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a b s t r a c t

A simple numerical method that has considerably simplified the calculations of torsional energy levels is
proposed for one-dimensional barriers of arbitrary shape. The internal rotation constant is also permitted
to vary as a function of torsional angle. In two limiting cases of high and low barriers, analytical expres-
sions for hindered rotor state energies have been obtained. The partition function of internal rotation is
then evaluated by eigenvalue summation. The derived analytical formula for the partition function of free
internal rotation gives reasonable values down to the lowest temperatures. Analytical approaches give a
better insight into the physical nature of the problem solvable by a rigorous method.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

A quantum description of internal rotation was obtained soon
after the emergence of quantum mechanics [1]. However, from
the standpoint of computations, the exact solution proved to be
too cumbersome for many applications even in the special case
where only a one-term expansion is retained for the potential
energy [1–3]. Since then numerous attempts have been made to
develop simplified analytical approaches to the solution of this
problem [4–12]. The detailed discussion of various approximations
is given in [11]. In particular, the efforts to develop analytical
approximations were successful in the case where the hindering
barrier represented by a potential function depending on torsional
angle / in the simplest way [6–12]. Now it is common practice to
represent the potential energy function by a finite Fourier series
containing the minimum number of lowest-order terms that are
required to give the correct number of extrema for the energy
curve [13–16]. Despite the substantial amount of theoretical work
accomplished in the area of internal rotation, little attention has
been given to the analytic treatment of torsional energy levels
appearing below or above the potential barrier of arbitrary shape.

In the present study, the focus is on methods that simplify
calculations of torsional energy levels for more complex systems
including the /-dependence of the internal rotation constant. In
the examination of torsional energy levels, it is helpful to consider
two extreme cases; the barrier height is very large, and the barrier
height is very small. In these limiting cases, it becomes possible to
treat the problem analytically. The analytic treatment readily gives
a solution, which is sufficiently accurate and enables one to phys-

ically interpret numerical results of a rigorous method. Further, the
known energy levels are used to calculate the partition function of
internal rotation. The approach given below is particularly attrac-
tive for the torsional vibration that can be separated from all other
molecular vibrations to consider independently. The separability of
internal and external rotations of a molecule is also supposed
[3,17].

2. Torsional energy levels

For a molecule with s equivalent internal configurations, the
potential energy V(/) will be a periodic function in / with period
2p/s. The number of equivalent configurations for a complete
internal revolution is obviously dependent on the symmetry of
the molecule. The property of periodicity leads to a natural repre-
sentation of V(/) as a Fourier series

Vð/Þ ¼ 1
2

X1
m¼1

Vms½1� cosðms/Þ�: ð1Þ

The kind of terms in the expansion depends on the parity of V(/).
For an asymmetric hindered rotor that has no rotational symmetry
axis (s = 1) and a plane of symmetry, the sine terms must be taken
into account due to a total lack of symmetry elements.

In the special case where the potential energy has threefold or
higher symmetry, the internal rotation constant F is usually
considered as constant and equal to its value of the equilibrium
conformation of a molecule [4]. For potential barriers having lower
symmetry than threefold one, the angular dependence of F(/) can
be represented as a Fourier series

Fð/Þ ¼ F0 þ
X1
m¼1

Fm cos m/: ð2Þ
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If the potential energy variation with respect to / is taken as gi-
ven in Eq. (1), the wave equation for this problem is [18–20]

d
d/

Fð/Þ
F0

d
d/

� �
Wþ aþ 2

X1
m¼1

qms cosðms/Þ
" #

W ¼ 0; ð3Þ

where

qms ¼
Vms

4F0
and q ¼

X1
m¼1

qms ð4Þ

and a are the eigenvalues of Eq. (3)

a ¼ �2qþ E
F0
: ð5Þ

Thus the solution of this differential equation yields the torsional
energy levels E and the wave functions W(/). A periodic solution
of Eq. (3) can be written in the following convenient form:

Wð/Þ ¼
X1

k¼�1
CksþreiðksþrÞ/: ð6Þ

Appropriate periodic solutions are then obtained by choosing s inte-
ger values of r such that �s/2 < r 6 s/2 [2–4] (the Floquet theorem).
Substitution of this expansion in Eq. (3) gives

