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a b s t r a c t

The open-source code ADDA is described, which implements the discrete dipole

approximation (DDA), a method to simulate light scattering by finite 3D objects of

arbitrary shape and composition. Besides standard sequential execution, ADDA can run

on a multiprocessor distributed-memory system, parallelizing a single DDA calculation.

Hence the size parameter of the scatterer is in principle limited only by total available

memory and computational speed. ADDA is written in C99 and is highly portable. It

provides full control over the scattering geometry (particle morphology and orientation,

and incident beam) and allows one to calculate a wide variety of integral and angle-

resolved scattering quantities (cross sections, the Mueller matrix, etc.). Moreover, ADDA

incorporates a range of state-of-the-art DDA improvements, aimed at increasing the

accuracy and computational speed of the method. We discuss both physical and

computational aspects of the DDA simulations and provide a practical introduction

into performing such simulations with the ADDA code. We also present several

simulation results, in particular, for a sphere with size parameter 320 (100-wavelength

diameter) and refractive index 1.05.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The discrete dipole approximation (DDA) is a general
method to calculate scattering and absorption of electro-
magnetic waves by particles of arbitrary geometry. In this
method the volume of the scatterer is divided into small
cubical subvolumes (‘‘dipoles’’). Dipole interactions are
approximated based on the integral equation for the
electric field [1]. Initially the DDA (sometimes referred
to as the ‘‘coupled dipole approximation’’) was proposed
by Purcell and Pennypacker [2] replacing the scatterer by
a set of point dipoles (hence the name of the technique).
ll rights reserved.
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Although the final equations are essentially the same,
derivations based on the integral equations give more
mathematical insight into the approximation, while the
model of point dipoles is physically clearer. For an
extensive review of the DDA, including both theoretical
and computational aspects, the reader is referred to [1]
and references therein.

ADDA is a C implementation of the DDA developed by
the authors. The development was conducted by Hoekstra
and coworkers [3–6] since 1990 at the University of
Amsterdam. From the very beginning the code was
intended to run on a multiprocessor system or a multicore
processor (parallelizing a single DDA simulation). The
code was significantly rewritten and improved by Yurkin
et al. [7], also at the University of Amsterdam. Since then
the authors have been further developing the code.
Originally coined ‘‘Amsterdam DDA’’, the code has been
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officially abbreviated to ADDA to reflect the international
nature of its development. ADDA is intended to be a
versatile community tool, suitable for a wide variety of
applications ranging from interstellar dust and atmo-
spheric aerosols to biological cells and nanoparticles;
its applicability is limited only by available computer
resources.

ADDA is freely available under the terms of the GNU
General Public License at http://code.google.com/p/a-dda,
and has been used by the community since 2006.1 Both
the full source code and compiled executables for 32-bit
Windows systems are available. The source code is easily
compiled under any operating system supporting a C99
compiler and executes on any parallel system supporting
the MPI (message passing interface). It is accompanied by
extensive documentation, consisting of a user manual and
a number of wiki pages. The former focuses on computa-
tional and physical aspects of ADDA, while the latter are
devoted to more technical issues, ranging from compiling
instructions to description on how to add new predefined
shapes. ADDA development has gone beyond its original
authors and is intended to be an open-source community
effort, with (source code) contributions from members of
the community.

This paper summarizes the capabilities and limitations
of ADDA,2 and is based on the corresponding manual [8].
The overall goal is to discuss physical and computational
aspects of DDA simulations and to provide a practical
introduction into performing such simulations using the
ADDA code. The paper discusses general applicability of
the code (Section 2), system requirements (Section 3), and
how to specify a scattering problem, including particle
orientation and incident beam (Section 4). Then different
DDA formulations, as incorporated into ADDA, are dis-
cussed (Section 5) as well as scattering quantities that can
be calculated (Section 6). At the end, we discuss computa-
tional aspects of the code (Section 7), present a number of
sample simulations (Section 8) and a general conclusion
(Section 9).

ADDA is a console application without graphical user
interface. Its behavior is mostly controlled through the
command line, although large sets of parameters (e.g.
shape of a scatterer) are supplied through special input
files. A brief description of the most important command
line options is given in the relevant parts of this paper.
The full list can be obtained through the built-in help
system (running ADDA with ‘‘�h’’ flag) and from the
manual [8]. Much more detailed information, in particu-
lar, formats of input and output files, is given in the
above-mentioned documentation of the code.

Finally, to our knowledge, there are at least three other
freely available DDA codes: DDSCAT [9], OpenDDA [10],
and DDA-SI toolbox [11]. More DDA codes exist, and some
of them are discussed in [12], but these are not freely
available to the community. Although certain compara-
tive comments are given in the remainder of the paper,
1 See http://code.google.com/p/a-dda/wiki/Publications for a list of

journal publications using ADDA.
2 The descriptions in this paper are based on v.1.0 of the code,

released in September 2010.
a thorough comparison of ADDA with those other codes
lies outside its scope. A detailed albeit slightly outdated
comparison of ADDA, DDSCAT, and two other codes was
performed by Penttila et al. [12].

