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Abstract
We theoretically consider a new approach for measurement of the two-dimensional
light-scattering patterns (2D LSP) of individual particles (for example, blood cells). Unlike the
original optical scheme of the scanning flow cytometer that integrates scattering intensity over
the azimuth angle, the new scheme allows us to measure the 2D LSP. The approach assumes
measurement of the integral distribution of intensity on the fixed plane with subsequent
reconstruction of the pattern via solving a first-kind integral equation. The last problem is
ill-posed and we solve this equation by the standard regularization method. Error sources of
the new approach are discussed from a comparison of the initial and reconstructed 2D LSPs
for non-spherical particles.

Keywords: optical instrumentation, integral equation, inverse problem, non-spherical particle
light scattering, scanning flow cytometer

1. Introduction

The approach to studying small particles based on
reconstruction of particle parameters from their scattering
properties plays an important role in various fields of
science and technology. This approach assumes mathematical
modeling of the electromagnetic scattering process. Then we
can solve the direct problem for a sufficiently large number
of different particles and try to decide whose scattering data
most likely correspond to the experimental data. Observe that
the direct electromagnetic scattering problem is studied rather
completely both theoretically and numerically [1–4].

Alternatively, we can try to solve immediately the inverse
problem, i.e., to reconstruct the form and other properties of
particles from the scattering data. However, this approach
faces serious theoretical difficulties and, in spite of a large

number of publications, the theory of inverse electromagnetic
scattering is far from being complete [5–9].

Dealing with small particles such as blood cells, alongside
purely theoretical issues related to solution of the inverse
problem, we also face the practical problem of measurement
of the light scattering caused by difficulties with particle
localization and low light-scattering intensity from individual
particles. The most efficient solution of the last problem
supports a hydro- or aero-focusing technique that provides
5 µm localization of a particle within a laminar flow
[4, 10, 11]. The other problem relates to sufficiency of
experimentally measured data to provide good precision for
the inversion algorithm. Ordinary instruments which measure
light-scattering intensities at a few spatial angles do not solve
this problem. Much more light-scattering information can
be retrieved from the two-dimensional light-scattering pattern
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Figure 1. Original scanning scheme.

(2D LSP) that is the angular distribution of the light-scattering
intensity in the polar and azimuth angles. Instrumentally
this problem was solved for airborne particles [8] and water
suspensions [12]. Unfortunately the instruments utilize rather
expensive and unique equipment like an intensified CCD
camera and an ellipsoidal mirror.

About a decade ago, we designed the scanning
flow cytometer that allows us to measure the polar-angle
distribution of the light-scattering intensity of individual
particles [13]. This device makes it possible to collect rather
rich information on the light scattering of small particles at
a rate up to 500 particles s−1. Mathematically, the measured
function sint(θ) is derived from integration of the 2D LSP
s(θ, ϕ) over the azimuth angle ϕ, where θ ∈ [0, π], ϕ ∈
[0, 2π], the incident light direction corresponds to θ = 0,
and the angle θ varies from 5◦ to 100◦ (see details in [7]).
This information suffices for studying spherically symmetric
particles, since s(θ, ϕ) is independent of ϕ in this case.

In the general case we wish to have the 2D LSP s(θ, ϕ)

itself for the possibly widest range of angles. In this paper,
we propose a modification of the scanning flow cytometer and
also develop the corresponding mathematics.

2. Instrumental details

2.1. The original scanning scheme

For completeness of exposition, we will briefly describe
the original scanning scheme (see figure 1). The detailed
presentation can be found in [7]. The basic element of the
scheme is the optical cuvette that is a quartz capillary with one
flat and one spherical end. The water flow with particles goes
into the cuvette from the left end. Positioning of the particle
is carried out by means of two trigger laser beams. The laser
beam (from Laser) is scattered by the particle flowing through
the capillary. The scattered light reflected from the spherical
end is focused by the mirror–lens–mirror unit and then reaches
the pinhole with the photomultiplier tube (PMT) behind it. The
device is designed so that the PMT measures only those rays
which are parallel to the optical axis after reflection from the
spherical end.

