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Abstract. In this paper we discuss applications of the Voronoi diagram and Delaunay tessellatiod
(and their additively-weighed analogies) for studying pair correlation of voids in packings of sphe
and molecular systems. Advance analysis of voids (calculation of size, spatial distributi‘
morphology, connectivity of the voids, percolation properties of free volume) was discussed in o
recent works (A.V. Anikeenko, et.al., ICCSA 2004, A. Lagana et al. (Eds.):, LNCS 3045, pp. 217
226, 2004, M.G. Alinchenko, et.al., J. Phys. Chem. B, 2004, 108, 19056). In this paper we devo
attention to another type of analysis: calculation of the radial correlatior; of voids. This way
analogous to traditional calculation of the atom-to-atom correlations widely used in physics
liquids. Additionally, we discuss weighted radial distribution functions, where pair distances m
taken into account with a weight depending of the empty volumes of the voids. Partial correlation '
“broad” voids is calculated to describe structure difference of local order in pentane isomer Liquid
Hydrated shell of ions in water solution is investigated with help of ion-void radial distribu'b

function.
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1. Introduction.

Investigation of voids (cavities, channels) between molecules is an important problem in many
fields of science. In liquids, the voids govern atomic diffusion and self-diffusion, in solids they are
related with the strength of materials and diffusion of impurities. Size, spatial distribution and
connectivity of voids are very important to explain permeability of granular materials and polymer
films, passive diffusion of small non-charged molecules in membrane, accessibility of functional
groups in folded proteins. Besides of that investigation of voids helps for better understanding of
the structure of atomic and molecular systems. Voids reflect a complementary aspect of the structure,
which is latent in the set of atomic co-ordinates. It is because a void is not connected with a single
atom, but defined by a group of atoms (by four in the simplest case). Such approach is known in
crystallography for a long time, but for liquids and other disordered systems the problem is
relatively new [19,8]. The complication is how to define voids and their locations quantitatively,
which are very diverse in general case. However, the problem can be solved easily utilizing the
Voronoi-Delaunay method [5, 15, 18].

The basic geometrical concepts of Voronoi and Delaunay diagrams are well-known to reader.

Definitions and properties both of classical and additively-weighted Voronoi diagrams are discussed

in details in many articles and books [1, 2, 10, 13]. Here we only remind about the main points of

the approach looking on the pr;)blem from the point of view of physicists. It differs slightly from
what is used in mathematical literature, where the object for the Voronoi-Delaunay analysis is a set
of discrete point and different distance measures are used [6, 13, 17]. Physicists work usually with
3D bodies. In our case it is spherical atoms, which are characterized by radius and co-ordinates of
the center. The distance between a point in space and an atom is implied always as the Euclidean
measure to surface of the atom [4, 13]. Therefore, it is naturally to call about a Voronoi S-region,
which is a region of space all points closer to the surface of a given atom than to the surfaces of the
other atoms of the system. For atoms of the same size these regions coincides with the classical
Voronoi polyhedra defined for the atomic centers. In general, the Voronoi S-region is not a
polyhedron: its faces are pieces of hyperboloids, and edges are pieces of hyperbolas or ellipses. The
union of the Voronoi S-regions generates the Voronoi S-tessellation of the system. It divides the
atoms into quadruplets of atoms (Delaunay S-simplexes). They represent elementary cavities

between the atoms. The edges and vertices of the Voronoi S-tessellation form the Vorownoi S-network.
This network “lies in the deeps” between atoms and plays a role of a navigation map for interatomic

voids [4, 11].
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A network is defined by the co-ordinates and connectivity of its sites. To characterize voids one’

needs to know also radii of the interstitial spheres, empty volumes for the Delaunay S-simplexes; 3

and radii of bottle-necks in the system. We propose to present this information as the next. Array D?

