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Abstract A numerical method using a canonical point transformation has been
developed for determining the energy levels of the internal rotation of asymmetric
rotors. An internal rotation constant is assumed to be a function of a torsional angle.

Keywords Internal rotation · Angle-dependent moment of inertia ·
Periodic potentials · Point canonical transformations

1 Introduction

Internal rotation occurs in a molecule in which one group of atoms (a rotor) can
rotate about another group (a rigid frame) through considerable angles. This rotation
is restricted by a potential barrier that turns it into hindered rotation. The hindered
rotation with s equivalent internal configurations is described in terms of wave equa-
tion in which the internal rotation constant F is independent of the torsional angle φ

if the potential barrier has a threefold or higher symmetry [1–5]. Rigorous methods
are available that can be used to solve this problem numerically [3,5–7]. For example,
Hamiltonian matrix elements can be readily calculated in terms of the basis of wave
functions corresponding to a free rotation. This matrix can be then diagonalized to get
the spectrum of eigenvalues [5,7]. One leading term can be often left in a potential
energy given in the form of a series to derive the wave equation similar to the Mathieu
equation [1–5], which allows an analytical treatment of the problem [8–12]. When
the potential barrier has no threefold or higher symmetry, the stable equilibrium con-
figurations cease to be equivalent and molecules can exist as a mixture of rotational
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isomers. The internal rotation constant will have different values for different mol-
ecule conformations. Thus, F(φ) becomes a torsional angle function in the case of
asymmetric rotors. There are several approaches to this problem. In the simplest case,
a mean Fav can be used instead of F(φ) if the range of deviations in φ is negligible
[7,13]. When the barrier is high enough, the internal motion is represented by small
torsional vibrations, at least, at its bottom. In this case, energy levels are reasonable
to calculate assuming that F depends on molecule conformation and is independent
of φ for a given conformation [6,14]. Recent developments in ab initio techniques
are now available to treat a small molecule such as H2O2 in the full set of its internal
degrees of freedom [15,16]. Nevertheless, calculations of the required hindered rotor
state energies using ab initio methods are very time consuming and they are limited
to low levels of excitations.

In the present work, we introduce a new angular variable by a nonlinear coordinate
transformation to derive the wave equation in which the influence of the variable F(φ)

is eliminated by adding additional terms to the potential function and redefining φ.
This transformation belongs to the class of canonical point transformations [17–19]
(and earlier references cited therein). Mathematically, this task is equivalent to the
problem of position-dependent mass in the one-dimensional Schrödinger equation.

2 The method

A one-dimensional wave equation with an angle-depending internal rotation constant
is of the form [16,20]

− d

dφ

[
F(φ)

d�(φ)

dφ

]
= [E − V (φ)] �(φ), (1)

where V (φ) is the potential function. Actually, the solution of this differential equation
yields the torsional eigenvalues E and eigenfunctions �(φ). However, the dependence
of F on φ strongly complicates the problem. Our approach is in many ways similar
to that proposed in [17–19]. In order to derive a simpler equation, we introduce the
transformation φ → α through a mapping function α = f (φ) and rewrite the wave
function as

�(φ) = g(φ)�̃ [ f (φ)] , (2)

where the unknowns f (φ) and g(φ) should be determined. Substituting this expression
into Eq. (1), we get the transformed wave equation

−F( f ′)2 d2�̃

dα2 −
(

F ′ f ′ + 2F f ′ g′

g
+ F f ′′

)
d�̃

dα

=
[

E − V (φ) + F ′ g′

g
+ F

g′′

g

]
�̃, (3)
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where the prime denotes differentiation with respect to φ. Determine now the function
f (φ) from the equation

df

dφ
=

[
Fav

F(φ)

] 1
2

, (4)

where Fav is a constant. The general solution of Eq. (4) is

α = f (φ) = f (φ0) +
φ∫

φ0

[
Fav

F(x)

] 1
2

dx, (5)

In the following, we make the particular choice f (φ0) = φ0 due to a periodicity of
this function. The term in front of the first derivative can be made vanish if function
g(φ) is taken as

g(φ) =
[

Fc

F(φ)

] 1
4

(6)

Hence, Eq. (2) at φ = φ0 provides

�(φ0) =
[

Fc

F(φ0)

] 1
4

�̃(φ0) (7)

For a periodic function F(φ) with period 2π in φ, it is necessary to assume that
Fc = F(φ0) for the initial wave function and the transformed one to coincide at
φ0 = 0 and 2π .