X1
k0¼�1

f½ðksþ rÞ2 � a�dkk0 �
X1
m¼1

½qmsðdk;k0þm þ dkþm;k0 Þ

� ðk0sþ rÞ2fmðdks;k0sþm þ dksþm;k0sÞ
� ðk0sþ rÞmfmðdks;k0sþm � dksþm;k0sÞ�gCk0sþr ¼ 0; ð7Þ

where

fm ¼
Fm

2F0
: ð8Þ

If this infinite set of linear homogeneous equations has a nontrivial
solution for Csk+r, the determinant of coefficients must vanish. Let
us consider the following matrix:

Akk0 ¼
ðksþ rÞ2; k ¼ k0;

�qjk�k0 js þ ðk
0sþ rÞ½k0sþ rþ ðk� k0Þs�fjk�k0 js; k – k0;

(

ð9Þ

where �1 < k, k0 <1. As a rule, parameters qms characterizing the
potential barrier decrease rapidly with m. This drop, together with
small values of fm, leads to the conclusion that actually A is a banded
matrix with a few diagonals. As follows from Eqs. (7) and (9), the
eigenvalues of this matrix will be the eigenvalues of Eq. (3). In
our work, they were calculated numerically for the lowest 200 en-
ergy levels. In numerical calculations, it should be seen that each
subsequent eigenvalue exceeds the preceding one.

For the barrier of a finite height, torsional energy levels are split
into several sublevels. They are labeled by the quantum numbers n
and r in order of ascending energy

Enr ¼ F0ð2qþ anrÞ: ð10Þ

The index r, which gives the symmetry or periodicity of the tor-
sional wave functions, serves to distinguish torsional sublevels.
For example, for s = 6 we have r = 0, ±1, ±2, 3. The energy Enr con-
sists of successive groups of levels denoted by the number
n = 0, 1, 2, . . . , and each group contains (s + 2)/2 sublevels for even
s and (s + 1)/2 sublevels for odd s. The energy levels with ±r are
doubly degenerate and correspond to two possible directions of
internal rotation; the exceptions, which give nondegenerate levels,
are r = 0 and r = s/2 (only for even s).

Thus the partition function of internal rotation may be written
in the form

QðbÞ ¼ expð�2bqÞ
X1
n¼0

X½s=2�

r¼0

gr expð�banrÞ; ð11Þ

where gr = 2/s except g0 = 1/s and gs/2 = 1/s for even s. The partition
function is conveniently considered as a function of the variable
b = F0/kBT, since hindered rotor state energies are defined by the en-
ergy quantum F0. This is a natural unit of energy for torsional tran-
sition energies. The barrier height is responsible for the number of
energy levels lying well below the barrier.

3. High barrier approximation

3.1. The barrier with s-fold symmetry

Let us examine more carefully the limit of a high barrier with
threefold or higher symmetry. Here we can restrict ourselves to
the calculation of the partition function counting the levels with
r = 0, i.e., nondegenerate levels of the A symmetry [1–4]. The inter-
nal motion for the A states resembles a back-and-fourth oscillation
localized in the potential wells. In other words, internal motion
will be limited by small torsional vibrations about the potential
minimum in any of the potential wells. If the position of the first
potential well at / = /0 is known, then the positions of other wells
are given by a simple formula /0 + 2pi/s, where i = 0, 1, . . . , s � 1.
Note that /0 can differ from zero, if there are other potential wells
of different symmetry. Thus, the potential wells localized at these
points are identical in shape, and, hence, the harmonic frequency
in each of them is the same

x ¼ 1
I

d2V

d/2

 !
i

" #1
2

¼ 2sF0

�h

ffiffiffiffiffiffiffi
M2

p
; ð12Þ

where the even derivatives are expressed in terms of the moments

Mk ¼
X1
m¼1

mkqms cosðms/0Þ: ð13Þ

In Eq. (12) the second moment should be positive for the consider-
ation of torsional vibrations with the frequency x to be possible at
all.

The zeroth-order wave function Wn(/) will be a linear combina-
tion of harmonic oscillator functions centered at s minima. It is a
periodic function with period 2p/s, so one can immediately write

Wnð/Þ ¼
1ffiffi

s
p
Xs�1

i¼0

Unð/� /iÞ; ð14Þ

where the harmonic oscillator functions are expressed via the
Hermite polynomials

Unð/� /iÞ ¼
c
p

� �1
4 1ffiffiffiffiffiffiffiffiffi

2nn!
p exp � c

2
ð/� /iÞ

2
h i

Hn½
ffiffiffi
c
p ð/� /iÞ� ð15Þ

and

c ¼ I0x
�h
¼ �hx

2F0
: ð16Þ

In principle, the reduced moment of inertia can depend on a tor-
sional angle as I(/i); however, the parameter c will be the same
for all equivalent minima.