2. Applicability of the DDA

2.1. General applicability

The principal advantage of the DDA is that it is com-
pletely flexible regarding the geometry of the scatterer,
being limited only by the need to use a dipole size d small
compared to both any structural length in the scatterer and
the wavelength l. A large number of studies devoted to the
accuracy of DDA exist, e.g. [9,13–16,7,17–21]. Most of them
are reviewed in [1]; here we only give a brief overview.

The rule of thumb for particles with size comparable to
the wavelength is: ‘‘10 dipoles per wavelength inside the
scatterer’’, i.e. size of one dipole is

d¼ l=109m9, ð1Þ

where m is the refractive index of the scatterer. That is the
default for ADDA. The expected accuracy of cross sections
is then several percents (for moderate m, see below). With
increasing m the number of dipoles that is used to
discretize the particle increases; moreover, the conver-
gence of the iterative solver (Section 7.1) becomes slower.
Additionally, the accuracy of the simulation with default
dipole size deteriorates, and smaller, hence more dipoles
must be used to improve it. Therefore, it is accepted that
the refractive index should satisfy

9m�19o2: ð2Þ

Higher m can also be simulated accurately. In that case
however, the required computer resources rapidly
increase with m. Fortunately, state-of-the-art DDA for-
mulations (Section 5) can alleviate this problem and
render higher refractive indices accessible to DDA simula-
tions. Note however that the application of the DDA in
this large m regime is investigated much less thoroughly
than for moderate refractive indices, and therefore war-
rants further studies.

When considering larger scatterers (volume-equiva-
lent size parameter x410) the rule of thumb still applies.
However, it does not describe well the dependence on m.
When employing the rule of thumb, errors do not
significantly depend on x, but do significantly increase
with m [7]. However, simulation data for large scatterers
is also limited; therefore, it is hard to propose any simple
method to set the dipole size. The maximum reachable x

and m are mostly determined by the available computer
resources (Section 3).

The DDA is also applicable to particles smaller than the
wavelength, e.g. nanoparticles. In some respects, it is even
simpler than for larger particles, since many convergence
problem for large m are not present for small scatterers.
However, in this regime there is an additional requirement
for d—it should allow for an adequate description of the
shape of the particle. This requirement is relevant for any
scatterer, but for larger scatterers it is usually automatically
satisfied by Eq. (1). For instance, for a sphere (or similar

http://code.google.com/p/a-dda
http://code.google.com/p/a-dda/wiki/Publications
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compact shape) it is recommended to use at least 10
dipoles along the smallest dimension, no matter how small
the particle is. Smaller dipoles are required for irregularly
shaped particles and/or large refractive index. The accuracy
of the DDA for gold nanoparticles was studied in [22].

To conclude, it is hard to estimate a priori the accuracy
of DDA simulation for a particular particle shape, size, and
refractive index, although the papers cited above do give a
hint. If one runs a single DDA simulation, there is no
better alternative than to use rule of thumb and hope that
the accuracy will be similar to that of the spheres,
which can be found in one of the benchmark papers
(e.g. [7,20,15]). However, if one plans a series of simula-
tions for similar particles, especially outside of the usual
DDA application domain [Eq. (2)], it is highly recom-
mended to perform an accuracy study. For that one
should choose a single test particle and perform DDA
simulations with different d’s, both smaller and larger
than proposed by the rule of thumb. The estimate of d

required for a particular accuracy can be obtained from a
variation of results with decreasing d. Moreover, the
estimation can be made much more rigorous by using
an extrapolation technique, as proposed by Yurkin
et al. [23] and applied in [22,24,25].

Finally, it is important to note that the price paid for
versatility of the DDA is its large computational costs,
even for ‘‘simple’’ scatterers. Thus, in certain cases other
(more specialized) methods will clearly be superior to the
DDA. A review of relevant comparative studies is given
in [1]. Additionally, it was recently shown that the DDA
(and the ADDA code in particular) performs exceptionally
well for large index-matching particles (e.g. biological
cells in a liquid medium). In this regime the DDA is
10–100 times faster than a (general-purpose) finite-
difference time-domain method when required to reach
the same accuracy [24], and is comparable in speed to the
discrete sources method for red blood cells [26], where
the latter method explicitly employs the axisymmetry of
the problem.

2.2. Extensions of the DDA

In its original form the DDA is derived for finite
particles (or a set of several finite particles) in vacuum.
However, it is also applicable to finite particles embedded
in a homogeneous non-absorbing dielectric medium
(refractive index m0). To account for the medium one
should replace the particle refractive index m by the
relative refractive index m/m0, and the wavelength in
vacuum l by the wavelength in the medium l/m0. All the
scattering quantities produced by DDA simulations with
such modified m and l are then the correct ones for the
initial scattering problem.