Then, we rewrite again Eq. (3) to get

−Fav
d2�̃(α)

dα2 = [E − Veff(α)] �̃(α), (8)

where

Veff(α) = Ṽ
[

f −1(α)
]

(9)

and

Ṽ (φ) = V (φ) + 1

4

d2 F

dφ2 − 1

16F(φ)

(
dF

dφ

)2

(10)

Here f −1(α) is an inverse function for α = f (φ). It is worth noting that the eigen-
values of Eq. (8) will be the eigenvalues of Eq. (1). We call the old potential V (φ) as
the reference potential and the new potential Ṽ (φ) as the target potential. Thus, using
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Eqs. (5) and (6) we transformed our reference problem into the target problem with
the effective potential Veff(α).

For definiteness, we consider the case where the asymmetric rotor and rigid frame
have at least a plane of symmetry. As a result, V (φ) and F(φ) will be even functions
and the effective potential will also be an even function. Let us represent V (φ) in the
standard form

V (φ) = 1

2

∞∑
m=1

Vm [1 − cos(mφ)] (11)

A similar expansion can be written for the effective potential

Veff(α) = Ṽ (0) + 1

2

∞∑
m=1

(Veff)m [1 − cos(mα)] , (12)

where the expansion coefficients are given by the expression

(Veff)m = − 2

π

2π∫
0

Ṽ
[

f −1(α)
]

cos(mα)dα (13)

The equation giving the zeroth order Fourier component leads to

1

π

2π∫
0

{
Ṽ

[
f −1(α)

]
− Ṽ (0)

}
dα =

∞∑
m=1

(Veff)m (14)

For further advance, the constant Fav should acquire an explicit physical meaning. We
determine Fav using the periodicity property of the wave functions �(φ) and �̃(φ).
The periodicity of these functions yields the periodicity of function f (φ) with the
same period. To put it differently, if f (φ0) = φ0 then f (φ0 + 2π) should be equal to
φ0 + 2π . Hence,

1

2π

φ0+2π∫
φ0

[
Fav

F(φ)

] 1
2

dφ = 1

2π

2π∫
0

[
Fav

F(φ)

] 1
2

dφ = 1 (15)

Using Eq. (15), one obtains

Fav =
⎡
⎣ 1

2π

2π∫
0

dφ√
F(φ)

⎤
⎦

−2

(16)

This definition specifies the mean or effective internal rotation constant that appears
in Eq. (8). For definiteness sake, we assume that φ0 = 0.
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Energy levels can be calculated using the wave functions of free internal rotation as
the basis eigenfunctions (for details, see [7]). The energy eigenvalues are determined
by numerical diagonalization of Hamiltonian with the matrix elements

Hkk′ =
{

k2 Fav + Ṽ (0) + ∑∞
m=1

(Veff )m
2 , k = k′

− (Veff )|k−k′|
4 , k �= k′ (17)

Note that the eigenvalues of this matrix will be the eigenvalues of Eq. (1). In these
computations, it should be seen that each subsequent eigenvalue exceeds the preceding
one. In numerical calculations, the question always arises: how many terms should be
retained in the infinite series (12)? The answer is clear from Eq. (14). We can calcu-
late the left-hand side of Eq. (14) to within certain accuracy. A comparison with the
right-hand side can be used then to estimate the finite number of terms that should be
left to attain the same accuracy.

3 Approximate solution

For the potential barrier with the symmetry lower than the threefold one, the angular
dependence of F(φ) can be represented as a Fourier series [21,22]

F(φ) = F0 +
∞∑

k=1

Fk cos(kφ) (18)

We substitute this relation into Eq. (5) and retain the first-order terms with respect to
small ratios Fk/Fav fixed at k ≥ 1. Thus, we get

α = φ + Fav − F0

2Fav
φ −

∞∑
k=1

Fk

2kFav
sin(kφ) (19)

Note that the ratio (Fav − F0)/2Fav will be of the second-order smallness with respect
to Fk/Fav and this term can be omitted. Within the same accuracy, we find

φ = f −1(α) = α +
∞∑

k=1

Fk

2k Fav
sin(kα) (20)

Expanding the potential function V
[

f −1(α)
] = V (α +�α) in a power series of �α,

from Eq. (13) we immediately obtain

(Veff)m = Vm + m2 Fm

2
−

∞∑
k=1

Fk

4kFav

[
(m + k)Vm+k − (m − k)Vm−k

]
(21)