The total energy of the molecule undergoing hindered internal
rotation is equal to the sum of the mean kinetic energy hTi and
the average potential energy hVi. In the harmonic approximation
we have

En ¼ �
Z þ1

�1
Wn F

d2Wn

d/2 þ
dF
d/

dWn

d/

 !
d/þ hnjV jni: ð17Þ
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In the case where F is independent of /, the energy En can be rewrit-
ten as

En ¼
�hx
2

nþ 1
2

� �
1þ 1

s

Xs�1

i;j¼0
i–j

Inðij; 0Þ

2
664

3
775þ hnjV jni; ð18Þ

where In(ij; m) are the necessary multicentered integrals (see Eq.
(22))

Inðij; mÞ ¼
Z þ1

�1
Unð/� /iÞ cosðms/ÞUnð/� /jÞd/: ð19Þ

Oscillator functions and their applications were discussed in the lit-
erature more than once using various mathematical methods. In
particular, we employ the following result [21]:

1
2nn!

ffiffiffiffi
p
p

Z þ1

�1
e�t2

Hnðt � aÞHnðt þ aÞ cosðbtÞdt ¼ e�b2=4Ln
b2

2
þ 2a2

 !
:

ð20Þ

With Eq. (20) we easily find

Inðij; mÞ ¼ exp � c
4
ð/i � /jÞ

2 �m2s2

4c

� �
Ln

c
2
ð/i � /jÞ

2 þm2s2

2c

� �

� cos
ms
2
ð/i þ /jÞ

h i
: ð21Þ

In these equations Ln are the Laguerre polynomials. So the average
potential energy is given by the expression

hnjV jni ¼ 2F0

X1
m¼1

qms 1� InðmÞ þ
1
s

Xs�1

i;j¼0
i–j

½Inðij; 0Þ � Inðij; mÞ�

8>><
>>:

9>>=
>>;;

ð22Þ

where the one-center integral In(m) = In(ii; m) does not depend on
the number of a potential well.

To estimate the contribution of multicentered integrals to the
average torsional energy, we performed the detailed calculations
with a great number of model systems. Numerical calculations
show that the influence of these integrals on the calculated value
hVi near the bottom of the barrier is negligibly small, while near
the top of the barrier their contribution to hVi become quite
noticeable. Quantum mechanically, a molecule may pass from
one configuration to another by tunneling trough the barrier near
its top since the wave functions extend through the classically
forbidden regions. However, in the vicinity of the potential maxi-
mum, the harmonic approximation is no longer valid. A compari-
son of calculated energy levels shows that the multicentered
integrals have no pronounced effect on the accuracy of results
within and beyond the limits of harmonic approximation. There-
fore, in the harmonic approximation all multicentered integrals
can be neglected

hnjV jni ¼ 2F0

�
X1
m¼1

qms 1� exp �m2s2F0

2�hx

� �
Ln

m2s2F0

�hx

� �
cosðms/0Þ

� �
:

ð23Þ

Consider an important case following from Eq. (23) in the limit
s2F0/⁄x� 1. Then the expansion of the Laguerre polynomials in
terms of a small argument may be used

e�z=2LnðzÞ ¼ 1� nþ 1
2

� �
zþ nþ 1

2

� �2

þ 1
4

" #
z2

4
þ � � � ð24Þ

Inserting this expansion into Eq. (23), one can recast Eq. (18) to get

En ¼ Vð/0Þ þ �hx nþ 1
2

� �
� �hxx nþ 1

2

� �2

þ 1
4

" #
; ð25Þ

where x is the anharmonicity constant of torsional vibrations

x ¼ sM4

16M
3
2
2

: ð26Þ

In principle, the anharmonicity constant (due to M4) may be both
positive and negative at the positive second moment. In the first
case torsional oscillations resemble the vibrations of Morse oscilla-
tor, while in the second situation they appear as the vibrations of
Pöschl–Teller oscillator [22]. In other words, a negative x results
in a narrower potential well with more widely separated torsional
levels. A positive x has just the opposite effect.