The mathematical description requires some notation. Let
θ and ϕ be the polar and azimuth angles of the scattered
ray. (The direction of the incident laser beam corresponds
to θ = 0.) Denote by s(θ, ϕ) the two-dimensional light-
scattering pattern (2D LSP); i.e., for every pair (θ, ϕ) the value

Figure 2. Modified scanning scheme. (Refraction is neglected.)

s(θ, ϕ) is the intensity of light scattered in the direction (θ, ϕ).
The water flow is steady, and we can assume that s(θ, ϕ) does
not change with time. For every position of the particle there
is a unique value θ for which the rays with the polar angle θ are
parallel to the optical axis after reflection from the spherical
end and thereby reach the PMT. The particle moves along the
capillary with constant speed; therefore, we have a one-to-one
time-to-angle map (for details see [7]). Thus, we can measure
the integral intensity

sint(θ) =
∫ 2π

0
s(θ, ϕ) dϕ.

On the one hand, integration over ϕ is caused by the
construction of the scanner and is a disadvantage, since it
leads to loss of information. On the other hand, the 2D
LSP s(θ, ϕ) for an individual particle is very small, while
the integral intensity sint(θ) is large enough to be measured by
the PMT at a rather high speed (about 1 MHz). In a sense,
integration is a compulsory measure as we deal with small
individual biological particles having slight light-scattering
intensities. Moreover, in the case of spherical particles, s(θ, ϕ)

is independent of ϕ and we lose no information.

2.2. The modified scanning scheme

Dealing with nonspherical particles such as red blood cells, it is
desirable to have the complete 2D LSP s(θ, ϕ) for the possibly
wider range of angles. It is natural to replace the lens–mirror–
pinhole–PMT unit with a CCD sensor (see figure 2). However,
here we face two main difficulties: the sensitivity and speed of
widely available CCD sensors are insufficient for continuously
measuring the 2D LSP of small individual particles. To
overcome this complication, we propose to integrate; however,
unlike the original scanning scheme, where we integrated with
respect to the azimuth angle, now we integrate over some
period of time.

Fix two particle positions tmin and tmax somewhere
between the spherical bottom and the center of the sphere.
We can identify these positions with time, for the flow speed
is constant. We suppose that the flow is such that the particle
does not change its orientation with time and remains in the
exact center of the flow, for this assumption is in rather good
agreement with experiment (see [14]). It means that the
2D LSP s(θ, ϕ) is the same at all times. We measure the
intensity of light reaching the screen in the interval [tmin, tmax],
obtaining thereby the ‘blurred’ image of s(θ, ϕ). Denote by
σ(r, ψ) the density of the total light reaching the screen at
the point with polar coordinates (r, ψ) during the indicated
time interval. Below, we show that, under some additional
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Figure 3. Optical scheme. R is the radius of the spherical end of the
capillary (R = 3 mm); O is the center of the sphere; A is the
distance from the center O to the right end of the capillary (A =
2 mm); B is the distance from the right end to the screen (B =
3 mm); D is the diameter of the capillary (D = 254 µm); EO1 is the
optical axis; P is the position of the particle; Q is the point of
refraction on the water–quartz interface; S is the point of reflection
from the spherical end of the capillary; T is the point of refraction on
the quartz–air interface; t is the distance from the particle to the left
end E; F is the point at which the ray reaches the screen; M and P ′

are auxiliary points; s and x are auxiliary parameters.

constraints, s(θ, ϕ) and σ(r, ψ) are connected by the integral
relation ∫ 2π

0
K(r, θ)s(θ, ϕ)dθ = rσ (r, ϕ),

where the kernel K(r, θ) is determined by the optical scheme.
The goals of the paper are the following:

• find the integral dependence between s(θ, ϕ) and σ(r, ψ);
• find out whether it is possible to reconstruct s(θ, ϕ) from

σ(r, ψ), in particular, for σ(r, ψ) given with some error;
• justify the advisability of construction of the modified

SFC.

3. Mathematics

3.1. Geometry of rays

The optical scheme of the modified scanner consists of a quartz
capillary with one reflecting spherical and one flat end, a
laser and a light-sensitive screen (CCD sensor) (see figure 3).
For simplicity of computations, we assume that the screen is
perpendicular to the optical axis as in figure 3. The light-
scattering particle P lies in the cuvette on the optical axis at a
distance t, 0 < t < R, from the left end E.

Introduce the spherical coordinates (ρ, θ, ϕ) with center
at the point P such that the direction of the incident laser beam
corresponds to the polar angle θ = 0. On the screen plane,
we introduce the polar coordinates (r, ϕ) with center on the
optical axis and such that the angle ϕ agrees with the azimuth
angle ϕ of the spherical coordinate system. Consider the ray
starting at P in the direction (θ, ϕ). After refraction on the
water–quartz interface, reflection from the spherical end of the
capillary, and refraction on the quartz–air interface, the ray
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Figure 4. Backward rays.

reaches the screen at some point F. Since the refraction and
reflection occur in the same plane, the ϕ-coordinate of F is
equal to either ϕ or ϕ + π .