In the first order with respect to Fk/Fav, the term proportional to (F ′)2 makes no con-
tribution to this expression. Usually, there are the finite number (M) of the potential
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Table 1 Rotational constants (F) and potential coefficients (V ) for n-butane (all values in cm−1). Fm and
Vm are taken from [21]. Fav = 1.6213 cm−1

m Fm Vm Ṽm (Veff )
exact
m (Veff )

appr
m

0 1.623 1,431 1,431 1,427.3 1,427.9

1 −0.0774 242 241.9607 231.5448 231.8993

2 0.0420 43 43.0840 80.3804 80.7874

3 −0.00789 1,148 1148.0 1,148.2 1,149.6

4 0.00204 40 40.0159 0.6951 −0.5670

5 −0.000469 −6 −6.0057 1.3777 0.6432

6 0.000113 −36 −35.9980 −36.7863 −36.5152

7 0.0000 2.6791 2.6863

8 −0.8270 −0.7243

9 0.1548 0.0929

10 −0.0351 −0.0161

11 0.0080 0.0030

12 −0.0019 −0.0006

coefficients Vm and the finite number (K + 1) of the rotational constants Fk . Then
m runs through the values 1 ≤ m ≤ M + K in Eq. (21). Substituting the potential
coefficients from (21) into the right-hand side of Eq. (14), we can estimate a reliability
of approximation (21) with a finite number of terms. Thus, Eq. (21) allows one to cal-
culate the expansion coefficients of the effective potential using the available Fourier
coefficients Vm and Fk .

4 Results

As a rule, the effect of a variation F with φ is not too large for many molecules. Thus,
we can restrict ourselves to this case choosing the n-butane molecule as an example.
In n-butane, the asymmetric rotor has a plane of symmetry, which leads to an even
parity of the potential function and allows it to be represented in a standard form of
Eq. (11). The potential function governing the conformational interchange in n-butane
has been more than once considered in the literature from both experimental and theo-
retical points of view [21,22]. We have used the potential coefficients from [21] to set
the reference potential for purposes of calculating the Fourier coefficients of the effec-
tive potential. The numerically exact (Veff)m values were calculated from Eq. (13) and
the approximate values were found from Eq. (21). These values are listed in Table 1.
The Fourier coefficients of the target potential are presented for comparison.

The numerical diagonalization of matrix Hkk′ provides the necessary energy levels
arising below the potential barrier in n-butane. The method incorporates the lowest
200 energy levels; however, more levels can easily be included if needed. Table 2
summarizes the calculated values for the energy levels lying well below the cis bar-
rier (1,384 cm−1). There is a close agreement between the numerically exact and
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Table 2 Calculated energy levels of torsional motion (in cm−1) for n-butane

Near the bottom of a barrier Near the top of a barrier

n Eexact
n E

appr
n n Eexact

n E
appr
n

0 62.112 62.078 27 1,134 1,134

1 185.16 185.06 28 1,137 1,136

2 295.47 294.75 29 1,209 1,209

3 295.47 294.75 30 1,214 1,215

4 305.69 305.53 31 1,218 1,219

5 411.89 411.39 32 1,268 1,269

6 411.89 411.39 33 1,285 1,285

7 423.43 423.21 34 1,296 1,296

8 525.81 525.51 35 1,331 1,331

9 525.81 525.21 36 1,347 1,348

10 538.09 537.83 37 1,378 1,379

approximate En values. The energy levels for the trans conformation are nondegen-
erate. Because of the existence of two potential wells in the gauche conformation, the
energy levels appear to be double degenerate. Above 1,000 cm−1 the degeneracy is
lifted. It also shows that energy separations near the barrier top depend non-monoton-
ically on the quantum number n owing to a complex form of the barrier and a change
of internal motion from torsional oscillations to free rotation.

5 Conclusions

In the present work, we have applied the approach based on the canonical point trans-
formation for hindered asymmetric rotors with the angle-dependent internal rotation
constant. The numerical method developed can be used to calculate the energy levels
of torsional motion for almost any periodic potential. As with any numerical method,
there are many parameters that can be varied to enhance the accuracy of calculations.
Just one of them is used in our method; it consists only in the number of necessary
levels. The key equations of the method are Eqs. (13), (16) and (17) that give implicitly
hindered rotor state energies. In the first stage, it is necessary to determine the target
potential from the reference potential and to calculate then effective potential param-
eters using a mapping function. Perturbation approximation (21) that requires small
deviations of the internal rotation constant from its mean value is sufficient in most
cases of real molecules. The second stage includes the Hamiltonian matrix diagonal-
ization. The problem of finding the eigenvalues of the symmetric matrix with a few
diagonals with identical elements along each diagonal is very simple for numerical
calculations, and may be solved with modest computer aids.
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