The solution of the equation En = Vmax makes it possible to find
the maximum quantum number N for the levels in the potential well

N ¼ 1
2x

1� x� 1� x2 � 4xDV
�hx

� �1
2

" #
; ð27Þ

where DV = Vmax � Vmin and Vmin = V(/0). To put it differently, DV is
the barrier height from the position of the potential minimum. Note
that N + 1 is the number of bound states below the barrier. Bound
states arise at DV P E0, and the first excited level will appear below
the barrier, if the barrier height satisfies the inequality

DV P
�hx
2
ð3� 5xÞ: ð28Þ

In a shallow potential well this inequality is reversed, and we shall
consider that almost free rotation occurs in this case.

It should be noted that the general formalism allows one to
make all conclusions obtained earlier [8–12] in the framework of
the elementary theory, when a one-term expansion is retained
for the potential energy.

In the high barrier limit, the partition function differs from the
partition function of Morse oscillators solely in the form of zero-
point energy [12]. Recently [22] an accurate closed-form expres-
sion for the partition function of Morse oscillators has been de-
rived. Some limiting cases can also be found there.

3.2. Asymmetric hindered rotor

Let us consider the case of asymmetric hindered rotor for n-bu-
tane as an example. A lack of rotation symmetry axes restores s to
1; nevertheless, there is a plane of symmetry which results in an
even parity for V(/) in the standard form of Eq. (1). In n-butane
(C4H10) two types of hindering potentials take place: one of them
corresponds to rotations of ending methyl groups, and another is
associated with CC–CC carbon torsional variations, Fig. 1. The po-
tential of the methyl rotation has a threefold symmetry and is
determined solely by the reduced barrier height q3; the detailed
examination is given above. The potential function governing the
conformational interchange in n-butane has been more than once
considered in the literature from both experimental and theoreti-
cal points of view [13,14] (and earlier references cited therein).
Herrebout et al. [13] used a conventional expression for the poten-
tial function retaining the terms from V1 to V6. Torsional angular
dependence of the internal rotational constant F(/) was repre-
sented as a Fourier series with coefficients from F0 to F6. As is seen
from Fig. 1, the trans equilibrium conformation (t) at / = 0 is sepa-
rated from the higher energy gauche conformation (g) at /
= 2.0598 (118�) by the t–g barrier, while direct transition between
this potential well and another potential well at / = 4.2235 (242�)
requires traversing the cis barrier (/ = p). We employed these data
to study the spectrum of energy eigenvalues applying the above
analytical approach.

M.L. Strekalov / Chemical Physics 362 (2009) 75–81 77
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Now the harmonic frequency from Eqs. (12) and (13) and the
parameter c in Eq. (16) are calculated with the internal rotation
constant for a given conformation F(/0) instead of F0. An expres-
sion of the mean kinetic energy is also changed. At small ratios
Fm/�hx, this modification is very small. With this in mind it is con-
venient to express F(/) as a power series in /. Substituting this
expression into Eq. (17), we have for hn|T|ni the following
equation:

hnjTjni ¼ �hx
2

nþ 1
2

� �
� 1

4
nþ 1

2

� �2

þ 5
4

" #X1
m¼1

m2Fm: ð29Þ

The quantities V(/0) and x need to be substituted for ~Vð/0Þ and ~x be-
fore they can be used in Eq. (25)

~Vð/0Þ ¼ Vð/0Þ �
1
4

X1
m¼1

m2Fm ð30Þ

and

~x ¼ xþ 1
4

X1
m¼1

m2Fm

�hx
: ð31Þ

Nondegenerate energy levels corresponding to torsional vibra-
tions in the t potential well (Fig. 1) are defined by the fundamental
frequency ~x ¼ 125:38 cm�1, anharmonicity constant ~x ¼ 0:00853,
and rotational constant F(0�) = 1.581 cm�1. According to Eq. (27),
13 bound states (Nt � 12) are to exist below the cis barrier
(Vcis = 1384 cm�1).

Because of the presence of two potential wells in the g confor-
mation of n-butane, energy levels are doubly degenerate. In reality,
as a rigorous theory shows, the two potential wells are separated
by the almost impenetrable barrier with level splittings of the or-
der of 10�10 cm�1 near the barrier bottom. The gauche energy lev-
els are specified by the fundamental frequency ~x ¼ 118:69 cm�1,
anharmonicity constant ~x ¼ 0:00889, and rotational constant
F(118�) = 1.628 cm�1. Below the cis barrier (DV = 1147 cm�1) there
are eleven bound states (Ng � 10).

Energy levels, Et
n and Eg

n, that can be calculated for each of the
potential wells by Eq. (25) are related to energy levels for the entire
system of potential wells, En, as:

(i) the trans conformation

Et
n ¼

E0; n ¼ 0;
E3n�2; n ¼ 1;2; . . .