Obviously, some rays may cross the optical axis, and
hence rays with azimuth angles ϕ and ϕ + π may come to
the same point on the screen. To overcome this complication,
from the very beginning we work with angles ϕ ∈ [0, π],
assuming that rays with other ϕ are eliminated by shading.
With this assumption, it is convenient to use the modified
polar coordinates in the screen plane:

x = r cos ϕ, y = r sin ϕ, r ∈ R, ϕ ∈ [0, π]. (1)

In this case the ψ-coordinate of F is always equal to the
parameter ϕ of the ray.

Besides the rays like PQSTF in figure 3, there are rays
which go to the screen directly, without reflection from the
spherical end of the capillary (see figure 4). We call them
backward rays, because the polar angle θ of these rays is
always greater than π/2. Since the pattern s(θ, ϕ) is small for
θ close to π , the contribution of these rays is small and can be
neglected.

3.2. Connection among t, θ and r

Naturally, we need the connection between the parameters t
and θ of the ray and the coordinate r of the point F. Using
the laws of refraction and reflection, we can write down the
following system of equations (see figure 3):

cos α = nw

nq
cos θ (the law of refraction at Q) (2)

t − s = D

2
(cot θ − cot α) (from �PQP ′) (3)

R sin β = (R − s) sin α (the sine theorem in �P ′SO) (4)

R sin β = (x + A tan(α − 2β)) cos(α − 2β)

(the sine theorem in �SMO) (5)

x − r = B tan δ (6)

sin δ = nq

n0
sin γ = nq

n0
sin(α − 2β)

(the law of refraction at T ). (7)

The scheme imposes the following constraints on the ray
parameters:
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Figure 5. The function r(θ, t) for a wide range of t (t ∈ [0.5, 2.2]).
The value r(θ, t) for nonadmissible (θ, t) is zero.

t tan θ >
D

2
,

D

2
< x < R,

(R − s) sin α > −R cos α. (8)

The last condition means that the ray is reflected from the
spherical end of the capillary. It holds automatically for
0 < α < π/2. Those pairs (θ, t) and triples (θ, t, r) for which
the ray satisfies the above constraints are called admissible.

Obviously, the above equations make it possible to write
down the dependence r = r(θ, t) explicitly; however, we do
not do this in view of its bulkiness. This dependence (for
admissible pairs (θ, t)) is shown in figure 5.

3.3. Connection between s(θ, ϕ) and σ(r, ϕ)

Knowing the geometry of rays, we can try to reconstruct the
2D LSP from the intensity of light on the screen.

Our problem is to reconstruct s(θ, ϕ) from σ(r, ϕ).
Establish the dependence between these functions which

is of integral character. Let ρ(r, t, ϕ) be the light intensity
on the screen (per unit area) at time t (i.e., the total intensity
coming to the disk of radius r0 centered at the origin during the
interval (tmin, tmax) is equal to

∫ 2π

0

∫ r0

0

∫ tmax

tmin
ρ(r, t, ϕ) rdt dr dϕ).

Consider the (θ, t, ϕ)-space, the (r, t, ϕ)-space and the
function (θ, t, ϕ) �→ (r(θ, t), t, ϕ) from one space to the other.
Take a domain U in the (θ, t, ϕ)-space; let V be its image in the
(r, t, ϕ)-space; and suppose that the correspondence between
them is one-to-one. As seen from figure 5, this is true, for
example, if U is a convex set containing no points at which
rθ (θ, t) = 0. In this case, we also have the functions t (θ, r)

and θ(r, t) on the corresponding two-dimensional domains.
The derivation of the dependence between s(θ, ϕ) and σ(r, ϕ)

relies upon the fundamental fact that the total energy ‘going
from’ U equals the total energy ‘going to’ the domain V :∫ ∫ ∫

U

s(θ, ϕ) sin θ dθ dt dϕ =
∫ ∫ ∫

V

ρ(r, t, ϕ)r dr dt dϕ.

(9)

Choose the domains U and V by means of the conditions
θ1 < θ < θ2, r1 < r < r2, and ϕ1 < ϕ < ϕ2; i.e.,

0 20 40 60 80 100
0.5

1

1.5

2

θ

t

Figure 6. Typical dependence of t on θ for large r (here r = 3.5).
The angle is counted in degrees.