ADDA cannot be directly applied to infinite scatterers.
In particular, it cannot be applied to particles located near
an infinite dielectric plane surface or, more generally,
particles above or inside a substrate of finite or infinite
width. Although a modification of the DDA is known to
rigorously solve this problem [11,27–30], it requires
principal changes in the DDA formulation and hence in
the internal structure of the computer code. However, the
current version of ADDA still provides an opportunity to
solve this problem. One could consider the substrate only
by its influence on the incident field Einc(r) (by adding a
reflected wave Eref(r)). This may be accurate enough if the
particle is far from the substrate and the contrast between
the substrate and the upper medium is small. Another
approach is to take a large computational box around the
particle, and explicitly discretize the substrate that falls
into it [31]. This is rigorous in the limit of infinite size of
computational box, but requires much larger computer
resources than that for the initial problem. The problem
with the latter approach is the diffraction of the plane
wave on the edges of the computational domain. It can be
alleviated by using a Gaussian beam with a width smaller
than the computational domain but larger than all struc-
tural features of the problem (particles above or inhomo-
geneities inside the substrate) [32].

A combination of these two approaches was proposed
by D’Agostino et al. [33] to decrease spurious boundary
effects. The total near- of far-field E(r) is replaced by an
adjusted field Eadj(r)

Eadj
ðrÞ ¼ EðrÞ�Esub

ðrÞþEinc
ðrÞþEref

ðrÞ, ð3Þ

where Esub(r) is the result of a DDA simulation for the
truncated substrate alone (without particles or inhomo-
geneities). This technique was proposed and tested for
nanoparticles above metallic layers, but it could also be
useful for other problems that fall under the general
description given above. In other words, it is expected
that Eadj(r) will converge to the correct solution with
increasing computational domain faster than E(r).

Another useful extension of the DDA is introduction of
periodic boundary conditions [34,35], which is relevant to
photonic crystals and similar applications. This requires
relatively simple modification of the algorithm and it was
recently implemented in the DDSCAT v.7 [36]. However,
ADDA does not yet support this feature.

3. System requirements

Computational requirements of DDA primarily depend
on the size of the computational grid, which in turn
depends on the size parameter x and refractive index m

of the scatterer. The memory requirements of ADDA
depend both on the total number of dipoles in a computa-
tional box (N) and the number of real (non-void) dipoles
(Nreal); it also depends on the number of dipoles along the
x-axis (nx) and number of processors or cores used (np).
The total memory requirement Mtot (for all processors) is
approximately

Mtot ¼ ½288þ384np=nxðþ192=npÞ�Nþ½271ðþ144Þ�Nreal bytes,

ð4Þ

where additional memory (in round brackets) propor-
tional to N is required only in parallel mode, and propor-
tional to Nreal only for the QMR and Bi-CGStab iterative
solvers (Section 7.1). It is important to note that double

precision is used everywhere in ADDA. This requires more
memory as compared to single precision, but it helps
when convergence of the iterative solver is very slow
and machine precision becomes relevant, as is the case
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for large simulations, or when very accurate results are
desired, as in [23].

There is a maximum number of processors, which
ADDA can effectively employ, which is equal to nz. This
determines the largest problem size solvable on a given
supercomputer with very large number of processors but
with a limited amount of memory per processor Mpp. For
a given problem, setting np=nz leads to the following
memory requirements per processor:

Mpp ¼ ½288nxþ384nzþ192nx=nz�nyþ½271ðþ144Þ�nslicebytes,

ð5Þ

where nslicernxny is the maximum number of real dipoles
in a slice parallel to the yz-plane, and number in round
parentheses has the same meaning as in Eq. (4).

To have a quick estimate of maximum achievable
discretization on a given hardware, one may consider a
cube and less-memory-consuming iterative solvers. Then
Eqs. (4) and (5) lead to maximum nx equal to 113[Mtot

(GB)]1/3 and 1067[Mpp(GB)]1/2 for single-core PC and very
large cluster, respectively.

Simulation time consists of two major parts: solution
of the linear system of equations and calculation of the
scattered fields. The first one depends on the number of
iterations to reach convergence, which mainly depends
on the size parameter, shape and refractive index of the
scatterer, and time of one iteration, which depends only
on N as O(N ln N). Execution time for calculation of
scattered fields is proportional to Nreal, and is usually
relatively small if scattering is only calculated in one
plane. However, it may be significant when a large grid of
scattering angles is used (see Section 7 for details).

For example, on a desktop computer (P4-3.2 GHz, 2 Gb
RAM) it was possible to simulate light scattering by
spheres up to x=35 and 20 for m=1.313 and 2.0, respec-
tively (simulation times are 20 and 148 h, respectively).
The capabilities of ADDA for simulation of light scattering
by spheres using 64 3.4 GHz cores were reported in [7]. In
particular, light scattering by a homogeneous sphere with
x=160 and m=1.05 was simulated in only 1.5 h, although
the runtime steeply increased with refractive index.
Examples of more recent and even larger simulations
are presented in Section 8.

