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Abstract: The paper presents an algorithm for calculating the three-dimensional Voronoi–Delaunay tessellation for

an ensemble of spheres of different radii (additively-weighted Voronoi diagram). Data structure and output of the

algorithm is oriented toward the exploration of the voids between the spheres. The main geometric construct that we

develop is the Voronoi S-network (the network of vertices and edges of the Voronoi regions determined in relation

to the surfaces of the spheres). General scheme of the algorithm and the key points of its realization are discussed.

The principle of the algorithm is that for each determined site of the network we find its neighbor sites. Thus, start-

ing from a known site of the network, we sequentially find the whole network. The starting site of the network is

easily determined based on certain considerations. Geometric properties of ensembles of spheres of different radii

are discussed, the conditions of applicability and limitations of the algorithm are indicated. The algorithm is capable

of working with a wide variety of physical models, which may be represented as sets of spheres, including computer

models of complex molecular systems. Emphasis was placed on the issue of increasing the efficiency of algorithm

to work with large models (tens of thousands of atoms). It was demonstrated that the experimental CPU time

increases linearly with the number of atoms in the system, O(n).

q 2006 Wiley Periodicals, Inc. J Comput Chem 27: 1676–1692, 2006

Key words: algorithm; additively-weighted Voronoi diagram; Delaunay simplex; structure; voids; polydisperse

packings; computer models of molecular systems

Introduction

Wide application of computer simulation techniques in the con-

densed matter, material science, and molecular biology stimulates

increasing interest in Voronoi–Delaunay method, which is a con-

venient technique to study the structure of computer models of

various atomic systems. The method allows gaining information

both on the mutual location of atoms, and on the interatomic

voids. We note only some of the recent researches that utilized

the method in its different aspects: the study of the structure of

liquids and glasses,1–4 the problems of crystallization,5–8 the com-

position of granular9–12 and colloid systems,13–15 the analysis of

complex molecular systems and polymers,16–19 the study of inter-

molecular voids in liquids,20–22 in lipid membranes,23–26 in pro-

teins,27–30 and some other interesting applications.31,32

The method exploits an evident geometrical fact that for each

atom in a system of atoms it is always possible to distinguish a

part of the space closest to this atom. This region is called the Vor-

onoi polyhedron or, in general case, the Voronoi region, and their

partitioning, built for all the atoms, is called the Voronoi tessella-

tion or Voronoi diagram, see for instance, ref. 33. For the Voronoi

tessellation, there exists dual tessellation (Delaunay tessellation),

consisting of simplexes (the most simple elements of 3D space)—

tetrahedrons, whose vertices are the atoms of the system. These

simplexes are called Delaunay simplexes. A significant feature of

the Delaunay simplexe is the fact that it determines the simplest

interatomic cavity (between four atoms). These tessellations are ba-

sic geometrical data for structure investigations.

The mathematical foundations of the method were laid by

G.F. Voronoi and B.N. Delaunay. The former explored in detail

the properties of these tessellations by using analytical methods

for lattice systems, and the latter proved the correctness of Voro-

noi’s main theorems for random position of points in space.34–36

At present both tessellations are used successfully in different

branches of mathematics, computational geometry, graphics, ge-

ography, GIS, and many other applications, where geometrical
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properties of a system of discrete points given on plane or in the

space have to be explored.33,37,38

The wide utilization of the method to atomic and molecular

systems was started by J. Bernal, who was the first to use the

Voronoi polyhedra to study the structure of disordered packings

of spheres.39–41 However, the representation of atoms as points

(their centers) is not sufficient for some physical problems. Spe-

cifically, when studying the empty interatomic space, one needs

to know not only the coordinates of the centers, but also the radii

of atoms, since it is exactly the van der Waals surfaces of atoms

that determines the boundaries of the voids. Research papers42,43

demonstrated that classic Voronoi polyhedra (built for the system

of centers of atoms) do not result in correct the closest regions of

atoms of different size; they may intersect surfaces of atoms. All

this stimulated the generalization of the classic Voronoi–Delaunay

approach for the system of differently sized spheres.

At first, to take into account radii of atoms, it was suggested

to use radical polyhedra instead of classic Voronoi polyhedra.44

In this case the distance from a point in space to the sphere is

measured by a segment of a tangent to this sphere.45 In mathe-

matics this generalization of Voronoi tessellation is called radi-

cal, weighted, power, or Laguerre one.33,46,47 The radical poly-

hedrons, contrary to the classic Voronoi polyhedrons, do not

intersect the surfaces of the spheres for any system of spheres of

different radii. In this sense they can be reasonably used for

characterization of free volume of atoms.48–53 The advantage of

the radical polyhedrons is their simplicity. To calculate them, a

small modification of algorithms of calculation of classic Voro-

noi polyhedrons is sufficient. The disadvantage lies in the fact

that the proposed method of ‘‘measuring distance’’ to the atom

does not have a clear physical meaning. Nevertheless, this

approach is quite applicable as a simple method of partitioning

space between atoms of different size.

From the physical point of view, it is more accurate to assign

those points in space to the given sphere that, according to the

Euclidian measure, are closer to its surface, than to the surfaces

of other spheres. Such region, determined by the surfaces of

objects, may be denoted as Voronoi S-region.54–56 These

regions, in full analogy with the classic Voronoi polyhedrons,

cover space without gaps and superposition, that is, they form

Voronoi S-tessellation. Such generalization of Voronoi tessella-

tion is well known in mathematics. For a system of spheres it

corresponds to the so called additively-weighted Voronoi dia-

gram.33,57 However, the concept of Voronoi S-region is wider; it

may be determined for objects of any shape, for instance, for

cylinders.58 In physics such kind of regions are known in

kinetics of crystallization, in processes of nucleation and growth.

If nuclei are born in different moments, but all of them grow

with a constant velocity, then final mosaic of the nuclei-filled

space will be the additively-weighted Voronoi diagram, and such

final nuclei are called Johnson–Mehl cells.59–61

The vertices and edges of all Voronoi S-regions of a given sys-

tem form a network, which would be natural to be denoted as Voro-

noi S-network. By construction, it is the navigation map of the

empty interatomic space. Its vertices lie ‘‘in depth’’ between atoms,

and its edges serve as fairways from one vertex to the neighboring

one.54,56,62,63 In other terminology, it represents medial axes for

the voids between the atoms,33 that is, moving along the edges of

the Voronoi S-network we are always maximally removed from the

surfaces of neighboring atoms. This network is the main tool for the

analysis of the empty space within a system of spherical atoms and

any convex objects.58,64

Regardless of its physical significance, Voronoi S-tessellation

has not been used, until recently, to a full extent. The reason is

that the algorithm of calculation of the S-tessellation is more

complicated than that used for the calculation of classic Voronoi

diagram. Dealing with the surfaces of objects, we have to solve

a nonlinear problem (the system of equations of second order in

the case of spheres). Besides, the geometrical properties of a set

of spheres of different radii in some aspects differ significantly

from the properties of a system of discrete points or of equal

spheres. In this paper we solve these problems. We discuss the

properties of a system of spheres of different sizes, and propose

an algorithm, applicable to exploration of the structure and

empty space between spheres.