U = {(θ, t, ϕ) | θ1 < θ < θ2, t (θ, r2) < t < t(θ, r1),

ϕ1 < ϕ < ϕ2} (10)

V = {(r, t, ϕ) | r1 < r < r2, t (θ2, r) < t < t(θ1, r),

ϕ1 < ϕ < ϕ2}. (11)

Note that the dependence t (θ, r) as a function of r for a fixed θ

is always decreasing, while the same dependence as a function
of θ for a fixed r has monotonicity intervals depending on r.
In the definition of U and V above, we assumed that the latter
function is decreasing (which is true for small r). We have∫ ϕ2

ϕ1

∫ θ2

θ1

∫ t (θ,r1)

t (θ,r2)

s(θ, ϕ) sin θ dt dθ dϕ

=
∫ ϕ2

ϕ1

∫ r2

r1

∫ t (θ1,r)

t (θ2,r)

ρ(r, ϕ, t)r dt dr dϕ. (12)

In view of the arbitrariness of ϕ1 and ϕ2, we can remove
the integral with respect to ϕ. Calculate explicitly the integral
with respect to t on the left-hand side and divide by r2 − r1:∫ θ2

θ1

t (θ, r1) − t (θ, r2)

r2 − r1
s(θ, ϕ) sin θdθ

= 1

r2 − r1

∫ r2

r1

∫ t (θ1,r)

t (θ2,r)

ρ(r, t, ϕ)r dt dr. (13)

Letting r2 tend to r1, we obtain

−
∫ θ2

θ1

tr (θ, r1)s(θ, ϕ) sin θ dθ

=
∫ t (θ1,r1)

t (θ2,r1)

ρ(r1, t, ϕ)r1 dt. (14)

Numerical analysis shows that the correspondence θ �→
t (θ, r) for a fixed r is univalent and is either monotone or has
several local extrema θi (see figure 6).

Now, consider σ(r, ϕ) for r ∈ [rmin, rmax]. Suppose that
tmin and tmax are chosen so that, for all indicated r, tmax is
greater than the local maximum (if any) and tmin is less than
the local minimum (if any). Then we can uniquely determined
the inverse images θmin(r) and θmax(r) of the points tmax and
tmin under the mapping t (θ, r). Split, if needed, the interval
[θmin(r), θmax(r)] into the monotonicity intervals and note

4
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Figure 7. The functions θmin(r) and θmax(r) for tmin = 0.8 and
tmax = 1.5.

that in the case of several monotonicity intervals σ(r, ϕ) is
composed of the integrals of ρ(r, t, ϕ) over overlapping time
intervals; this situation corresponds to simultaneous arrival
of rays with different angles θ . Applying (14) on each
monotonicity interval and summing the results, we obtain

−
∫ θmax(r)

θmin(r)

tr (θ, r)s(θ, ϕ) sin θ dθ = σ(r, ϕ)r. (15)

Thus,∫ π

0
K(r, θ)s(θ, ϕ) dθ = σ(r, ϕ)r, r ∈ [rmin, rmax] (16)

where K(r, θ) = −χ(r, θ)tr (θ, r) sin θ ,

χ(r, θ) =
{

1 if θmin(r) < θ < θmax(r),

0 otherwise.
(17)

3.4. Dependence t (θ, r)

In the previous subsection, we found that the kernel K(r, θ)

is determined by the derivative tr (θ, r). Unfortunately, this
function can be found numerically only.

Numerical analysis shows that rt (θ, t) < 0 (see figure 5).
It means that the function t = t (r, θ) is uniquely defined on

(a) (b)

Figure 8. The function t (θ, r) (a) and the kernel K(r, θ) of the operator K (b).

the set

{(r, θ) | there is t ∈ [tmin, tmax]

such that (θ, t, r) is an admissible triple}. (18)

This set has the form {(r, θ) | r1 � r � r2, θmin(r) � θ �
θmax(r)}, where the functions θmin(r) and θmax(r) are shown in
figure 7.