4. Defining a scattering problem

4.1. Reference frames

Three different reference frames are used by ADDA:
laboratory, particle, and incident wave reference frames.
The laboratory reference frame is the default one, and all
input parameters and other reference frames are specified
relative to it. ADDA simulates light scattering in the
particle reference frame, which naturally corresponds to
particle geometry and symmetries, to minimize the size of
the computational grid, especially for elongated or oblate
particles. In this reference frames the computational grid
is build along the coordinate axes. The incident wave
reference frame is defined by setting the z-axis along the
propagation direction. All scattering directions are speci-
fied in this reference frame.
The origins of all reference frames coincide with the
center of the computational grid. By default, both particle
and incident wave reference frames coincide with the
laboratory frame. However they can be made different by
rotating the particle (Section 4.5) or by specifying a
different propagation direction of the incident beam
(Section 4.6).

4.2. The computational grid

ADDA embeds a scatterer in a rectangular computa-
tional box, which is divided into identical cubes (as
required for the FFT-acceleration—Section 7.1). Each cube
is called a ‘‘dipole’’; its size should be much smaller than a
wavelength. The flexibility of the DDA method lies in its
ability to naturally simulate the scattering of any arbi-
trarily shaped and/or inhomogeneous scatterer, because
the optical properties (refractive index) of each dipole can
be set independently. There are a few parameters describ-
ing the computational grid: size of one dipole (cube) d,
number of dipoles along each axis nx, ny, nz, total size
(in mm) of the grid along each axis Dx, Dy, Dz, volume-
equivalent radius req, and incident wavelength l.
However, they are not independent. ADDA allows one to
specify all three grid dimensions nx, ny, nz as arguments to
the command line option
�grid onx4 [ony4 onz4]
If omitted, ny, nz are automatically determined by nx based
on the proportions of the scatterer. When particle geo-
metry is read from a file all grid dimensions are initialized
automatically.

One can also specify the size parameter of the entire
grid kDx (with k the free space wave vector) or x=kref,
using three command line options:
�lambda oarg4
�size oarg4
�eq_rad oarg4
which specify (in mm) l, Dx and ref, respectively. By
default l=2p mm, then �size determines kDx and
�eq_rad sets x. The last two are related by

x¼ kDx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3fvol=4p3

q
, ð6Þ

where fvol is the ratio of particle to computational grid
volumes, which is known analytically for many shapes
available in ADDA (see Section 4.4). The size parameter of
the dipole is specified by the parameter ‘‘dipoles per
lambda’’ (dpl)

dpl¼
l
d
¼

2p
kd

, ð7Þ

which is given to the command line option
�dpl oarg4
dpl does not need to be an integer; any real number can
be specified.



Fig. 1. An example of dipole assignment for a sphere (2D projection). Assigned dipoles are gray and void dipoles are white: (a) initial assignment;

(b) after volume correction; and (c) with ‘‘�jagged’’ option enabled (J=2) and the same total grid dimension.
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ADDA will accept at most two parameters from: dpl, nx,
kDx, and x since they depend on each other by Eq. (6) and

kDxUdpl¼ 2pUnx: ð8Þ

Moreover, specifying a pair of kDx and x is also not possible.
If any other pair from these four parameters is given on the
command line (nx is also defined if particle geometry is read
from file) the other two are automatically determined from
Eqs. (6) and (8). If less than two parameters are defined dpl
or/and grid dimension are set by default. The default for dpl
is 109m9 [cf. Eq. (1)], where m is the maximum (by absolute
value) refractive index specified by the �m option (or the
default one). The default for nx is 16.

4.3. Construction of a dipole set

After defining the computational grid each dipole of
the grid should be assigned a refractive index (a void
dipole is equivalent to a dipole with refractive index equal
to 1). This can be done automatically for a number of
predefined shapes or in a very flexible way by specifying
scatterer geometry in a separate input file. For predefined
shapes the dipole is assigned to the scatterer if and only if
its center falls into the particle shape [see Fig. 1(a) for an
example]. When the scatterer consists of several domains,
e.g. a coated sphere, the same rule applies to each
domain. By default, ADDA slightly corrects the dipole size
(or equivalently dpl) to ensure that the volume of the dipole
representation of the particle is exactly correct [Fig. 1(b)],
i.e. exactly corresponds to x. This is believed to increase the
accuracy of DDA, especially for small scatterers [9], but it
can be turned off by the command line option
�no_vol_cor
In parallel mode the dipoles are distributed among
different processors in slices parallel to the xy-plane.
Although parallel performance of ADDA significantly
depends on this partition and careful choice of np and
nz, we omit this discussion from the paper, see e.g. [8].
To read particle geometry from a file, specify the file
name as an argument to the command line option
�shape read ofilename4

This file specifies all the dipoles in the simulation grid
that belong to the particle (possibly several domains with
different refractive indices). Both ADDA text formats and
the DDSCAT 6.1 format [37] are supported.