Many algorithms have been devised for the calculation of

classic Voronoi diagram, and for its multiple generalizations,33,38

see also some recent papers on this issue in refs. 65–68. How-

ever, there are relatively few papers dedicated to the construc-

tion of the Voronoi S-regions. Additive-weighted diagrams have

been explored in sufficient detail only for 2D.69–72 For 3D the

problem provided to be more complicated. The first calculation

of 3D additive-weighted diagram (Voronoi S-network) was per-

formed in an earlier paper54 to explore the structure of voids in

the packings of polydispersed spheres. The idea of algorithm

was borrowed from refs. 73 and 74, where in order to build Vor-

onoi polyhedron, the first vertex is determined initially, and

then, step by step, all the other vertices are found. When calcu-

lating the network, similarly, the starting vertex of the network

is determined first, and all the other vertices and their connectiv-

ity are determined by sequential determination of the neighbors

of the known vertices of the network. The works65,75,76 have

been dedicated to the calculation of 3D additively-weighted dia-

gram, where, specifically the issue of the accuracy of calculating

the vertices of the network is considered. A recent paper77 sug-

gested the algorithm utilizing the idea of sequential determina-

tion of the vertices for the construction of additive-weighted dia-

gram. However, its realization is somewhat different from that

of ours. Besides, it provides for an apparent presentation of seg-

ments of curves and pieces of surfaces representing edges and

faces of Voronoi S-regions as output data, thus helping to visu-

alize Voronoi S-region. Individual Voronoi S-regions are also

calculated for different problems. The papers78–81 are dedi-

cated to the calculation of their volume and surface for molecu-

lar biology. Volume and surface of cavities inside polydisperse

packings of spheres are calculated in ref. 82. A comparative

analysis of characteristics of classic, radical, and Voronoi S-

regions for binary packings of spheres was made in ref. 83. The

volume of the Voronoi S-regions and areas of its faces are inter-

esting physical parameters. They are determined unambiguously

by vertexes of the S-region and radii of atoms. However, we do

not know a simple analytical formula to calculate them; numeri-

cal methods are usually used.77,82,83

The calculation of Voronoi S-network for a system of non-

spherical object in a 3D (straight lines and spherocylinders) was

realized in previous works.58,84 However, the efficiency of the
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calculation of the network there turns out to be significantly lower

than that for a system of spheres. It is caused by the fact that the

analytical formula for the calculation of the coordinates of a Vor-

onoi S-network vertex can be obtained only for spheres, while for

the objects of other forms, in general, no explicit formula exists.

That is why the method of numeric determination of vertexes and

step-by-step calculation of edges was developed in ref. 58.

In a previous work85 the algorithm of calculating Voronoi S-

network for a packing of spheres in a cylindrical container is

suggested. In this case, the walls of the cylinder are regarded as

one of the objects of the ensemble, and are used equally for the

calculation of the network. In this particular case it was possible

to receive an explicit formula for the calculation of the Voronoi

vertices between spheres and the cylinder.

Thus, in this paper we propose an algorithm for calculating

Voronoi S-network for a system of spheres of different radii. It

exploits a simple idea of sequential determination of the ver-

texes, which was used earlier for calculation of the classical

Voronoi network64 and Voronoi polyhedra73,74 for systems of

points or identical spheres. Implementation of this idea to

spheres of different radii is not obvious because of specific ge-

ometry of such systems. In the paper we examine geometrical

properties of such systems in detail and also discuss nontrivial

peculiarities of the algorithm, induced by this problem. The pa-

per contains complete geometrical and technical information,

which is necessary for understanding of the algorithm and also

for its independent implementation.

For the first time this algorithm was used in our works54,55 for

studying polydisperse packings of hard spheres. A possibility of

application of the algorithm to systems of overlapping atoms (mo-

lecular systems) has been described in refs. 23 and 86. Recently

the algorithm was used to study voids in computer models of

lipid membranes.23–25 A demonstration program for the calcula-

tion of the Voronoi S-network is accessed at a website.87

In the following section we discuss geometric properties of

spheres of different radii in 3D. Then, the algorithm scheme and

the key steps of the algorithm are discussed. Also, the computa-

tional peculiarities of the algorithm and the problem of increasing

algorithm efficiency to work with large systems are considered.

Preliminary Remarks

System of Balls (Atoms)

Source information for the analysis is a 3D system of balls

(atoms) {A}, where each ball is defined by its Cartesian coordi-

nates and its radius. (We use here a term ‘‘ball’’ instead of mathe-

matical word ‘‘sphere’’ to avoid misunderstanding between objects

of the system and interstitial empty spheres inscribed between

balls). Notation nA stands for the number of balls in the system,

and arrays A and Ra stand for the set of coordinates and radii.

For simplicity we assume that the balls do not intersect each

other. The case of partially overlapping balls can be easily

reduced to the case of nonoverlapping balls, see for instance,

refs. 23, 80, and 82. We do not consider cases when one ball is

located entirely within another one, since such a ball does not

participate in the formation of empty space between the balls.

It is assumed that system {A} is nondegenerate, i.e., an

empty sphere can be tangent simultaneously to no more than

four balls of the system. Regardless of the fact that it is easy to

imagine a multitude of configurations where an empty sphere

can be tangent simultaneously to any number of balls, these con-

figurations are not encountered in models resulting from com-

puter experiment. Such degenerative configurations decompose

into nondegenerate from the infinitely small shift of balls or var-

iation of their radii. The assumption of nondegeneracy of the

system significantly simplifies the algorithm.

In this paper we leave aside the issue of the boundaries of

system {A}. This problem is not relevant for the essence of the

algorithm, and it is easily resolved in each specific case. Thus,

periodic boundary conditions are usually used in the computer

modeling of liquids, and in this case no problems with boundary

atoms arise. If a system has open boundaries, for instance while

examining a single molecule of protein, it suffices to specifically

mark the edges of the Voronoi diagram extending to infinity.

The problem becomes more complicated when the system has a

wall (a container). However, in some special cases, for instance

for balls in a cylinder, or at a flat wall, it is possible to explicitly

take into account the boundary.85

Finally, we assume that system {A} does not contain small

balls in the narrow gap between a pair of larger balls. As

becomes clear from the following, the occurrence of such con-

figurations may result in the disconnection of the Voronoi S-net-

work. By the way, this feature concerns directly to the known

fact that faces of the additive-weighted Voronoi regions may

have ‘‘holes’’.64,80 Fortunately, models of molecular systems, as

a rule, do not have such features. We mention this property of

the system of balls of different sizes, because our algorithm is

intended for the computation of simply connected network.

Auxiliary Geometrical Constructions

First of all, let us discuss the necessary geometrical concepts

and their properties for sets of three and four balls in the space,

since it is crucial for the understanding of the algorithm. The

proofs of the main properties may be found elsewhere, in partic-

ular, in some previous papers,33,57,75 as well as in ref. 64.

Voronoi S-Surface (Voronoi Hyperboloid)

The geometric locus of points, equidistant from the surfaces of

two balls i and j, is defined as Voronoi S-surface (Voronoi

bisector, Voronoi hyperboloid) Hij (see Fig. 1). It divides the

space into two parts, so that points of one half-space are closer

to the surface of their ball than to the surface of the ball in the

other half-space. This surface in 3D represents an axial–symmet-

rical hyperboloid. For balls with equal radii it becomes obvi-

ously a plane.

Voronoi S-Channel

Geometric locus of points equidistant from the surfaces of three

balls i, j, k is defined as Voronoi S-channel and is denoted as

Cijk. It may be represented as a trajectory of movement of the

center of an empty sphere simultaneously tangent to this set of

three balls. S-channel is the common line of intersection of all
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the three Voronoi hyperboloids (Hij, Hik, and Hjk) of pairs of these

balls. Below are the necessary properties of Voronoi S-channel.

C1. Voronoi S-channel is simply-connected line. It can be
either nonclosed, i.e., with endpoints extended into infinity, or
closed. The property of the S-channel is substantially utilized in

our algorithm. It is worth noting that for objects of other shape,

for instance cylinders, Voronoi S-channel may not be con-

nected.84 For equal balls, Voronoi S-channel is apparently a

straight line, and for different balls nonclosed channel is a hy-

perbole, and a closed one is an ellipse. (Parabola and circle are

also possible for degenerate configurations.) Figure 2 demon-

strates Voronoi S-channels and corresponding configurations of

sets of three balls. Three types of configurations may be distin-

guished: (a) planar, with nonclosed channel; note that each of

these configurations has two tangential planes; (b) nonplanar,

with closed channel, without a tangential plane, and finally, (c)

configurations without S-channel.