contains the coordinates of the network sites. An order in which the sites are recorded in this array%g

defines the numbering of the sites. Array Ri contains the radii of interstitial spheres. Each sphéréf;}é

e

corresponds to one of the sites of the network. Array DD establishes the connectivity of networl{

sites. It determines the bonds of the network. Each bond defines the bottleneck between a pair of §

sites. Array Rb contains the radii of bottlenecks for all bonds of the network. The Delaunay $-

atoms relating to the corresponding Delaunay S-simplex. All this information can be immediate]y%
obtained at the calculation of the Voronoi S-network. The empty volume of the S-simplexes can be#

;

calculated separately and recorded in an array Ve. Coordinates of the atomic centers of a model 4§

/g
simplexes are kept in array DA representing the incidence of the network sites and the numbersfoffg
and atomic radii Ra are used both for the Voronoi diagram calculation and its analysis.

2. Remarks about revealing and analysis of the individual voids.
Ri-coloring. A set of interstitial spheres (array Ri ) is a simple but very importan

characteristic of the empty interatomic space. Such sphere represents a real hole between atoms

Therefdre, the radii of the interstitial spheres indicate a scale of the holes presented in the systenik;;_:
Having arréys D and Ri one can easily find location of the holes of a given radius inside the model
For example, the largest holes can be simply distinguished by marking (coloring) the network sites, 4
which interstitial sphere radii are larger than a limiting value Ry;,,;.. This procedure for distinguishing’f_f
of such sites on the Voronoi S-network was called Ri-coloring of the Voronoi network (1,10, 12].

Rb-coloring. A physically meaningful definition of an interatomic void is that region of spacef%
between molecules that is accessible for a probe of a radius Rprone is regarded as a void. Obviously,fjg
when using this definition the voids that are present in a given system depend on the Rprobe value
used, which should therefore be always indicated. These voids can be unambiguously determined;;;
through the Voronoi — Delaunay technique using DD and Rb. Indeed, since the Ri radius of any of
the two sites connected by the edge is always greater or equal to the bottle-neck radius of this edge,i%’

a spherical probe of the radius Rprobe can move along the edges from one of its site to the other one if,-;
the relation Rb>Rpobe holds. Therefore, the probe can move along any clusters on the Voronoi S
network bonds the bottle-neck radii of which exceed the value of Rprore. Such S-network bond {‘
clusters represent the “skeletons” of the interatomic voids (The procedure for such distinguishing of

voids on the Voronoi S-network was called Rb-coloring of the Voronoi network [1, 10, 1I6).
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Having a skeleton, the void can be determined as the union of the empty parts of the Delaunay S-
simplexes corresponding to the cluster.

Having a void as a cluster of the Delaunay S-simplexes, we know (through the array DA) all
atoms surrounding the void. It means the obtained voids can be analyzed using any methods and
techniques known in computer geometry, biology, and other fields of science. In particular, it is
possible to calculate surfaces of voids [9, 14], or represent them as a bodies of simple shape like
spherocylinder [1] or ellipse [7]. However, this problem is another area of applications of the
method and discussed elsewhere.

Below, we discuss more simple analysis of data structure generated by the Voronoi-Delaunay
technique. It is based on the calculation of the radial correlation of voids which locations and
characteristics may be defined by the sites of the Voronoi S-network and characteristics of the

corresponding Delaunay S-simplexes.

3. Investigation of local and intermediate range order.
3.1. Radial distribution function and the structure factor of system D. _
Radial distribution function (RDF), or pair correlation function g(r) in a special case, is one of
the most important structure characteristics in the condensed matter physics. It gives a probability to
find atom at the distance r from a given one. For liquids and amorphous solids this function -
demonstrates a pronounced fist peak located at the value  close to the value of the atomic diameter
and demonstrates damped maxima and minima at the larger », Fig.1a. The first peak of RDF
presents the “first coordination shell” of atoms and characterizes “a local order” in the system. The °
next oscillations, which can be recognized sometime up to ten atomic diameters, illustrate “an
intermediate range order”, which can be rather non-trivial in some liquids and solids. RDF has a
special physical significance because it can be obtained experimentally as a Fourier-transform of the

structure factor measured from X-ray or neutron scattering.