	
ð32Þ

(ii) the gauche conformation

Eg
n ¼ E3nþ2 ffi E3nþ3; n ¼ 0;1; . . . ð33Þ

Comparison of numerically exact values En with approximate val-
ues is given in Table 1. Examination shows that the error does
not exceed 1% for energy levels lying near the barrier bottom. In
other words, torsional oscillations of asymmetric internal rotor in
n-butane are adequately described by the Morse oscillator model.
The agreement is made worse near the top of the barrier. Above
1000 cm�1 the degeneracy of levels is lifted. Further, the approxi-
mate theory predicts that near the top of the cis barrier there is
the energy level with n = N = 34 (3Nt � 2), while the rigorous the-
ory gives N = 37. It also shows that level splittings near the barrier
top depend non-monotonically on the quantum number n owing
to a complex form of the barrier and a change of internal motion
from torsional oscillations to free rotation.

Now we calculate the partition function of asymmetric rotor
using Eq. (11) where energy levels are labeled by the quantum
number n (r = 0 and gr = 1) in order of ascending energy. For com-
parison, let us calculate two partition functions: (i) in the first case
only energy levels lying below the barrier will be taken into ac-
count (N = 37); (ii) in the second case all levels will be allowed
for, including free rotation limit (N = 200). We also calculate the
partition function using anharmonic model (25). Approximate
expression for Q is of the form

Table 1
Calculated energy levels of torsional motion (in cm�1) for the trans and gauche
conformations of n-butane.

Trans conformation Gauche conformation

n Exact Eq. (25) n Exact Eq. (25)

0 62.111 62.137 2/3 295.47 295.44
1 185.16 185.35 5/6 411.89 412.00
4 305.68 306.41 8/9 525.81 526.41
7 423.42 425.30 11/12 636.90 638.70
10 538.08 542.04 14/15 744.79 748.85
13 649.33 656.61

Near the top of the cis barrier
31 1218 1299 32 1268 1365
34 1296 1398 33 1285 1365
37 1378 1495 35 1331 1460

36 1347 1460
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Q ¼ exp � Et
0

kBT

� �
þ
XN

n¼1

GtðnÞ exp �
Et
ðnþ2Þ=3

kBT

 !"

þG1gðnÞ exp �
Eg
ðn�2Þ=3

kBT

 !
þ G2gðnÞ exp �

Eg
ðn�3Þ=3

kBT

 !#
; ð34Þ

where Gt(n) = 1 at n = 0, 1, 4, 7, . . . otherwise, it is zero. Similarly,
G1g(n) = G2g(n) = 1 at n = 2, 5, 8, . . . and n = 3, 6, 9, . . . , respectively,
otherwise, they are zero. Comparison of calculated values of Q is
given in Fig. 2. As is seen, there is an excellent agreement between
exact and approximate partition functions, in fact, up to the tem-
peratures, when thermal energy becomes equal to the magnitude
of the cis barrier. An insignificant discrepancy at high temperatures
reflects the fact that energy levels near the top of the barrier are de-
scribed by anharmonic model (25) with an error of about 10%. It is
clear from computations that above 500 K it is necessary to take
into consideration the contribution of states lying above the barrier.
At very high temperatures, the contribution of free internal rotation
to the partition function becomes predominant (see below).

4. Low barrier approximation

Now consider the limiting case where all qms = Vms/4F0 tend to
zero, and the barrier may be treated as a small perturbation. The
effect of the variation of the internal rotation constant with tor-
sional angle is small for molecules of interest and will be neglected.

4.1. Perturbation theory

First we find the eigenvalues of the matrix A from Eq. (9) in the
limit of free internal rotation. The infinite order determinantal
equation has the form

ðr2 � aÞ
Y1
k¼1

½a2 � 2ðk2s2 þ r2Þaþ ðk2s2 � r2Þ2� ¼ 0; ð35Þ

i.e., the a eigenvalues are (ks ± |r|)2. According to Eq. (10), the eigen-
values are represented as a function of quantum numbers n and r. A
comparison with numerically exact values of a rigorous theory re-
sults in the conclusion that it is necessary to put k = n/2 for even
n and k = (n + 1)/2 for odd n. So

að0Þnr ¼
ns
2 þ jrj

 �2

; n ¼ 0;2;4; . . . ;

ðnþ1Þs
2 � jrj

h i2
; n ¼ 1;3; . . .