It is worth mentioning that in 2D, when the Voronoi S-chan-

nel is determined by two disks, S-channels exist for any pair of

disk. Besides, in 2D S-channels may be only nonclosed. This

determines the significant difference between additively-weighted

Voronoi diagrams in 2D and 3D.

C2. Voronoi S-channel is symmetrical in relation to the cen-
tral plane for the given set of three balls. This useful property

of the S-channel reflects the symmetry of any set of three balls

in relation to its central plane, i.e., the plane passing through the

centers of these spheres (Fig. 2).

It is convenient to define radius of Voronoi S-channel. It is

determined at each point of the channel and is equal to the dis-

tance from this point to the surfaces of the balls. In other words,

it is the radius of a sphere with the center at this point tangent

to the set of three balls. The minimal value of this radius deter-

mines the bottleneck on S-channel. The following property is

important for applications of the method, since it determines the

location of the bottleneck in the channel.

Figure 1. Two-dimensional illustration of Voronoi S-surface for

two balls of different radii. It divides the space into two parts.

Points of one part of space are located closer to the surface of the

first ball, and points of the other one are closer to surface of the sec-

ond ball. For any point p on this surface the difference of distances

from this point to the centers of the balls (R1 þ r) – (R2 þ r) ¼
R1 � R2 is a constant value, i.e., Voronoi S-surface is a hyperboloid

(hyperbole in 2D case).

Figure 2. Different types of configurations of sets of three balls and

corresponding Voronoi S-channels. (a) Planar set of three balls (one

that may be placed on a plane) has a nonclosed channel. (b) Nonpla-

nar set of three balls with a closed channel. (c) Configuration with-

out channels. Voronoi S-channel is always symmetrical in relation

to the central plane of the set of three balls. [Color figure can be

viewed in the online issue, which is available at www.interscience.

wiley.com.]
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C3. Bottleneck on the Voronoi S-channel is realized at the
point of its intersection with the central plane of the given set of
three balls. If S-channel is nonclosed, it intersects the central

plane only in one point, where bottleneck is realized. We shall

call this point the beginning point (beginning) of Voronoi S-

channel. Upon moving away from this point the radius of the

channel, apparently, steadily grows.

If S-channel is closed, it intersects the central plane twice. At

that, the minimum value of the S-channel radius is to be realized

in one point, and the maximum value in the other. We also call

the first point as the beginning point (beginning), and the second

as end point (end) of the Voronoi S-channel.

Voronoi S-Vertex

It is known from elementary geometry that two nonoverlapping

spheres, when touching, are tangent at one common point. It also

known that four noncoplanar points in space uniquely determine a

sphere. This means that a set of four balls in space specifically fixes

the empty sphere tangent to all four balls in the space enclosed by the

four balls. The center of this sphere is defined as Voronoi S-vertex

for the given set of four spheres. For balls i, j, k, l it is denoted asVijkl.

The following simple but significant property of Voronoi S-

vertex is utilized in the algorithm.

V1. Exactly four Voronoi S-channels intersect in each Voro-
noi S-vertex. Indeed, a set of four balls i, j, k, l determines four

different sets of triplets of balls: i, j, k, y, i, j, l, y, i, k, l, and j, k, l, each
one with its Voronoi S-channel: Cijk, Cijl, Cikl, and Cjkl. The cen-

ter of the empty sphere tangent to all the four balls has to be

located simultaneously at each of these channels, and this means

that all the four channels intersect in this point (see Fig. 3). It is

worth mentioning that this statement is true not only for spheres,

but also for any convex bodies. A convex body, for instance a

cylinder or an ellipse, just like a sphere, has only one point of

contact with the empty sphere. That is why in this case, too, a

set of four bodies determines the tangent sphere, and therefore,

the four Voronoi S-channels converging in its center.

Nontrivial feature for balls of different size is the fact that a set of

four balls can have one or two Voronoi S-vertices, or not have them at

all. There exist three principally different types of configurations of

sets of fours balls. They are determined by the number of empty

spheres that can be tangent to the balls of the given set of four (see

Fig. 4). Configurations of the first type (one inscribed sphere, one Vor-

onoi S-vertex) will be denoted as singlet. These are the most probable

configurations which can be realized in space (see Fig. 4a). Note that

in case of equal balls all the sets of four ones are of this type.

An example of a configuration with two inscribed empty

spheres would be the location of a relatively small ball between

a triplet of large balls (see Fig. 4b). Such quadruplet of balls is

Figure 3. Four Voronoi S-channels intersect in each Voronoi S-vertex (left), three ones for

2D case (right). [Color figure can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Figure 4. Different types of configurations of four balls in 3D (left)

and three disks in 2D (right). (a) Singlet set: one inscribed sphere;

(b) Double set: two inscribed spheres; (c) Nonsimpliciable: no

inscribed spheres. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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denoted as doublet, and the corresponding pair of Voronoi S-

vertices as doublet vertices. Occurrence of such configurations is

not fatal for the method application. Both doublet S-vertices

may be considered as equivalent. Such configurations occur

quite often in the models of molecular systems. Configurations

of the third type (see Fig. 4c) are obtained when relatively small

balls ‘‘hide’’ from each other at different sides of the big one.

We refer to such configurations as nonsimpliciable (not resulting

in Delaunay S-simplex; see later).

Voronoi–Delaunay S-Tessellation

(Voronoi Additive-Weighted Diagram)

Having considered geometry for two, three, and four balls, we

now move on to the system of many balls.

Voronoi S-Region

Voronoi additively-weighted or S-region for a system of balls is

a region of space whose points are closer to the surface of a

given ball than to the surfaces of other balls of this system. The

faces of the Voronoi S-region are represented by pieces of Voro-

noi hyperboloids, the edges are segments of Voronoi S-channels,

and the vertices are Voronoi S-vertices of the quadruplets of

balls whose S-regions meet in this vertex (see Fig. 5).

Voronoi S-region is a generalization of the Voronoi polyhe-

dron known for a system of discrete points. For systems of balls

of equal size they identically coincide. However, in a general

case of different balls, the faces and edges of the S-region are

curves; moreover, some topological properties may differ from

the properties of the classical polyhedrons: specifically, there are

dihedrons (two faces without vertex), trihedrons (two vertices

with three diangular faces), as well as, in theory, there may exist

arbitrarily complex formations combining all the above-men-

tioned characteristics; see for instance, refs. 64 and 80. Study of

Voronoi S-regions presents a separate topic of research. In this

paper we focus on another aspect of the problem.

Voronoi S-Tessellation

Voronoi S-regions generated for all the balls of the system cover

space without gaps or overlapping, resulting in the partition (tes-

sellation) of space. In analogy with the classic Voronoi tessella-

tion, four Voronoi S-regions converge in each vertex, and three

at each common edge. For a system of balls this construction is

the known in mathematics additively-weighted partition, which

is determined for a system of discrete points (centers) by substi-

tuting the Cartesian measure of distance ri between a point in

space and the center i with ri
aw ¼ ri þ Wi, that is a constant

value Wi, individual for each center of the system. Additive-

weighted partition will coincide with S-tessellation if the value

of the radius of the ball is taken as Ri ¼ �Wi.

Delaunay S-Simplex

In analogy with the classic Voronoi tessellation, a dual partition

occurs here too. In this case a simplicial quadruplet of balls is

determined by the Voronoi S-regions, sharing a common vertex.

Centers of these balls are vertices of Delaunay S-simplex.

