мкс, энергия возбуждения должна быть около 130 ккал/моль.

Однако предположение о том, что реакция идет через жесткий переходный комплекс достаточно грубое. Переходный комплекс распада молекулы SiF₃CH₃ на SiF₃ и CH₃ может быть значительно разрыхлен, то есть обладать большим количеством внутренних вращений, чем исходная молекула. Для того, чтобы оценить, насколько это существенно, мы провели расчет для максимально разрыхленного комплекса, обладающего пятью внутренними вращениями с одинаковыми вращательными постоянными, равными 1 см⁻¹. Согласно этой оценке, для того, чтобы диссоциировать за 1 мкс, молекула должна обладать энергией, близкой к 120 ккал/моль.

То есть, чтобы молекула распалась за время лазерного импульса, энергия возбуждения молекулы должна превышать 120–130 ккал/моль, что на 7–10 квантов выше энергии диссоциации. Это показывает, что лазерная энергия для диссоциации SiF₃CH₃ используется не достаточно эффективно.

Причиной такой ситуации является большая величина барьера для распада. Плотность колебательных состояний SiF_3CH_3 при энергии 100 ккал/моль очень велика, что приводит к большой величине времени жизни возбужденных молекул.

ХИМИЧЕСКАЯ ФИЗИКА том 25 № 5 2006

5. ЗАКЛЮЧЕНИЕ

Экспериментально изучены характеристики многофотонного возбуждения молекул метилтрифторсилана под действием излучения импульсного ТЕА-СО₂-лазера. Молекулы поглощают излучение, не насыщаясь, вплоть до средних значений поглощенной энергии на молекулу, близких к энергии диссоциации и выше. Основным каналом диссоциации молекулы является разрыв связи Si-C с образованием радикалов SiF₃ и CH₃, которые инициируют вторичные реакции. Для распада в течение лазерного импульса молекула должна обладать запасом энергии, превышающим энергию диссоциации почти в полтора раза, что связано с достаточно высоким значением энергии диссоциации. Поэтому для дальнейших исследований представляют интерес молекулы, похожие по структуре, но с меньшим барьером диссоциации. Особый интерес представляют молекулы с молекулярным каналом диссоциации.

Авторы выражают благодарность д.х.н. В.И. Рахлину (ИрИХ СО РАН им. А.Е. Фаворского) за любезно предоставленный метилтрихлорсилан.

Работа выполнена при финансовой поддержке Интеграционным грантом Сибирского отделения Российской академии наук № 174/03.

СПИСОК ЛИТЕРАТУРЫ

- Capinski W.S., Maris H.J., Bauser E. et al. // Appl. Phys. Lett. 1997. V. 71. P. 2109.
- Takyu K., Itoh K.M., Oka K., Saito N., Ozhogin V.I. // Jpn. J. Appl. Phys. 1999. V. 38. P. 1493.
- Lyman J.L., Rockwood S.D. // J. Appl. Phys. 1976. V. 47. P. 595.
- Serdyuk N.K., Chesnokov E.N., Panfilov V.N. // React. Kinet. Catal. Lett. 1981. V. 17. P. 19.
- Kamioka M., Arai S., Ishikawa Y., Isomura S., Takamiya N. // Chem. Phys. Lett. 1985. V. 119. P. 357.
- Kamioka M., Ishikawa Y., Kaetsu H., Isomura S., Arai S. // J. Phys. Chem. 1986. V. 90. P. 5727.
- Suzuki H., Araki H., Noda T. // J. Jpn. Inst. Met. 1997. V. 61. P. 145.
- Lyman J.L., Newman B.E., Noda T., Suzuki H. // J. Phys. Chem. A. 1999. V. 103. P. 4227.
- Gorelik S.R., Chesnokov E.N., Kuibida A.V., Akberdin R.R., Petrov A.K. // Appl. Phys. B. 2004. V. 78. P. 119.
- Chernyshev A.V., Nomaru K., Petrov A.K. et al. // J. Phys. Chem. A. 2003. V. 107. P. 9362.
- 11. *Андрианов К.А.* Кремнийорганические соединения. М.: Госхимиздат, 1955. С. 270.
- Fresch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian-98, Revision A. 6-A11. Pittsburgh, PA: Gaussian, Inc., 1998.
- 13. Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648.
- 14. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1998. V. 37. P. 785.

- 15. Curtiss L.A., Raghavachari K., Trucks G.W., Pople J.A. // J. Chem. Phys. 1991. V. 94. P. 7221.
- 16. Tosa V., Isomura S., Takeuchi K. // J. Photochem. and Photobiol. A. 1995. V. 91. P.173.
- 17. Bains S.K., Noble P.N., Walsh R. // J. Chem. Soc. Far. Trans. 2. 1986. V. 82. P. 837.
- Wada Y., Takayanagi T., Umemoto H., Tsunashima S., Sato S. // J. Chem. Phys. 1991. V. 94. P. 4896.
- 19. Чесноков Е.Н. // Хим. физика. 1991. Т. 10. С. 200.
- Koshi M., Kato S., Matsui H. // J. Phys. Chem. 1991.
 V. 95. P. 1223.
- 21. Скок М.Ю., Чесноков Е.Н. // Хим. физика. 1988. Т. 7. С. 228.
- 22. Station A.C., Freedman A., Wormhoudt J., Gasper P.P. // Chem. Phys. Lett. 1985. V. 122. P. 190.
- 23. Freedman A., McCurdy K.E., Wormhoudt J., Gasper P.P. // Chem. Phys. Lett. 1987. V. 142. P. 255.
- 24. Sugawara K., Ito F., Nakanaga T., Takeo H. // Chem. Phys. Lett. 1995. V. 232. P. 561.
- 25. Денисов Е.Т. Кинетика гомогенных химических реакций. М.: Высшая школа, 1978. С. 248.

- 26. Кондратьев В.Н., Никитин Е.Е. Кинетика и механизм газофазных реакций. М.: Наука, 1974. С. 295.
- 27. *Macpherson M.T.*, *Pilling M.J.*, *Smith M.J.C.* // J. Phys. Chem. 1985. V. 89. P. 2268.
- 28. Cobos C.J., Troe J. // J. Chem. Phys. 1985. V. 83. P. 1010.
- 29. Wagner A.F., Wardlaw D.M. // J. Phys. Chem. 1988. V. 92. P. 2462.
- 30. Tsang W. // J. Phys. Chem. Ref. Data. 1990. V. 19. P. 1.
- Durban P.C., Marshall R.M. // Int. J. Chem. Kinet. 1980.
 V. 12. C. 1031.
- 32. *Borrell P., Platt A.E. //* Trans. Faraday Soc. 1970. V. 66. P. 2286.
- Gomer R., Kistiakowsky G.B. // J. Chem. Phys. 1951.
 V. 19. C. 85.
- Arthur N.L., Bell T.N. // Rev. Chem. Intermed. 1978.
 V. 2. P. 37.
- 35. Bagratashvili V.N., Doljikov V.S., Letokhov V.S., Ryabov E.A. // Appl. Phys. 1979. V. 20. P. 231.