8<
: ð36Þ

It is convenient to choose the zeroth-order wave functions for these
eigenvalues in the form

Wnrð/Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1þ dn0dr0Þ
p cos ns

2 þ jrj

 �

/; n ¼ 0;2;4; . . . ;

sin ðnþ1Þs
2 � jrj

h i
/; n ¼ 1;3; . . .

8<
:

ð37Þ

If s is an even number, then r can take a maximum value equal to s/
2. In this case we write

Wn;s=2ð/Þ ¼
1ffiffiffiffi
p
p

sin ðnþ1Þs
2

h i
/; n ¼ 0;2;4; . . . ;

cos ns
2


 �
/; n ¼ 1;3; . . .

8<
: ð38Þ

Just under this choice of eigenfunctions, calculated eigenvalues
coincide with eigenvalues given in the special case s = 2 by the Mat-
hieu equation [23]. For example, A1 and E2 levels are given by even
n; A2 and E1 levels are given by odd n.

For the evaluation of eigenvalues, the matrix formulation is em-
ployed in which the perturbation matrix is grouped into blocks
corresponding to even and odd quantum numbers. For even n
and n0 we have

2
Z 2p

0
Wnrð/Þ cosðms/ÞWn0rð/Þd/ ¼ 1

½ð1þ dn0dr0Þð1þ dn00dr0Þ�
1
2

� d m;
jn� n0j

2

� �
	 d m;

nþ n0

2
þ 2jrj

s

� �� �
: ð39Þ

For convenience, the delta-symbol dmn is written as d(m, n). The
lower sign refers to the case r = s/2. For odd n and n0 we get

2
Z 2p

0
Wnrð/Þ cosðms/ÞWn0rð/Þd/

¼ d m;
jn� n0j

2

� �

 d m;

nþ n0 þ 2
2

� 2jrj
s

� �
; ð40Þ

where the lower sign means that r = s/2. Other matrix elements dif-
ferent from the given ones are equal to zero.

Considering the hindering barrier as a perturbation, we find the
eigenvalues by the second order perturbation theory. The problem
of eigenvalues is most easily solved when r – 0 and r – s/2 for
even s

anr ¼ að0Þnr þ
X1
m¼1

2q2
ms

4að0Þnr �m2s2
; r – 0;

s
2
: ð41Þ

In the case r = 0 or r = s/2, at any n (n P 1) linearly independent
eigenfunctions are always found in pairs. These eigenvalues can
be calculated by generalized perturbation theory [24] or by the
methods discussed for the Mathieu equation by McLachlan [25].
The algebra required in solving this problem is lengthy, but
straightforward, and one gets the final result for anr when r = 0

an0 ¼
n2s2

4 þ DaeðnÞ; n ¼ 0;2;4; . . . ;

ðnþ1Þ2s2

4 þ DaoðnÞ; n ¼ 1;3; . . . ;

(
ð42Þ

where

DaeðnÞ ¼ jqnsj �
ðqns þ q2nsÞ

2

2n2s2 þ
X1
m¼1

ð1� dnmÞfeðn;mÞ
mðn2 �m2Þs2 ð43Þ

and

DaoðnÞ ¼ �jqðnþ1Þsj �
ðqðnþ1Þs � q2ðnþ1ÞsÞ

2

2ðnþ 1Þ2s2
þ
X1
m¼1

ð1� dnþ1;mÞfoðn;mÞ
m½ðnþ 1Þ2 �m2�s2

:

ð44Þ

To avoid cumbersome expressions, we introduce the notations

feðn;mÞ ¼
1

ð1þ dn0Þð1þ dn;2mÞ
½ðnþmÞðqms þ qðn�mÞsÞ

2hðn�mÞ

� ðn�mÞðqms þ qðnþmÞsÞ
2ð1þ dn;2mÞ� ð45Þ

and

foðn;mÞ ¼ ðnþ 1þmÞðqms � qðnþ1�mÞsÞ
2hðnþ 1�mÞ

� ðnþ 1�mÞðqms � qðnþ1þmÞsÞ
2
: ð46Þ

Here h(x) is the step-function equal to h(x) = 1 at x > 0 and to h(x) = 0
at x 6 0. Similar expression can be derived for anr at r = s/2 if s is an
even number

an;s=2 ¼
ðnþ1Þ2s2

4 þ DaoðnÞ; n ¼ 0;2;4; . . . ;

n2s2

4 þ DaeðnÞ; n ¼ 1;3; . . .