Empty space between the balls is occupied by an inscribed (in-

terstitial) sphere. This sphere is an important characteristic of

the S-simplex.

It should be emphasized that Delaunay S-simplex is a tetra-

hedron with flat faces. They differ from classic Delaunay sim-

plexes only in that they may correspond to different balls of the

system (see Fig. 6).

Note that M. I. Karavelas,71 working in a 2D space, defines a

dual element of Voronoi S- tessellation somewhat differently. Its

vertices are chosen in the same way; however, the edges are

curves. Such elements realize partition of a system of disks

without gaps or overlapping. However, a simplex with flat faces

is more convenient for physical application regardless of some

difficulties with the partition (see below).

Delaunay S-Covering

The sum total of all Delaunay S-simplexes constructed for a

given system of balls forms a mosaic covering the entire space.

In this aspect S-simplexes are similar to classic Delaunay sim-

plexes. A difference between them is that in some cases Delau-

nay S-simplexes can overlap. This happens, in particular, due to

the existence of doublet quadruplets of spheres; that is close

Figure 5. 2D illustration of Voronoi S-region: closed region around

a central disk (solid line). Dotted line depicts Voronoi polyhedron

built for the centers of the spheres.

Figure 6. Partition of configurations shown in Figure 5 into Delau-

nay S-simplexes (left) and classic Delaunay simplexes (right). They

may be determined by different atoms.
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proximity of small balls to big ones (see Fig. 7). It should be

emphasized that S-simplexes may superimpose, but there are no

gaps between them. So, one can say that they form a covering

of space, but not a tessellation in the strict mathematical sense.

In a previous work71 this issue is resolved in 2D; however, for

3D space this question has not yet been researched in detail.

The fact that S-simplexes may superimpose should be taken

into consideration in applications while calculating the volume

of the void as the sum of empty volumes of Delaunay S-sim-

plexes. Our experience shows that superimposing simplexes do

occur in the models of molecular systems, but it happens rarely.

The error in the calculation of the volume of system as the sum

of volumes of all Delaunay S-simplexes amounts to tenths of

percent.23 If superimposing S-simplexes are essential for a prob-

lem, it is not difficult to establish all of them; for instance, by

marking them while plotting Voronoi S-network.

Voronoi S-Network

Voronoi S-network is a grid of vertices and edges of Voronoi S-

regions. It is depicted by solid lines in Figure 5. Voronoi S-net-

work fully determines the entire Voronoi-Delaunay S-tessellation

of the system and is a convenient way of presenting geometric

data for solving physical problems. In the course of working with

networks, the words ‘‘site’’ and ‘‘bond’’ are typically used instead

of ‘‘vertex’’ and ‘‘edge.’’ Thus, each vertex of Voronoi S-tessella-

tion is a site of the Voronoi S-network, and each edge is a bond.

General Properties of Voronoi S-Network

The following are the properties of Voronoi S-network that are

explicitly or implicitly used in our algorithm.

N1. Each site of Voronoi S-network is a center of an intersti-
tial sphere determining Delaunay S-simplex in the given system of
balls. This statement allows to connect a Delaunay S-simplex

(quadruplet of atoms) to a single point (site of the Voronoi net-

work). Because of this, any task of studying spatial distribution of

the simplicial quadruplets of atoms can be converted to studying

clusters of sites on the network (site-percolation problem).88,89

N2. Exactly four bonds converge in each site of Voronoi S-net-
work. This statement follows from the property V1 of Voronoi S-

vertex (see earlier). It means that any Voronoi S-network (as sim-

ply connected as well as unconnected) has the power of all vertices

equal to four in complete analogy with the classic Voronoi net-

work. It is worth mentioning that Voronoi S-network for system of

any nonspherical convex bodies has the same feature.58,64 It should

be remembered that we deal with nondegenerate systems.

N3. Each bond of the Voronoi S-network is a fairway on the
way between the neighboring sites. This statement reflects

the fact that each bond of Voronoi S-network is a segment of

the Voronoi S-channel. This property guaranties that the most

‘‘passable’’ ways between the atoms are realized only along the

bonds of the Voronoi S-network.62,63,82

Peculiarities of Voronoi S-Network

First of all, we recall that bonds of the S-network are segments

of curves as distinct from classic Voronoi network where they

are segments of straight lines. However, this fact does not play a

major role in many applications. In particular, for interatomic

space analysis it can be suffice to know the radius of the bottle-

neck at the bond, while the functional type of the representing

segment of curve is not that important.62,90

A more significant fact is that the topology of S-network may

differ from the topology of the classic one (see Fig. 8). It can

have binomial cycles not possible in classic case. Such cycles are

manifestations of Voronoi doublet S-vertices (see above). We

shall call them doublet sites. This, however, does not result in

crucial complication of the network. Doublet sites have the same

characteristic as ordinary singlet sites. Each of them is the center

Figure 7. 2D illustration of superimposing Delaunay S-simplexes.

The simplex formed by disks 2, 3, and 4, is located inside the sim-

plex formed by disks 1, 2, and 3.

Figure 8. Binomial cycles in Voronoi S-network (right). Configura-

tions of balls resulting in such cycles (left): a small ball in the nar-

row channel between a triplet of large balls and two small balls

between a pair of large ones. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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of its interstitial sphere, and four bonds of the network converge

in each of them. The only peculiarity lies in the fact that the same

quadruple of spheres corresponds to both of them.

An unpleasant characteristic of Voronoi S-network is that, in

general case, it can be unconnected, that is, it can consist of sep-

arate fragments not connected with bonds to each other. Discon-

nectedness occurs when one (or many) small ball happens to be

located between a pair of big balls (see Fig. 9). It is worth not-

ing that this happens only in a 3D case; Voronoi S-network is

always simply connected on the plane.

Our algorithm calculates only the simply connected part of

the network (see later). However, it can be used to find all the

isolated parts of the network. To determine whether the S-net-

work is simply connected, it is sufficient to check whether, after

it has been plotted, any ‘‘unused’’ balls of the system {A}
remain, but did not take part in the construction of the network.

If all the balls of the system took part in the construction of the

network, the S-network is simply connected and fully represents

the Voronoi-Delaunay S-tessellation of the system. If a sub-sys-

tem of unutilized spheres was left, we can apply our algorithm

to this sub-system, and plot an S-network for it, and so on. If

the sub-system consists of one ball, as demonstrated in Figure 9,

the isolated fragment of S-network would be a ring without ver-

tices (closed Voronoi S-channel in its entirety). Our algorithm

does not find such trivial rings, since it uses essentially the sites

of the network.

Voronoi S-Network Representation Method

For the purposes of calculations and effective usage it is conven-

ient to represent Voronoi S-network as follows (see Fig. 10).

Coordinates of the sites of the network are recorded in an array

Dð1 :3; 1 :nDÞ:

The order of listing of sites in this array determines the number-

ing of the sites. The total number of sites nD is unknown in

advance. It depends both on the number of balls in the system

and on their arrangement, and it is usually six to eight times

larger than the number of spheres in the system nA.64 The exact

meaning of nD may be determined only after the calculation of

the entire network.

An integer array is required for recording the connectivity of

the network sites

DDð1 :4; 1 :nDÞ:

It represents a connectivity matrix of the sites. The numbers of

sites adjacent to a site j are recorded in the jth column of this

array. In other words, if bonds from a site j extend to sites j1,
j2, j3, j4, then DD(1, j) ¼ j1, DD(2, j) ¼ j2, DD(3, j) ¼ j3,
DD(4, j) ¼ j4. Note that array DD(,) is symmetrical, that is, col-

umns numbered j1, j2, j3, j4 will necessarily contain number j,
denoting the connection of these sites with site number j. Con-
trol over such symmetry serves a test of the correctness of the

calculation of the network.