To find t (r, θ), rewrite equations (2)–(6) in a more
compact form, excluding the variables s, y, x and δ:

G1 = (R − t) sin α +
D

2

sin(α − θ)

sin θ
− R sin β = 0, (19)

G2 = r cos(α − 2β) + A sin(α − 2β) (20)

+ B
nq sin(2α − 4β) cos(α − 2β)

2
√

n2
0 − n2

q sin2(α − 2β)
− R sin β = 0, (21)

α = α(θ) = arccos

(
nw

nq
cos θ

)
. (22)

The functions Gj(r, θ, α, t, β) constitute a mapping G : R
5 →

R
2. By the implicit function theorem, this mapping together

with the function α = α(θ) determines the vector function
x(r, θ) = (t (r, θ), β(r, θ)) in a domain, where the partial
Jacobian

∣∣ ∂G
∂x

∣∣, x = (t, β), is nonzero.
To find x(r, θ), for each admissible fixed pair (r, θ), we

need to solve the nonlinear system G(r, θ, α(θ), x) = 0 with
respect to x. Then the derivative tr (r, θ) entering the kernel of
the integral operator is found from the equality

xr(r, θ) = −(G′
x(r, θ, α(θ), x))−1Gr(r, θ, α(θ), x), (23)

which is obtained from the identity G(r, θ, α(θ), x) = 0 by
differentiation with respect to r. To solve approximately the
nonlinear system, we use the Newton–Kantorovich iteration
method:

xn+1 := xn − (G′
x(r, θ, α(θ), xn))

−1G(r, θ, α(θ), xn). (24)

The function t (r, θ) and the kernel of the integral operator
found in the indicated way are shown in figure 8.
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Table 1. Common parameters of experiments.

Wavelength 0.488 µm Weight w0 exp(5θ)
Refractive index of the medium 1.333 (water) Weight w1 exp(2θ)
Refractive index of the particle 1.5 Angle ϕ 0◦

Aspect ratio of the particle 0.5
The angle between the optical axis 45◦

and the particle axis

Table 2. Parameters of particles and reconstruction procedure.

Equiv. sphere Error of
Particle Figure diameter the RHS (%) Parameter α

Disk 10(a), 11 2.0 0 10−10

Spheroid 10(b) 1.5 0 10−10

Spheroid 10(c) 1.5 1 10−10, 10−9 (opt), 10−8

Spheroid 10(d) 1.5 5 10−9, 10−8 (opt), 10−7

Stick 12(b) 2.0 0 10−10

3.5. The solution of the integral equation

Since the variable ϕ plays the role of a parameter in the integral
equation (16), we drop it for brevity. Denote the integral
operator in (16) by K : (K s)(r) = ∫ π

0 K(r, θ)s(θ) dθ , and
agree to consider equation (16) in the space L2(0, π) of
square integrable functions. As is well known, the solution
of integral operators with piecewise smooth kernels is an ill-
posed problem: there is no continuous dependence of the
solution on the right-hand side; changing σ(r)r with a close
function may lead to the situation where a solution does
not exist or is nonunique, etc. In practice, the approximate
numerical solution of such problems is carried out by various
regularization methods.

Apparently, the basic universal method here is the
minimization method which consists in the following: an
approximate solution sα to the equation K s = σδr with
an approximate right-hand side σδr given with accuracy δ:
‖σδr − σr‖ � δ, is sought by minimization of the functional

Jα(s) = αl(s) + ‖K s − σδr‖2 (25)

on some compact subset M ⊂ L2(0, π), where α > 0 is
the regularization parameter and l(s) is a convex nonnegative
functional on M such that the set {s ∈ M | l(s) � c} is compact
for every c > 0. It is well known that there is a dependence
α = α(δ) such that the approximate solution sα(δ) tends to
the exact solution as δ → 0. In practice, the regularization
parameter is chosen either empirically or in some other way
depending on the error δ of the right-hand side.

If

l(s) =
∫ π

0

(|s(θ)|2w2
0(θ) + |s ′(θ)|2w2

1(θ)
)

dθ, (26)

where w0 and w1 are some weight functions, then the Euler
equation for the minimization problem (25) is

α
(
s(ψ)w2

0(ψ) − s ′′(ψ)w2
1(ψ)

)

+
∫ π

0

(∫ r2

r1

K(r,ψ)K(r, θ)dr

)
s(θ) dθ

=
∫ r2

r1

K(r,ψ)σδ(r)r dr. (27)

Discretization of this equation, for example, with the boundary
conditions s ′(0) = s ′(π) = 0 leads to a system of linear

Figure 9. The kernel of the operator K ∗K .

equations with a symmetric positive definite matrix which is
solved, for example, by means of the Cholesky decomposition.
Detailed information on solving ill-posed problems by the
regularization methods can be found in [15–18].

3.6. Choice of the parameters

The parameters tmin and tmax are chosen for the following
reasons:

(1) The longer the interval [tmin, tmax], the greater the intensity
σ(r) and thereby the accuracy with which σ(r) is
measured. In particular, this is one of the reasons why
measuring at a single point t is inefficient. The second
reason is given in the next item.