2 04- [
! a) (atom-atom) | g b) voickvoid
g X . | g 00- -

5 " ] 202
0 2 4 6 8 10 12. 1 0 2 4 6 8 10 1 u
rlc
ric

Fig.1. Atom-atom (a) and void-void (b) radial distribution function for amorphous
packing of 27000 atoms. (From paper [15]).
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To calculate atom-atom RDF one uses co-ordinates of atoms 4 of the studied system. Co-

ordinates of points D can be also directly used for such calculation. A physical significance of these

WS BN AR A AR

points is clear. Every one of them can be considered as the centre of a simplest void, because they

are centres of the interstitial spheres. Corresponding void-void RDF is shown in Fig.1b. Both §

curves in Fig.1 look similar. They demonstrate resembling oscillations with the same period and
damping. Mathematically it is maybe not very surprising because the sets 4 and D are connected
one to one. However it was not being understood a priori because positions of points in D are much
more irregular then positions of atoms.

Fig.2 shows the structure factors calculated for the model used in Fig.1. It is calculated as th¢
Fourier transform of RDF and emphasizes features on the structure which difficult to see directlyiné
the RDF. Homogeneous disordered systems (simple liquids and glasses) demonstrate a unifom

main peak of the structure factor which position reflects “a scale of length” in the model: (r1°~2nly).
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Fig.2. Atom-atom (a) and void-void (b) structure factor for a homogeneous amorphous
packing of 27000 atoms. It is obtained as the Fourier-transform of functions in Fig.1
[(from paper [5]).

A problem of existing of different scales of length in liquids was studied in works [5, 15, If).
Calculation of the void-void RDF and the void-void structure factor had been applied for th. j
Models with different kinds of the intermediate range order were modeled in [15] by creation of
extra voids in the large non-crystalline packing of Lennard-Jones atoms. It was shown that f
system of D is sensitive to such structure peculiarities, while the atom-atom correlation are mt

always indicative. In simple systems there is only one scale of length determined by size (diameter)}g

on atoms. An additional scale of length r,4q is caused by a specific structure of the systen
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Experimentally it results a sharp “prepeak” in the atom-atom structure factor at the value
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Fig.3. The atom-atom (a) and the void-void (b) structure factor calculated for a amorphous
packing with a specific intermediate structure. This peculiarity is developed as a sharp peak
at q ~ 2.5 in the atom-atom function (a). The main peak in the void-void structure factor (b)
has the same position, shown by arrow.

In the paper [15] it was shown that an additional scale of length, which can exceed the value of the
atomic diameter in a few times, is governed by voids. Fig.3 demonstrates it: the main peak in the
void-void structure factor (b) is located at the same position as the prepeak in the atom-atom

structure factor,

3.2, Multipligative_ly Weighted radial distribution function. (marked correlations)

The points in D is associated with the Delaunay simplexes. It means any characteristic of the
simplex can be assigned to the corresponding point. In respect to study free volume correlation, the
empty volume of the Delaunay simplex Ve is interesting. So, D and Ve allow us to calculate a

marked radial distribution function.

Fig.4. A distance between two Delaunay simplexes R, , can be taken into account
with a weight ~ V,*V,
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In particular, we calculated a multiplicatively weighted RDF, F ig.4. Here, we take every distance‘in.
to account with a weight, which is equal to a product of empty volumes of the corresponding
Delaunay simplexes. Note, usually one takes distances with the same “weight” which is equal to umt
Fig. 5 demonstrates comparison of the normal void-void RDF and multiplicatively weighted void-
void RDF for a model of heterogeneous disordered packing of spherical atoms. If system s
homogeneous (like Lennard Jones liquid or glass), all Delaunay simplexes have approximately th,e;
same volume. In this case the normalized multiplicatively weighted radial distribution function:
looks like the normal one. However, if there are simplexes of different size, it becomes irnmedia'iﬁy

visible on the multiplicatively weighted function.
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Fig.5. Comparison of a normal (1) and rﬁultiplicétively weighted
radial distribution functions (2) for a model of disordered packing of
sphere with correlated extra voids.