An integer array is required for recording the number of balls

determining Delaunay S-simplexes. For every site we should re-

cord numbers of four corresponding balls

Figure 9. An example of the simplest unconnected fragment at Vor-

onoi S-network. A small ball in a narrow gap between a pair of large

balls represents a ring without sites. [Color figure can be viewed in

the online issue, which is available at www.interscience.wiley.com.]

Figure 10. Illustration of the structure of recording in arrays DD and DA for a 2D system of

disks (see text).

DAð1 :4; 1:nDÞ:
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It represents an incidence matrix for the sites and balls of a sys-

tem. The indexes of balls incident to the j site of the network

are recorded in the jth column of the array. Thus, if site j is a

Voronoi S-vertex for balls number A1, A2, A3, A4, then DA(1, j) ¼
A1, DA(2, j) ¼ A2, DA(3, j) ¼ A3, DA(4, j) ¼ A4.

The radii of interstitial spheres are computed in the process

of algorithm application and are recorded in an array

Rið1 :nDÞ:

At the calculation of the network it is convenient to calculate

straight away the values of bottlenecks of the bonds, and to re-

cord them in an array

Rbð1 :4; 1 :nDÞ:

It has the structure similar to array DD(,), that is, the radii of

bottlenecks corresponding to the bonds originating from the j
site of the network are recorded in jth column.

Algorithm Scheme

Our algorithm realizes the simple idea of sequential determina-

tion of the sites of Voronoi S-network. First, based on certain

considerations, the first site of the network is determined. Then

neighboring sites are located, and so on, step-by-step, neighbor-

ing sites join the established ones. The procedure continues until

all neighbors are determined for each site.

For simply connected network such sequential determination

of sites will inevitably result in the determination of all the sites of

the network. However, as discussed above, there are systems of

spheres where Voronoi S-network is not simply connected (see

Peculiarities of Voronoi S-Network). In this case, evidently, our

algorithm will generate that simply connected piece of the Voronoi

S-network, to which the starting site of the network belonged.

Figure 11 demonstrates the scheme of the algorithm indicating

the main stages of the calculation. The first nontrivial step of the

work is the determination of the starting site of the network; it is

convenient to distinguish it in a separate block (BLOCK1). After

the determination of the starting site, the rest of the work can be

compactly combined in one block (BLOCK2), where for each of

the newly determined site (cycle in sites), all the bonds, originat-

ing in this site are examined (cycle in bonds), and for each such

bond (Voronoi S-channels) a new site is found by sorting the

atoms of the system (cycle in atoms). The bulk of the computa-

tional effort of the algorithm is the determination of Voronoi S-

vertexes, that is, the finding of an inscribed sphere between a ran-

dom quadruple of balls. This is realized as a separate subroutine

SPHERE (see later). For the determination of Voronoi S-channel

the CIRCLE procedure is used, which finds the circle tangent to

the three balls and located in the central plane of these balls.

Key Steps of the Algorithm

Procedure SPHERE

Procedure SPHERE finds an inscribed sphere (spheres) between

a random quadruple of different-sized balls, that is, it solves the

Apollonian problem in a 3D space. The answer is obtained

through solving a system of equations

ðx� xiÞ2 þ ðy� yiÞ2 þ ðz� ziÞ2 ¼ ðRþ RiÞ2; i ¼ 1; 2; 3; 4 (1)

where xi, yi, zi, and Ri are the coordinates of the centers and radii

for a given quadruple of balls, and x,y,z and R are coordinates of

the center and radius of the sought inscribed sphere. This system

is solved in an explicit form. Subtracting, for instance, the first

equation from the rest, we can obtain a system of linear equations

for three variables. By solving it, we express these variables

through the fourth one. As a result, the coordinates of the center

of the sought sphere may be represented as follows

x ¼ A1Rþ B1

Det
; y ¼ A2Rþ B2

Det
; z ¼ A3Rþ B3

Det
; (2)

Here variables Ai, Bi (i ¼ 1,2,3), and Det depend only on the

coordinates and radii of the original quadruple of balls. By sub-

stituting these expressions into the first equation we get a square

expression for R, the solution of which is represented by the fol-

lowing formula

R ¼ �G�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G2 � EF
p

E
; (3)

Figure 11. The scheme of the Voronoi S-network generation.
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where variables G, F, and E also depend only on the original

quadruple of spheres. By substituting the determined value of R
in formulas (2), we find the required coordinates of the center.

Expression (3), depending on the configuration of the

spheres, gives one, two, or none real solutions for R. This result
serves as an analytical confirmation of the existence of three

types of configurations of quadruples of balls shown in Figure 4.

For our problem, evidently, only positive values of R make

sense. Negative values of R determine a sphere circumscribed

about a quadruple of balls, while complex values mean that it is

impossible to inscribe a sphere between this quadruple of balls.

In spite of eq. (1) being a task of elementary geometry, we do

not know general geometrical books where it was examined. For

details of the solution of system (1) and ways of improving the

accuracy of the solution refer to refs. 64 and 69.

Procedure CIRCLE

Procedure CIRCLE for a triple of random balls finds a circle

(sphere) inscribed between them and located in the central plane

of these three balls. To do this, the following system of equation

is solved

ðx� xiÞ2 þ ðy� yiÞ2 þ ðz� ziÞ2 ¼ ðRþ RiÞ2; i ¼ 1; 2; 3

P1xþ P2yþ P3z ¼ P0: (4)

Here too, xi, yi, zi, and Ri are the coordinates of the centers of

balls and radii of the given quadruple of balls, and x, y, z and R
are the coordinates of the center and the radius of the sought

circle. The latter equation is the equation of the central plane,

where all the coefficients Pk (k ¼ 0,1,2,3) are expressed by the

usual way through the coordinates of the centers of the given tri-

ple of balls. System (4) is solved in an explicit form similarly to

system (1), whereby the required coordinates of the center of the

circle and its radius are defined by formulas similar to (2) and

(3). As a result, for the radius of the sought circle also one, two,

or none solutions are possible, depending on the specific values

of the coordinates and radii of the balls. Unique solution means

that the given set of three balls has Voronoi S-channel that inter-

sects the central plane once (nonclosed channel). The point

obtained (x, y, z) is the beginning point of the S-channel, and

variable R determines its bottleneck radius (see Preliminary

Remarks). The existence of two positive solutions for the radius

of the sought circle means that S-channel is closed. The center

of the circle of smaller radius R1 represents the beginning point

of this channel and determines the bottleneck at this channel.

The center of the larger circle determines the ending point of

the channel. Corresponding value of radius R2 is the maximum

value of radius for this S-channel. Absence of positive solutions

for R signifies that the given set of three spheres does not have

the Voronoi S-channel. Possible types of triples of balls and cor-

responding channels are shown in Figure 2.

Determination of the First Site of Voronoi

S-Network: BLOCK1

The first (starting) site for the generation of the Voronoi S-network

can be any one of its sites. For simplicity, we choose this site closer

to the center of the system (away from borders) and make sure that

it is not doublet. All this can be easily done by the selection of the

starting ball in the procedure of searching for the first site.

Thus, the first site of Voronoi S-network is determined as

follows:

1. We choose in the system {A} a ball i.
2. Sorting through all the other balls of the system, we find

among them ball j, such that the distance between the surfa-

ces of balls i and j were minimal among all the distances

between the ball i and any other ball of the system.

3. Sorting through the remaining balls, we find among them a

ball k, such that the radius of the Voronoi S-channel bottle-

neck for the triple i, j, k were minimal. Procedure CIRCLE

is utilized for the solution of this problem.

4. Sorting through the remaining balls we find among them a

ball l, such that the sphere inscribed between balls i, j, k, l
had a minimum radius. Procedure SPHERE is utilized here.