Sometimes it is useful to describe particle geometry in
a coarse way by bigger dipoles (cubes), but then use
smaller dipoles for the simulation itself. ADDA enables
this by the command line option
�jagged oarg4
that specifies a multiplier J. Large cubes (J� J� J dipoles)
are used [Fig. 1(c)] for construction of the dipole set. Cube
centers are tested for belonging to a particle’s domain. All
grid dimensions are multiplied by J. When particle geometry
is read from file it is considered to be a configuration of big
cubes, each of them is further subdivided into J3 dipoles.

ADDA includes a granule generator, which can ran-
domly fill any specified domain with granules of a pre-
defined size. It is enabled by the command line option
�granul ovol_frac4 odiam4
[odom_number4]
which specifies that one particle domain should be ran-
domly filled with spherical granules with specified diameter
odiam4 and volume fraction ovol_frac4 . The domain
number to fill is given by the last optional argument (default
is the first domain). The total number of domains is then
increased by one; the last is assigned to the granules.

The last parameter to completely specify a scatterer is
its refractive index. Refractive indices are given on the
command line

�m {om1Re4 om1Im4 [y]9om1xxRe4 om1x-

xIm4 om1yyRe4 om1yyIm4 om1zzRe4
om1zzIm4 [y]}



Table 1
Brief description of arguments, symmetries, and availability of analytical
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Each pair of arguments specifies the real and imagin-
ary part3 of the refractive index of the corresponding
value of fvol for predefined shapes. ‘‘7 ’’ denotes that the value depends

on the arguments.

domain (first pair corresponds to domain number 1, etc.).
Command line option
otype4 oargs4 dom.a symYb symRc fvol sized

elec
�anisotr

axisymmetric Filename 1 + + � +

bicoated Rcc/d, din/d 2 + + + �

biellipsoid y1/x1, z1/x1,

x2/x1, y2/x2, z2/x2

2 + 7 + �

bisphere Rcc/d 1 + + + �

box [y/x, z/x] 1 + 7 + �

capsule h/d 1 + + + �

coated din/d, [x/d, y/d,

z/d]

2 7 7 + �
can be used to specify that a refractive index is aniso-
tropic. In that case three refractive indices correspond to
one domain. They are the diagonal elements of the
refractive index tensor in the particle reference frame.

Finally, ADDA saves the constructed dipole set to a file
if the command line option
cylinder h/d 1 + + + �

egg e, n 1 + + + �
�save_geom [ofilename4]

ellipsoid y/x, z/x 1 + 7 + �

line – 1 � � � �

rbc h/d, b/d, c/d 1 + + � �

sphere – 1 + + + �
is specified, where ofilename4 is an optional argument.
The format is determined by the command line option
spherebox dsph/Dx 2 + + + �

a
�sg_format {text9text_ext9ddscat}

Number of domains.

b Symmetry with respect to reflection over the xz-plane.
c Symmetry with respect to rotation by 901 over the z-axis.
d Whether a shape defines absolute size of the particle.
The first two are ADDA default formats for single- and
multi-domain particles, respectively. DDSCAT 6.1 format
corresponds to its shape option FRMFIL and output of the
calltarget utility [37].

4.4. Predefined shapes

Predefined shapes are initialized by the command line
option
�shape otype4 [oargs4]
Fig. 2. Transformation of the laboratory reference system xyz into the

particle reference frame x0y0z0 through consecutive rotation by angles a,

b, and g.
where otype4 is a name of the predefined shape. The
size of the scatterer is determined by the size of the
computational grid (Dx); oargs4 specify different
dimensionless aspect ratios or other proportions of the
particle shape.

An extensive description of all predefined shape is
given in the manual [8], while here only a brief descrip-
tion is provided by Table 1. For multi-domain shapes fvol is
based on the total volume of the particle.

4.5. Orientation of the scatterer

Any particle orientation with respect to the laboratory
reference frame can be specified by three Euler angles
(a,b,g). ADDA uses a notation based on [38], which is also
called ‘‘zyz-notation’’ or ‘‘y-convention’’. In short, coordi-
nate axes attached to the particle are first rotated by the
angle a over the z-axis, then by the angle b over the
current position of the y-axis (the line of nodes), and
finally by the angle g over the new position of the z-axis
(see Fig. 2). These angles are specified in degrees as three
arguments to the command line option
�orient oalpha4 obeta4 ogamma4
3 ADDA uses exp(� iot) convention for time dependence of harmonic

tric field, therefore absorbing materials have positive imaginary part.
Alternatively, the result can be averaged over the
orientation, using
�orient avg [ofilename4]
where ofilename4 is an optional argument that
specifies a file with parameters of the averaging. Aver-
aging is performed over the Euler angles and rotating over
a is equivalent to rotating the scattering plane without
changing the orientation of the scatterer relative to the
incident radiation. Therefore, averaging over this orienta-
tion angle is done with a single computation of internal
fields; additional computation time for each scattering
plane is comparably small. Averaging over the other two
Euler angles is done by independent DDA simulations.
Integration points for b are spaced uniformly in values of
cos b.
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4.6. Incident beam