3.3. Partial radial distribution function.

Another numerical measure which can be assigned to the points of D is the mentioned aboy
radius of the interstitial spheres, Ri. There is a remarkable difference in using measure Ri and Ve
The interstitial spheres can be strongly overlapped in opposite to empty volumes of the Delaunay
simplexes which cover empty intermolecular space without overlapping and gaps. Because of it th
using of measure Ri for calculation of a multiplicatively weighted RDF will result to non-physical 11

overestimation of some configurations inside a model.  However, Ri helps to obtain another 3

s

interesting information about empty space distribution. As an example, a partial radial distribution |

Sy

&

functions can be calculated. In this case we select voids of a given size. On models of liquid 4

RS

Rk

pentanes we compared the normal void-void RDF (Fig.6a) and the partial void-void RDF, where

the voids (points of D) only having Ri values greater then 1.5A were taken into account, Fig.6b.
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Fig.6. The total (a) and partial (b) void-void RDF for liquid pentanes: curves (1) for normal
pentane, curves (2) for iso-pentane. For the total function all voids were taken into account, for
the partial: only with Ri > 1.5A.
We sce a remarkable difference between total and partial functions for iso-pentane (curves 1).
At the same time for the normal pentane both functions look similar (curves 2). It demonstrates a
difference of local structure in liquid normal- and iso- pentanes in spite of they have the same

chemical properties. This structure peculiarity could be important for explanatibn of different

behaviors of free electron in lineal and branched alkanes.

3.4. Radial distribution of voids around jons in water.

Recently, we calculated radial distribution function of voids around ions in models of solutions
of halogenides of Li, Na, K, Rb, and Cs in water [3]. In this work we characterized a solvate shell
of ions to explain mobility of water molecules around different ions. Appreciable distinction of ion-
void RDFs was obtained. For small ions (Li, Na) we see lower fraction of the empty volume in
solvate shell in compare with K, Rb, and Cs. It correlates with experimentally observed slower
mobility of water molecules in solvate shell of Li and Na and higher mobility for the others (positive
and negative hydration). We can say the phenomenon of the positive and negative hydration is
connected mainly with the size effect. Small ions provide for rather dense and regular water
arrangement in its surroundings (low fraction of voids). The larger ions do not give any advantage to
water molecules to make an optimal shell. Fig.7 demonstrates the “weighted” radial distribution
functions of voids around the ions. We measure distances from ion to void, therefore only one of
the Delaunay simplexes with its empty volume is taken into account for weighting a pair distance

unlike to the multiplicatively weighted RDF discussed above.
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Fig.7. Weighted ion-void RDF for salt solutions of halogenides of Li, Na, K, Rb, Cs in water
solution. .

4, Conclusion.

We demonstrated a simple technique of application of the Voronoi-Delaunay method fir:
studying radiél correlation of voids in different atomic and molecular systems. The main data
structure for such analysis is based on the co-ordinates of the Voronoi vertexes and Delaunay“
simplex characteristics of the studied system. Every Voronoi vertex is a centre of empty interstifl
sphere and p:lays a role of the centre of a simplitial void. Radial distribution function of these centes
presents a spatial correlation of the interatomic space. The result of calculations demonstratesa“i
physical worth and concernment of this approach. It gives us the structure information which is_‘.‘
complementary to data obtained from atom-atom correlation functions. Beside the traditional radal
distribution function, the weighted and partial radial distributions of voids can be calculated. Itis
naturally in this case because every simplitial void is characterized by its own volume (emply
volume of its Delaunay simplex) and by the radius of the corresponding empty interstitial sphere.g‘
In particular, a multiplicatively weighted radial distribution function was calculated for differen
kinds of atomic packings. Partial correlation of “broad” voids was proposed to demonstrate structue :

difference of local order in liquid pentane isomers. Hydrated shell of some ions in water solutionis -

investigated with help of the weighted ion-void radial distribution function.
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