(
ð47Þ

Consider an important case where for the potential function
only the leading term with m = 1 may be retained in Eq. (1). For
two equivalent potential wells (s = 2) the wave equation of hin-
dered rotor is similar to the Mathieu equation. Then our an0 are
equal to the eigenvalues of the Mathieu equation an(qs) for even
n, and to bn+1(qs) for odd n, and, vice versa, an1 coincide with
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bn+1(qs) at even n and with an(qs) at odd n (designations are taken
from [23]). The eigenvalues an0 were found earlier in [12] for the
simplest type of potential functions (with m = 1).

The above approximation corresponds to the case of quasi-free
internal rotation where there are no excited energy levels below
the barrier. In other words, the criterion of applicability reduces
to the inequality DV < �hx(3 � 5x)/2 following from Eq. (28). On
the other hand, the theory may be applied to the high barrier limit
for such quantum numbers when the correction quadratic in per-
turbation is essentially less than the zeroth-order eigenvalue at
n = N [12]. Evidently, the limit of free internal rotation is always
reached when n� N, i.e., high above the barrier.

4.2. Partition function in a low barrier approximation

Since the potential barrier is treated as a perturbation, Eq. (11)
is conveniently recast as

Q ¼ expð�2bqÞðQ ð0Þ þ DQ 0 þ DQ 1 þ DQ2 þ � � �Þ; ð48Þ

where Q(0) is the partition function of free internal rotation

Q ð0Þ ¼
X1
n¼0

X
r

gr expð�bað0Þnr Þ ð49Þ

and DQn are small corrections to Q(0)

DQ n ¼
X
r

gr½expð�banrÞ � expð�bað0Þnr Þ�: ð50Þ

It is sufficient to allow for only the first two or three corrections at
low temperatures. The lower the temperature, the greater accuracy
in DQ0 is needed, since almost all molecules are in the ground state.
At high temperatures, the internal motion shows up as free rotation,
all corrections vanish, just the leading term Q(0) remains. Appar-
ently, at rather high temperatures this limit is reached whatever
the barrier height.

Now let us derive the expression for Q(0) using the zeroth-order
eigenvalues (36) in Eq. (49). For the potential barrier with s-fold
symmetry, we easily find

Q ð0Þ ¼
X
r

gre�br2 X1
n¼�1

e�bs2n2
coshð2bsrnÞ: ð51Þ

The theta functions of Jacobi [26] seem to be ideally suited for treat-
ing this partition function. By the use of the Jacobi imaginary
transformation

X1
n¼�1

expðipsn2 þ i2nzÞ ¼ 1ffiffiffiffiffiffiffiffi
�is
p

X1
n¼�1

exp
ðz� pnÞ2

ips

" #
; ð52Þ

one can readily produce a series that is rapidly convergent at high
temperatures by setting �is = bs2/p and z = ±ibsr:

Q ð0Þ ¼ 1
s

ffiffiffiffi
p
b

r X1
n¼�1

exp �p2n2

bs2

� �X
r

gr cos
2pr

s
n

� �
: ð53Þ

Substitution of n = ks gives the final result

Q ð0Þ ¼ 1
s

ffiffiffiffi
p
b

r X1
k¼�1

exp �p2k2

b

 !
: ð54Þ

Retaining the first three terms in Eq. (54), we approximately obtain

Q ð0Þ ffi 1
s

ffiffiffiffi
p
b

r
1þ 2 exp �p2

b

� �
þ 2 exp �4p2

b

� �� �
: ð55Þ

Note that the first term is the classical partition function that Euler–
Maclaurin summation gives exactly [3,27]. As is seen, this formula
gives reasonable values even at b � 1, when thermal energy is of
the order of the internal rotation constant. At b� 1 the series from

(54) converges slowly, thus the Jacobi imaginary transformation
(�is = p/b, z = 0) may be applied once again to obtain a rapidly con-
vergent series in this limit

Q ð0Þ ¼ 1
s

X1
k¼�1

e�bk2
: ð56Þ

Just this expression for the partition function of free internal rota-
tion is well-known in the literature [27].

Let us discuss the accuracy with which the partition function Q
is calculated at high temperatures with b ? 0. In this limit Q di-
verges as b�

1
2. However, in our calculations, we take into account

a finite number of energy levels above the barrier. We allow the
lowest 200 energy levels to obtain Q = 201 in this limit. Relation
(55) between Q and b gives the confidence limit b � 8 � 10�5/s2

up to which the numerical calculations of the partition function
with this number of levels will be valid.