The quadruple of balls found in this way i, j, k, l forms a

Delaunay S-simplex for system {A}, and the center of the found

sphere is the sought site of the Voronoi S-network. The proof of

correctness of such a method of finding the first site of the S-

network may be presented similarly to the way it had been done

for the calculation of the classic Voronoi network.64

After the determination of the first site we can write its coor-

dinates x,y,z into array D, numbers of balls i,j,k,l incident to this

site, into array DA, and radius ri of the determined inscribed

sphere into Ri. Symbolically it can be represented as follows:

Dð�; 1Þ ¼ ðx; y; zÞ
DAð�; 1Þ ¼ ði; j; k; lÞ
Rið1Þ ¼ ri:

Determination of the New Sites: BLOCK2

Calculation of a New Site

After the first site is determined, we can proceed to the determi-

nation of the remaining sites of the network. Thus, let us assume

that we know a site Vijkl, with corresponding balls i, j, k, l. Four
Voronoi S-channels originate from this site: Cijk, Cijl, Cikl, and

Cjkl. Let us assume, for instance, that the neighboring site has

not yet been determined at channel Cijk. Our task is to find this

neighboring site, that is to select a ball m, which, together with
balls i,j,k has an empty inscribed sphere.

To find the neighboring site it is convenient to use the con-

sideration that this site is the Voronoi S-vertex which is closest

to a given original site. Thus, we have to find such ball m of the

system {A}, which, together with balls i, j, k produces S-vertex

Vijkm closest to the starting site Vijkl. It must be emphasized that

all the Voronoi S-vertices, in which the triple of balls i, j, k, par-
ticipates, are located at S-channel Cijk, and the distance to these

vertices from the starting site has to be measured along this

channel. In other words, a ball m is the required one if there are

no other Voronoi S-vertices between Vijkl and Vijkm at the Voronoi

S-channel Cijk. Figure 12 demonstrates the aforesaid for a 2D.
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Coordinates x, y, z of the new network site are recorded in

array D. Simultaneously, numbers of balls i, j, k,m incident to

the site (they determine new Delaunay S-simplex) are recorded

in array DA. Finding of a new site determines a new bond of

Voronoi network, which is recorded in array DD. To do that, in

the column, corresponding to the ordinal number of site Vijkl, the

index of the determined site Vijkm is recorded, and in the column

corresponding to the index Vijkm the ordinal number of the start-

ing site Vijkl is recorded. The radius ri of the new interstitial

sphere is recorded in array Ri, and the radius of the bottleneck

rb on the way from one site to the other—in array Rb. To illus-

trate the above, the sample of data recording after the determina-

tion of the second site of the network is shown.

Dð�; 2Þ ¼ ðx; y; zÞ
DAð�; 2Þ ¼ ði; j; k;mÞ
DDð1; 1Þ ¼ 2

DDð1; 2Þ ¼ 1

Rið2Þ ¼ ri

Rbð1; 1Þ ¼ rb

Rbð1; 2Þ ¼ rb:

The radius of the bottleneck is recorded twice; however,

these expenses are justified by the convenience of the subse-

quent work with array Rb.

Verification of the Calculated Site

In our algorithm the sequence of the determination of the network

sites is not controlled in any way, that is why it is necessary each

time to check if the found site is really new, or if it had been estab-

lished before. Indeed, one and the same site may be calculated

several times (four in the worst case scenario), since it may be

found through any of the four Voronoi channels entering it.

We can compare the new site with the known sites based on the

coincidence of coordinates. However, to increase the reliability of

the algorithm, we identify the sites by integers: by four numbers of

balls it corresponds to, and the fifth integer, necessary to distinguish

between doublet sites corresponding to the same quadruple of

atoms. For singlet sites it equals 0, and for doublet: 1 and 2.

Thus, if the newly found site already exists under number

nd_old, this means that a new bond of the network is deter-

mined, between sites nd_old and nd_current, starting from which

we were searching for a new site. This is recorded as follows:

DDðni; nd�currentÞ ¼ nd�old
DDðnj; nd�oldÞ ¼ nd�current
Rbðni; currentÞ ¼ rb

Rbðnj; nd�oldÞ ¼ rb:

Here indices ni and nj may have values from 1 to 4 and

denote the ordinal number of the bond determined at this site,

and rb is the radius of the bottleneck at this bond.

If the determined site is new, and its ordinal number turned out to

be equal to nd_new, then the recording in the arrays looks like this.

Dð�; nd�newÞ ¼ ðx; y; zÞ
DAð�; nd�newÞ ¼ ði; j; k;mÞ
DDðl; nd�newÞ ¼ nd�current
DDðni; nd�currentÞ ¼ nd�new
Riðnd�newÞ ¼ ri

Rbðl; nd�newÞ ¼ rb

Rbðni; nd�currentÞ ¼ rb:

Here x, y, z and i, j, k, m are the coordinates and numbers of

balls for the determined site, ni is a number of bond at site

nd_current where we were looking for the site, and ri is a radius

of the interstitial sphere of this site. It is worth mentioning that

for site nd_new the determined bond is the first, and so it has

the ordinal number 1 in array DD.

Computational Peculiarities of the Algorithm

Let us consider the main computational details of the algorithm,

important for its realization, and distinguishing the computation

of the Voronoi S-network from the classic case.

Measurement of Distance Between the Sites

along Voronoi S-Channel

Computation of a distance between two points along a curve is

not a simple task. However, in this case we do not need to know

the concrete value of the distance; our goal is to choose the min-

imal one. For this reason we suggest, instead the length of a seg-

ment of the curve, calculating a simple measure of the length of

the segment. In case of convex curves, this task is solved easily:

a segment of a curve may be approximated either by one seg-

ment of a straight line, or by a broken line.

In the case of a nonclosed Voronoi S-channel (Fig. 13) the

problem is easily solved. If the distance is to be measured between

the points that are located at one side of the central plane (Fig. 13

(left)) then it would suffice to use a usual Cartesian measurement

Figure 12. 2D illustration of determining a new S-network site at a

given Voronoi S-channel. Let a known site Vijk have a S-channel Cij.
Points m, n, q at this channel are Voronoi S-vertices for disks i, j with
the disks m, n, q, correspondingly. Vertex m, closest to the starting site

Vijk, determines the neighboring network site Vijm. The inscribed

circle for disks i, j,m is empty. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]
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as a distance between them, that is, the measurement can be done

along a straight line. This is evident, since a nonclosed channel is

a hyperbole: a flat convex curve. If the points are located at differ-

ent sides of the central plane, then, to avoid a situation shown with

a dotted line in Figure 13 (right), we should use, as a measure of

distance along the channel, two linear segments passing through

the beginning point of channel b.
To estimate the distance at a closed Voronoi S-channel it is

also possible to use linear segment. However, here it is neces-

sary to take into consideration all the existing possibilities of re-

ciprocal location of the sites in relation to the central plane (see

Fig. 14). (In our experience all of them are realized in molecular

systems.) First, the original and the sought sites may be either

on one, or on different sides of the central plane. Second, for a

closed channel the direction along which the distance is calcu-

lated is significant (see below). Thus, for instance, in Figure 14

points vq and vm are located to the same side of the central plane

as the initial point vl; however, the distance along the channel to

point vm is estimated by one segment, and to point vq by three.

The alternative estimate of the distance along the closed

channel is the measurement of the angle between the rays pass-

ing through the points under study (Fig. 15). As a vertex of the

angle we can choose, for instance, the symmetry center of this

S-channel. The distance along the channel from initial point vl
to any other point is symbate to the value of the angle between

corresponding rays. The correctness of this method of distance

estimation is evident, since we know that a closed Voronoi S-

channel is a flat convex curve (an ellipse).