The direction of propagation of the incident radiation
is specified by the command line option
�prop ox4 oy4 oz4
where arguments are x, y, and z components of the
propagation vector. Normalization (to the unit vector) is
performed automatically by ADDA. By default, vector
ez=(0,0,1) is used. Two incident polarizations are used
by default: along the x and y axes. Those are perpendi-
cular (?) and parallel (99) polarizations [39], respectively,
with respect to the default scattering plane (yz). These
polarizations are transformed simultaneously with the
propagation vector—all three are rotated by two spherical
angles (y, j) so that (0,0,1) is transformed into the
specified propagation vector. Afterwards, the scattering
angles are specified with respect to the incident wave
reference frame based on the new propagation vector (z)
and two new incident polarizations (x, y).

Additionally to the default ideal plane wave ADDA
supports several types of finite-size incident beams,
specified by the command line option

�beam otype4 [owidth4 ox4 oy4 oz4]

where otype4 is one of plane, lminus, davis3, or
barton5. All beam types except the default plane wave
are approximate descriptions of a Gaussian beam. Four
arguments specified in the command line specify width
(w0) and x, y, z coordinates of the center of the beam,
respectively (all in mm). The coordinates are specified in
the laboratory reference plane. lminus is the simplest
approximation [40], davis3 [41] and barton5 [42] are
correct up to the third and fifth order of the beam
confinement factor (s=1/kw0), respectively. For all beam
types we assume unit amplitude of the electric field in the
focal point of the beam.

5. DDA formulation

Since its introduction by Purcell and Pennypacker [2]
DDA has been constantly developed; therefore, a number
of different DDA formulations exist [1]. Here we only
provide a short summary, focusing on those that are
implemented in ADDA. All formulations are equivalent
to the solution of the linear system to determine
unknown dipole polarizations Pi

a�1
i Pi�

X
jai

GijPj ¼ Einc
i , ð9Þ

where Einc
i is the incident electric field, ai is the dipole

polarizability (self-term), Gij is the interaction term, and
indices i and j enumerate the dipoles. For a plane wave
incidence

Einc
ðrÞ ¼ e0expðikUrÞ, ð10Þ

where k=ka, a is the incident direction, and 9e09=1. The
(total) electric field Ei is the one present in a homoge-
neous particle modeled by an array of dipoles, also known
as macroscopic field [43]. It should be distinguished from
the exciting electric field Eexc

i that is a sum of Einc
i and the

field due to all other dipoles, but excluding the field of
the dipole i itself. Both total and exciting electric field can
be determined once the polarizations are known:

Pi ¼ aiE
exc
i ¼ VwiEi, ð11Þ

where V=d3 is the volume of a dipole and wi=(ei�1)/4p is
the susceptibility of the medium at the location of the
dipole (ei is the relative permittivity). In the following we
will also refer to E as internal fields (those inside the
particle) in contrast to near- and far-fields, which are
calculated from E or P together with other scattering
quantities. Below we discuss different formulations for
the polarization prescription, interaction term and for-
mulae to calculate scattering quantities.

The distinctive feature of ADDA compared to other
DDA codes is the incorporation of many modern DDA
formulations, which in certain cases may largely outper-
form the standard one. Additionally to the published ones,
ADDA contains options to use new theoretical improve-
ments that we are developing ourselves. However, we do
not discuss them here, since they are still in the early
research phase.

5.1. Polarizability prescription

A number of expressions for the polarizability are
known [1]. ADDA implements five: the Clausius–
Mossotti (CM, [2]), the radiative reaction correction
(RR, [44]), the lattice dispersion relation (LDR, [13]),
corrected LDR (CLDR, [45]), and the Filtered Coupled
Dipoles (FCD, [21]). The CM polarizability is the basic
one [2] and given by

aCM
i ¼ d3 3

4p
ei�1

eiþ2
: ð12Þ

RR is a third-order (in kd) correction to CM [44]:

aRR ¼
aCM

1�ð2=3Þik3aCM
: ð13Þ

LDR adds second-order corrections [13]

aLDR ¼
aCM

1�ðaCM=d3Þ½ðbLDR
1 þbLDR

2 m2þbLDR
3 m2SÞðkdÞ2þð2=3ÞiðkdÞ3�

,

ð14Þ

bLDR
1 � 1:8915316, bLDR

2 ��0:1648469, bLDR
3 � 1:7700004,

ð15Þ

S¼
X
m
ðame0

mÞ
2, ð16Þ

where m denote vector components. The LDR prescription
can be averaged over all possible incident polariza-
tions [13], resulting in