Consider the temperature dependence of small corrections to
Q(0) given by Eq. (50). The molecules chosen for this study are fluo-
rotoluene (C6H4FCH3) and deuterated toluene (C6H5CH2D) as a typ-
ical example of molecules with low barriers. The internal rotation
of the methyl group in p-fluorotoluene is hindered by the sixfold
barrier with V6 = �4.8 cm�1 (F0 = 5.460 cm�1), but in m-fluorotolu-
ene the barrier has a threefold symmetry with V3 = 16.9,
V6 = �5.3 cm�1 (F0 = 5.479 cm�1) [15]. From symmetry consider-
ations toluene-d1 has just the twofold barrier with V2 = 23, V4 = 3,
V6 = �5 cm�1 (F0 = 4.323 cm�1) [16]. Typical behavior of correc-
tions DQn depending on the parameter b is shown in Fig. 3. In
the high temperature limit all corrections vanish, and only free
internal rotation takes place. At low temperatures all corrections
with n P 1 also tend to zero, since almost all molecules accumu-
late in the ground state with n = 0, r = 0. For this reason the main
contribution is given by the positive correction DQ0. Good agree-
ment between exact and approximate values for DQ2 is not acci-
dental. For other DQn the perturbation theory makes it possible
to calculate the eigenvalues almost with the same accuracy as a
rigorous method.

Fig. 4 shows the relative difference between approximate and
exact values of the partition function as a function of temperature.
p-Fluorotoluene has the low reduced barrier height q6 = �0.22,
thereby justifying the use of the perturbation theory. The relative
difference is better than 2.5 � 10�5% even at kBT = F0. Such an ex-
treme accuracy is achieved due to a small error in the correction
DQ0 at this temperature (0.0085%). For comparison, in toluene-d1
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Fig. 3. Corrections to the partition function of free internal rotation for m-
fluorotoluene calculated with the exact values of energy levels (Exact) and by the
perturbation theory (App).
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this error is 5.6% and gives 3.7% relative difference in the partition
function. In principle, the developed perturbation theory is suitable
for molecules with high potential barriers but at fairly high tem-
peratures. For example, o-fluorotoluene has a rather high barrier
(V3 = 228.1 cm�1) [15], so the adequate accuracy of computations,
say 5%, is possible beginning with temperatures above 550 K.

5. Concluding remarks

The numerical method described in this work enables us to find
energy levels of an internal rotor for practically any periodic poten-
tial function. The key equations of the method are Eqs. (9) and (10)
that give explicitly hindered rotor state energies. The method
incorporates the lowest 200 energy levels; however, more levels
can easily be included if needed. As with any numerical method,
there are many parameters that can be varied to enhance the accu-
racy of calculations. Just one of them is used in our method; it con-
sists only in the number of necessary levels. The internal rotation
constant, which is entered in the mean kinetic energy, is also per-
mitted to vary as a function of torsional angle. Mathematically, this
task is equivalent to the problem of position dependent mass in the
one-dimensional Schrödinger equation. A useful generalization to
this case opens the way to analyze asymmetric hindered rotors
both numerically and analytically. The problem of finding the
eigenvalues of a banded matrix with three, five, and more diago-
nals with almost identical elements along each secondary diagonal
is very simple for numerical calculations, and may be solved with
modest computer aids. Then partition functions are obtained by di-
rect eigenvalue summation.

The availability of rigorous numerical method does not elimi-
nate the need for simple models providing a better insight into
the nature of the phenomenon and giving informed predictions.
In the framework of analytical approach, one can raise a natural
question why a solution depends on a given parameter in this or
that way, and receive answers. Such a property is particularly use-
ful when one tries to fit the parameters of a model to experimental
data, for example. It cannot be doubted that analytical models are a
reliable guidance in theory and make it possible to extract reason-
able information from the calculation data.

The analytical expressions for energy levels of this work can be
very useful for the estimation of torsional anharmonicity in transi-
tion state theory (TST) calculations. By this means, an explicit
treatment of torsional anharmonicity may be included in the TST
rate constants and the magnitude of these effects can be assessed.
Torsions are typically the lowest frequency modes of vibration in a
molecule, and since partition functions are most sensitive to low
frequency vibrations it is important that they are treated as accu-
rately as possible to improve theoretical reproduction of thermo-
dynamic properties.
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Fig. 4. Comparison of the values of the hindered rotor partition function calculated
by the exact method and the perturbation theory. Deviations are defined as
(Qapp � Q)/Q.
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