Determination of the Correct Direction

at Voronoi S-Channel

There are two opposite directions from the site on the Voronoi S-

channel along the channel. The question then arises: in what

Figure 13. Estimation of the length of a segment on a nonclosed Voronoi S-channel. Point vl is a
known site of the network, points vn and vm are Voronoi S-vertices, from among which the one closest

to site vl has to be selected. In case when a segment of the channel is located entirely at one side of the

central plane, to estimate the distance it is sufficient to use the segment of the straight line, connecting

these points (left). If the points are located at both sides of the central plane, then it is necessary to use

two linear segments passing through the beginning point of the channel (right). This allows to avoid a

situation shown by a dotted line, where the distance vl vn along the strait line is shorter than vl vm, while
along the channel point vm is closer to vl, than vn. Point bmarks the beginning point of the channel.

Figure 14. Estimation of the length of a segment on closed Voronoi

S-channel. Point vl is the known site of the network, points vq, vn,
and vm are Voronoi S–vertices, from among these the closest to site

vl should be selected. The arrow shows the direction along which to

measure the distance (correct direction). In case when both points are

located to the same side of the central plane, and the distance has to

be selected in the direction indicated by the arrow, it is sufficient to

use the linear segment (vl vm) to estimate the distance. If points are

located at different sides of the central plane (point vn), then two lin-

ear segments (vl e) and (e vn) should be used. If the points are located

at one side, but in wrong direction, (point vq), then the sum of three

segments: (vl e), (e b), and (b vq) should be used. Points b and e mark

the beginning and the end points of the channel.

Figure 15. Estimation of the distance between Voronoi vertices at

closed Voronoi S-channel by measuring the angle between rays origi-

nating in the center of the channel (see comments to Figure 14).
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direction should a new site of the network be sought? The differ-

ence between the correct and wrong direction of search for a new

site lies in the fact that in one direction the shift of an empty

sphere along Voronoi S-channel is possible (while maintaining its

contact with the triple of balls of this channel), and in another it

is not. In this latter case we will immediately run into the fourth

ball determining this site of Voronoi network (Fig. 16).

The following actions may be followed in order to find the

correct direction along Voronoi S-channel Cijk from the given

site Vijkl determined by balls i, j, k, l. Let us draw a vector tijk
tangent to S-channel in the point of location of this site. It is

directed along the channel and can be pointed in one of two

possible directions. Let us draw vector l directed from this site

to the fourth ball (l, in this example). If the scalar product of

these vectors (tijk*l) < 0, then vector tijk specifies the correct

direction at the channel; otherwise a new site should be sought

in the opposite direction.

Calculation of the Radius of the Bottleneck

The method of calculating the radius of the bottleneck at the bond

of the Voronoi S-network depends on the location of this bond on

the Voronoi S-channel. For this reason, it is convenient to calcu-

late the radius of the bottleneck in the process of the network

generation, while we ‘‘remember’’ the necessary information.

The problem is solved easily for the case when the bond is a

segment of nonclosed Voronoi S-channel (Fig. 17). If the sites

of this bond are located at both sides of the central plane of the

channel, that is, the beginning point is located at the bond, then

the most narrow point of the bond is determined by the bottle-

neck of this channel (see Fig. 17 (left)). If both sites of this

bond are located to one side of the central plane (see Fig. 17

(right)), then the bottleneck is realized at the site which is closer

to the beginning of this S-channel. For more detail see Prelimi-

nary Remarks.

For closed channel, similarly, the location of bottleneck is

determined by the fact whether or not the beginning of the chan-

nel (point b) belongs to this bond (Fig. 18). If the beginning

belongs to the bond (Fig. 18 (right)), then the bottleneck at the

bond is determined by the bottleneck of the channel; otherwise

the bottleneck of the bond is located at the site which is closest

to the beginning of the channel (Fig. 18 (left)).

Increasing Algorithm Efficiency to Work

with Large Systems

The efficiency of the program realizing our algorithm is esti-

mated as O(nA), that is, the time of calculating Voronoi S-net-

work for system {A} containing nA atoms grows linearly with

the number of atoms. Experimental time of network calculation

for different systems is shown in Figure 19, taken from a pa-

per,86 where the program, realizing our algorithm, was tested on

models of molecular systems and packings of spheres.

The initial configurations, which served as basis for large

models, were generated using Monte Carlo method, and con-

tained about 10,000 atoms in a box with periodic boundary con-

ditions. The increase of model size was attained by translating

the initial configuration in accordance to the periodic boundary

conditions. Time spent on reading the initial data (arrays A, Ra)

Figure 16. Determination of the correct direction at Voronoi S-channel, 2D illustration. Point Vijk

is the Voronoi S-vertex for the triple of disks i, j, k (left). In the correct direction (indicated by an

arrow), the empty sphere may move along the channel, while maintaining contact with the disks,

forming this channel. This movement is impossible in the opposite direction, since the sphere will

immediately overlap with the third disk: shown with a dotted circle for channel Cij (right).

Figure 17. Location of the bottleneck (indicated by arrows) at a

Voronoi S-network bond (bold segment) located on nonclosed Voro-

noi S-channel: beginning point b of the channel belongs to the bond

(left), and it is outside of the bond (right).
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and saving results to the disk (arrays D, DD, DA, Ri, Rb) was

not taken into consideration. The work with monodisperse pack-

ings requires somewhat less time than with polydisperse and

molecular systems. However, in every case the time of calcula-

tions grows linearly with the increase in the number of atoms in

the model (Fig. 19).

In our algorithm the calculation of one site of the network is pro-

portional to the number of atoms na to be sorted through in order to

find the site. In this spot our algorithm realizes the approach sug-

gested in refs. 73 and 74 which states that, in order to determine the

vertex of Voronoi polyhedron it is sufficient to sort through the atoms

from the given environment once. Such approach realizes the best ef-

ficiency for the calculation of one site. (Notably, in theory special

configurations are possible where the calculation of one site of the

network will require time O(na2),91,92 but this does not relate to our

systems.) Thus, if a network contains nD site, then the time for calcu-

lating the entire network is estimated as O(nD*(na þ nd). Here na is

the number of atoms to be sorted through in order to determine one

site, and nd is the number of the known sites of the network to be

sorted through in order to find out whether the determined site is

new, or whether it had already been calculated before (see Verifica-

tion of the Calculated Site). The value na, in the simplest case of sort-

ing through all the atoms is estimated as a complete number of atoms

nA. The value nd, similarly, may be estimated by a value proportion-

ate to nD. But since nD is proportionate to the number of atoms in

the system: nD ¼ k*nA, where k depends on the structure of the sys-

tem and usually is located in the interval 6–8,64 we may assume that

nd is also proportionate to nA. Thus, without undertaking special

measures, the time used by our algorithm to generate the network

grows quadratically to the number of atoms in the system O(nA2). To

achieve linear correlation, we have to optimize the sorting of atoms

and network sites, and this requires additional efforts (see below).

Acceleration of the Atoms Sorting Procedure

The solution of the problem of speedy location of closest atoms

has been long known in computer modeling.93 It is based on the

utilization of linked lists. A connection is established between the

numbers of atoms and their coordinates. As a result, it becomes

possible to read the atoms not in the order of their registration in

the initial file, but to start immediately with those located close to

the given point in space. In particular, working with a given site

of the network we can immediately determine the atoms which

are closest to this site without sorting through all the atoms of the

system. This is achieved by breaking the model box into rela-

tively small cells with ordinal numbers expressed through the

coordinates of the cells. Then each cell is assigned the atoms that

ended up in it. As a result, it becomes possible while calculating

a site of the network, to sort through a relatively small number of

atoms na, regardless of the size of the model.