S¼
1

2
1�
X
m

a4
m

 !
: ð17Þ

Corrected LDR is independent on the incident polar-
ization but leads to a diagonal polarizability tensor
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instead of scalar [45]

aCLDR
mn ¼

aCMdmn
1�ðaCM=d3Þ½ðbLDR

1 þbLDR
2 m2þbLDR

3 m2a2
mÞðkdÞ2þð2=3ÞiðkdÞ3�

,

ð18Þ

where dmn is the Kronecker symbol. The FCD polarizability
is obtained from the value of filtered Green’s tensor
[Eq. (22)] for zero argument [21], leading to

aFCD ¼
aCM

1�ðaCM=d3Þ½ð4=3ÞðkdÞ2þð2=3Þðiþ lnððp�kdÞ=ðpþkdÞÞ=pÞðkdÞ3�
:

ð19Þ

Naturally, Eq. (19) is applicable only when kdop,
i.e. dpl42. CM, RR, LDR, and FCD can be used together
with anisotropic electric permittivity, given by a diagonal

tensor e. The polarizability is then also a diagonal tensor,
calculated by the same formulae [Eqs. (12)–(14)] but
separately for each component:

amv ¼ dmvaðemmÞ: ð20Þ

The choice of the polarization prescription is performed
by the command line option
�pol otype4 [oarg4]
where otype4 is one of the cm, rrc, ldr, cldr, fcd.
oarg4 is optional flag that can be only avgpol and only
for LDR specifying that the LDR polarizability should be
averaged over incident polarizations. Default is LDR with-
out averaging. It is important to note that this is not the
best option for all cases. Our experience shows that LDR
may perform particularly badly (as compared to CM or
RR) for very large refractive indices, and FCD (together
with its interaction term, described below) becomes the
best option [25].

Finally, other DDA improvements are known, which
modify the polarizability (or permittivity) of the dipoles
near the boundary. These improvements include
weighted discretization [46] and spectral filtering of the
permittivity that was proposed in combination with
FCD [21]. These ideas have not yet been implemented
in ADDA.
5.2. Interaction term

A few formulations for the interaction term are
known [1]. Currently, ADDA can use the simplest one
(interaction of point dipoles), FCD (in other words, filtered
Green’s tensor [21]), the quasistatic version of FCD, and
the Integrated Green’s Tensor (IGT, [16]). The interaction
of point dipoles is described by the Green’s tensor

Gij ¼Gðri,rjÞ ¼
expðikRÞ

R
k2 I�

R̂R̂

R2

 !
�

1�ikR

R2
I�3

R̂R̂

R2

 !" #
,

ð21Þ

where ri is the radius-vector of the dipole center, R=rj�ri,
R=9R9, I is the identity tensor, and R̂R̂ is a tensor
defined as R̂R̂mn ¼ RmRn. The filtered Green’s tensor is
defined [21] as

G
FCD

ij ¼ I k2gFðRÞþ
guFðRÞ

R
þ

4p
3

hrðRÞ

� �
þ

R̂R̂

R2
g00FðRÞ�

guFðRÞ

R

� �
,

ð22Þ

where hr is filter impulse response

hrðRÞ ¼
sinðkFRÞ�kFRcosðkFRÞ

2p2R3
, ð23Þ

kF=p/d is the wavenumber corresponding to the grid, and
gF is the filtered scalar Green’s function

gFðRÞ ¼
1

pR
sinðkRÞ½piþCiððkF�kÞRÞ�CiððkFþkÞRÞ�
�

þcosðkRÞ½SiððkFþkÞRÞþSiððkF�kÞRÞ�
�
: ð24Þ

To apply this formulation kF must be larger than k, i.e.
dpl42. Quasistatic FCD is obtained in the limit kR-0,
which leads to a simpler expression [47]

G
FCD,st

ij ¼�
2

3pR3
I�3

R̂R̂

R2

 !
3SiðkFRÞþkFRcosðkFRÞ�4sinðkFRÞ
� �

:

ð25Þ

Since FCD was originally designed for high refractive
indices, we recommend using it especially in this regime.
However, it also works fine for moderate refractive index,
generally not worse than the standard approach of point
dipoles [25]. Additional computational time for using FCD
is comparable to a single iteration of the iterative solver,
which is negligible in most cases.

The IGT directly accounts for the finiteness of the
cubical dipole, by integrating over its volume Vj

G
IGT

ij ¼
1

Vj

Z
Vj

d3ruGðri,ruÞ: ð26Þ

Implementation of the IGT in ADDA is based on the
Fortran code kindly provided by IGT’s original
authors [16]. The IGT is known to perform very good for
small scatterers with large and almost real refractive
indices [16]. The choice of the interaction term is per-
formed by the command line option
�int otype4 [oarg14 [oarg24]]
where otype4 is one of the poi, fcd, fcd_st, igt.
Two optional arguments are relevant only for igt.
oarg14 is the maximum distance (in dipole sizes), for
which integration is performed (for larger distances
simpler equation (21) is used). The default formulation
for interaction term is that of point dipoles (poi); how-
ever, it is expected to be inferior to fcd or igt in many
cases. However, the latter two have been studied in much
less details.
5.3. Calculating scattering quantities