(2) For each fixed t, the set of admissible angles

(t) = {θ | ∃r ∈ [rmin, rmax]

such that (θ, t, r) is admissible} (28)

is sufficiently narrow and does not cover the whole range
of angles (see figure 8(a)). Moreover, (t) is broader at
large values of t.

(3) On the other hand, increasing tmax, we diminish the
range of the function θmin(r) which is responsible for
the disposition of the jump of the kernel K. The presence

6
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Figure 10. The exact (thin line) and reconstructed 2D LSP’s. The optimal reconstructed function is shown by the boldface line; the others
are shown by dashed lines.

of this jump makes the solution procedure more stable.
Thus, there is no reason to take tmax too large.

(4) In the domain of (r, θ) corresponding to t close to tmin

(near the right jump of the kernel in figure 8(b)) the kernel
K(r, θ) is rather flat. It means that, although decreasing
tmin increases the range of angles, it will hardly lead to
stable reconstruction of s(θ) for these angles.

For the above reasons, in numerics we choose tmin = 0.8
and tmax = 1.5 for R = 3, A = 2 and B = 5.

In figure 12, we see that the kernel of K ∗K vanishes for
θ greater than some value slightly exceeding π/2. Therefore,
the regularization weights wj(θ) should be great for large
values of θ . Another reason for this choice is that s(θ) decays
fast in θ .

4. Numerics

The numerical experiment was carried out as follows.
Having no real data, we took as the exact solution
the entry S11(θ, ϕ) of the simulated Mueller matrix for
various particles and generated the right-hand side rσ (r, ϕ)

by applying the operator K. The direct scattering

−1 0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

r

σ
r
r

Figure 11. The right-hand side σ(r, 0)r for a disk (see figure 10(a)).

problem was solved by the T-matrix method code found
at http://www.giss.nasa.gov/∼crmim/t matrix.html (see also
[3, 4]). To these model data, we applied our reconstruction
procedure and compared the result with the exact solutions.
The common and specific parameters of the experiments are
given in tables 1 and 2.

7

http://www.giss.nasa.gov/$sim $crmim/t_matrix.html


Meas. Sci. Technol. 19 (2008) 015408 G V Dyatlov et al

(a) (b)

Figure 12. The exact (left) and reconstructed (right) 2D LSP s(θ, ϕ) for all angles ϕ. The intensity is shown on a logarithmic scale.
(Reconstruction for all ϕ ∈ [0, 2π ] is possible only for simulated data.)

Solving the integral equation with the exact right-hand
side, we take one small value of α (α = 10−10). When the
right-hand side is given with some error we take different
values of α: for small α the solution is highly oscillating and
for large α it is smooth but far from the exact solution. The
optimal value of α lies somewhere in between.

5. Conclusion

With this work, we have attempted to modify an optical scheme
of the scanning flow cytometer that will allow us to measure the
two-dimensional light-scattering pattern of individual particles
with a rate up to 500 particles s−1. We have tried to transfer
the difficulties caused by complex optical elements from these
elements to mathematics. The simulated optical scheme of
the SFC was modified by substitution of a widely used CCD
camera for the diaphragm-photomultiplier tube unit. The
CCD camera should accumulate the scattered light during the
time period while the particle is moving within the testing
zone of the SFC. The measured two-dimensional plot can be
transformed into the two-dimensional light-scattering pattern
by means of the developed mathematical inversion procedure.
The mathematical inversion allows us to estimate the accuracy
of reconstruction of the 2D LSP for non-spherical particles, the
influence of the noise on the reconstruction, and to determine
the optimal operating angular interval for the current optical
scheme of the SFC.

The results introduced in this work give us positive
signals to continue modification of the optical scheme of the
SFC. As we can see from numerics, if the right-hand side
is given exactly then we can expect accurate reconstruction
of s(θ, ϕ) in the range 5◦ � θ � 50◦, 0◦ � ϕ � 180◦

for various types of particles. In the presence of error the
accuracy of reconstruction worsens, remaining acceptable for
5◦ � θ � 20◦.

Following the aim of this research, we would like to
provide mathematicians with sufficient experimental data for
a successful solution of the inverse light-scattering problem.

The solution should open new facilities in individual particle
characterization from light scattering forming new diagnostic
methods for cell biology. Hematology and immunology are
most important fields, where new methods can be effectively
applied in the future.
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