Acceleration of the Sites Sorting Procedure

The acceleration of sorting through the atoms does not yet pro-

vide the linear relationship with the number of atoms. It is also

necessary to increase the efficiency of sorting through the sites

Figure 18. Location of the bottleneck (indicated by arrows) at a Voronoi S-network bond located on

closed Voronoi S-channel. Points b and e mark the beginning and the ending points at the channel.

Figure 19. The time of calculating Voronoi S-network in relation to

the number of atoms in the systems for different types of structures:

(1) disordered packing of spheres of equal radii, (2) polydisperse

packing of spheres with radii values in the interval from 0.5 to 1.0,

and (3) molecular system (lipid bilayer in water). The test calcula-

tions were performed using PC P4-1700, RAM 256. The figure is

borrowed from ref. 86. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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of the network, to make value nd independent of the size of the

model. For this too, we use the idea of linked list. However,

here it is not necessary to break the model box into cells. As dis-

cussed in Verification of the Calculated Site, we identify the site

not by its coordinates, but by the numbers of corresponding atoms.

Making lists we can group the sites, for instance, based on the

value of the sum of numbers of atoms forming these sites: Zijkl ¼
i þ j þ k þ l. To work with sites, it is sufficient to have two one-

dimensional integer arrays: array of titles of the list TL(1:Zmax) and

array of continuation of the list CL(1:nD). Here nD is the expected

number of the sites of the network, and Zmax is the maximal value

for the sum of numbers of quadruple of atoms, which evidently

does not exceed Zmax ¼ 4*nA. (More accurately, Zmax ¼ 4*nA �
6, since in one quadruple numbers do not repeat.)

Thus, let us assume that in the process of the work of the pro-

gram we determined a new site with number nd_new. To find out

whether this indeed is a new site of the network, or whether it al-

ready had been determined and recorded, we will do the following:

At first we calculate the sum of numbers of atoms corre-

sponding to this site (let us denote it as Znd_new).

If the value of the corresponding element of array TL equals

zero, that is TL(Znd_new) ¼ 0, it means that site nd_new is the

first with the given sum of the numbers of atoms, that is, it is

the new site of the network. The number of this site is recorded

in the array of the titles of list: TL(Znd_new) ¼ nd_new.

If a number in the title of the list turned out to be not zero,

but a number nd_one, that is TL(Znd_new) ¼ nd_one, this means

that the site with this sum of the numbers of atoms had already

been determined earlier, and its number is nd_one. To determine

if these sites indeed coincide, we have to check whether the

numbers of all the atoms related to these sites match, and if the

atoms match we have to check additionally whether they are not

doublet (see Verification of the Calculated Site).

If the sites coincide, then the determined site nd_new is not a

new site of the network, and the corresponding information regard-

ing this site is recorded as shown in Verification of the Calculated

Site, and work with arrays TL and CL in this case is stopped.

If site nd_new does not coincide with site nd_one, we check

the value of the element of array CL numbered nd_one. If

CL(nd_one) ¼ 0, this means that there are no more sites with such

sum of atomic numbers, that is, the site nd_new indeed is new,

and has to be processed accordingly (see Verification of the Calcu-

lated Site). Besides, its number is recorded into the element of

array CL with number nd_one, that is CL(nd_one) ¼ nd_new. If,

however, element CL(nd_one) does not equal zero, that is it already
has a record of site number nd_two: CL(nd_one) ¼ nd_two, then

we have to check whether site nd_new matches this site. If it does

not, then we look for the value of element CL(nd_two). If it is

zero, we record there the number of our site nd_new: CL(nd_two)
¼ nd_new. If it is not zero, then we continue checking.

This procedure continues until we encounter a site coinciding

with site nd_new, (in this case the determined site nd_new is not a

new one of the network), or until we encounter zero in the corre-

sponding element of array CL, where we record number nd_new.

Let us illustrate the above with an example. Let site number

10 have the sum of numbers of atoms equal to 100, and let us

assume that there are no other sites with such sum. In this case

arrays TL and CL look as follows:

Let site number 15 has the same sum of the numbers of atoms,

however, site 15 does not match site 10. In this case array CL
will look as follows (array TL stays the same):

Further, let site number 20 has the same sum of numbers of

atoms, however, it matches neither site 10, nor site 15. In this

case array CL looks as follows:

Using such lists, linking the numbers of sites, we can quickly

confirm whether the determined site is really the new site of the

network, or if it had been calculated previously. The number of

sites nd, to be worked with, no longer depends on the size of

the model.

Thus, after speedy sorting through both atoms and sites of the

network, values na and nd no longer depend on the size of

the model, and for this reason the time spent on the generation of

the entire network will be O(nD*(na þ nd)) ~ O(nA), that is, will
grow in linear relation to the number of atoms in the model.

Conclusions

This paper presents the algorithm of generating Voronoi S-net-

work for a system of balls (atoms) of different sizes. This net-

work, like the classical Voronoi network, is formed by edges

and vertices of Voronoi regions, and the difference lies in the

fact that in the classic case the Voronoi regions are generated in

relation to the centers of atoms, and in this case are in relation

to the surfaces of atoms. The important feature of the Voronoi

S-network is that it serves as a ‘‘navigation map’’ of the empty

space between atoms, that is, every site (vertex) of the network,

by construction, is the most distant point from the surfaces of

the nearest quadruple of atoms, and each edge (bond) is a

‘‘fairway’’ between two neighboring sites. Due to this feature,

Voronoi S-network is a very convenient instrument for the anal-

ysis of interatomic space. This algorithm opens prospects for

work with a broad class of packings of polydispersed spheres, as

well as with molecular systems.

Arrays of the coordinates of the centers of atoms (A) and

their radii (Ra) are the initial data for the work of the algorithm.

The output results of the calculation are the coordinates of sites

of the S-network (D), connectivity matrix of sites (DD), and

incidence matrix for the sites and atoms (DA). Additionally, for
the purpose of analysis of the interatomic voids, values of radii

1 .... 100 ... 4*nA

0 .... 10 ... 0

TL:

CL:
1 ... 10 ... nD

0 ... 0 ... 0

CL:
1 10 .... 15 ...... nD

0 15 .... 0 ....... 0

CL:
1 10 .... 15 ... 20 ...... nD
0 15 .... 20 ... 0 ....... 0
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of interstitial spheres (empty inscribed spheres) are stored in

array (Ri), and radii of the bottlenecks for each bond of the net-

work are recorded in (Rb).
The idea of the algorithm is that, for a given known (deter-

mined) site of the network we find its neighbors, that is, new

sites located at the bonds originating from this site. Thus, start-

ing from a known site of the network, we sequentially find the

whole network. The starting site is easily determined based on

certain considerations.

Voronoi S-network for a system of atoms of different radii

may differ significantly from its classic analog built for the centers

of the same atoms. First, the bonds of the S-network are curves

(they are segments of hyperbole or of ellipse). In the classic case

the bonds of Voronoi network are always straight lines. Second,

the topology of Voronoi S-network has its special features. In par-

ticular, ‘‘doublet’’ sites corresponding to the same quadruple of

atoms may exist. This results in the occurrence of binomial rings

at the network, which is impossible in the classic case. Neverthe-

less, the degree of the sites of the network always equals to four

for any nondegenerate systems. For some unique systems of

atoms, such, where one (or many) small sphere is contained in a

narrow gap between a pair of large spheres, the Voronoi S-net-

work may turn out to be not simply connected. We do not work

with such systems, since the majority of physically interesting

objects, in particular molecular systems, are not like that.

We examined the issue of increasing the efficiency of the

algorithm to work with large models. Using some tricks, in par-

ticular the idea of linked lists, we managed to obtain linear rela-

tionship between the time of calculation of network and the

number of atoms in a model, O(N). This algorithm was used in

research papers23–25 to analyze interatomic voids in the models

of lipid bilayers.
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