The simplest way to calculate scattering quantities is
to consider a set of point dipoles with known polariza-
tions, as summarized by Draine [44]. The scattering
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amplitude F for any scattering direction n is given as

FðnÞ ¼ �ik3ðI�n̂n̂Þ
X

i

Piexpð�ikriUnÞ: ð27Þ

The amplitude and Mueller scattering matrices for direc-
tion n are determined from F(n) calculated for two
incident polarizations [39]. Scattering cross section Csca

and asymmetry vector g is determined by integration of
F(n) over the whole solid angle:

Csca ¼
1

k2

I
dO9FðnÞ92

, ð28Þ

g¼
1

k2Csca

I
dOn9FðnÞ92

: ð29Þ

Extinction and absorption cross section (Cext and Cabs)
are determined directly from Pi

Cext ¼ 4pk
X

i

ImðPiUEinc�
i Þ, ð30Þ

Cabs ¼ 4pk
X

i

½ImðPiUEexc�
i Þ�ð2=3Þk39Pi9

2
�: ð31Þ

Variations of Eq. (31) (which is used by default) are
possible, for instance [16]:

Cabs ¼ 4pk
X

i

ImðPiUE�i Þ, ð32Þ

which is based on considering radiation correction of a
finite dipole instead of a point dipole used in Eq. (31).
There is no difference between these two expressions for
the CM, the RR, and the FCD polarizability formulations
and also for real refractive indices [1]. The choice between
these two options is performed by the command line
option
�scat otype4
where otype4 is dr, fin. Draine’s classical formulation
(dr) corresponds to Eqs. (27)–(31). Finite dipole correc-
tion (fin) uses Eq. (32) to calculate Cabs, and Cext is
obtained as Eq. (30) plus Eq. (32) minus Eq. (31). In other
words, Cext is corrected by the same amount as Cabs to
ensure exact compliance with the optical theorem, which
is discussed below.

Csca can be determined as Cext�Cabs, which is faster
than Eq. (28). However, this issue needs further clarifying.
Draine noted [44] that Csca calculated by integration over
the solid angle can be more accurate than Cext�Cabs, due
to loss of significant digits when the latter two cross
sections have close to equal values. Moreover, it has been
suggested [48] that the difference between Csca calculated
by these two methods can be used as an internal measure
of DDA accuracy. However, we stress that this difference is
a measure of convergence of the iterative solver and
accuracy of the integration over the solid angle, but not
of the physical approximation itself. In other words, the
difference may be very small, while the values themselves
are very inaccurate (compared to the exact solution). To
prove this, one may consider a supplementary discon-
nected particle consisting of a set of point dipoles with the
same positions and polarizabilities as dipoles representing
the original (connected) particle. For this supplementary
particle DDA equations (9) involve no approximations,
since they directly follow from the constitutive equations
of a point dipole. Therefore, their exact solution will
satisfy the optical theorem, which can be formulated as
Csca=Cext�Cabs. Hence, the only possible reasons for the
latter to be violated are inaccurate solution of Eq. (9) or
inaccurate calculation of Eq. (28). And the difference
between the original and supplementary particles, which
is the error of the DDA itself, is not relevant. The simula-
tions comply with this conclusion (data not shown).

6. What scattering quantities are calculated

6.1. Mueller and amplitude scattering matrices

ADDA calculates the complete Mueller scattering
matrix [39] for a set of scattering angles (polar y and
azimuthal j), which are specified with respect to the
incident wave (Section 4.6). By default, scattering in the
yz-plane is calculated. The range of [01,1801] is equally
divided into Ny intervals, the latter is defined trough the
command line option
�ntheta oarg4
If the particle is not symmetric and orientation averaging
is not used, the range is extended to 3601. To calculate the
Mueller matrix in one scattering plane ADDA simulates
two incident polarizations, except when the particle is
symmetric with respect to the rotation by 901 over the
propagation vector of incident radiation. In the latter case
one incident polarization and two scattering planes are
used instead [7].

More advanced options are available to calculate
scattering at any set of angles. If any of the two command
line options
�store_scat_grid

�phi_integr oarg4
is specified, the Mueller matrix is calculated for a set of
angles, specified in a special file. The first flag indicates
that values of the Mueller matrix for all calculated angles
should be saved to a file, while the second flag turns on
the integration of Mueller matrix over j with multipliers
selected from 1, cos(2j), sin(2j), cos(4j), and sin(4j).
For each multiplier a separate output file is produced.

ADDA can also calculate the amplitude scattering
matrix [39] through the command line option
�scat_matr {muel9ampl9both9none}
which allows one to specify whether the Mueller matrix
(muel, the default choice), the amplitude matrix (ampl),
both, or none should be calculated and saved to file. The set
of angles to calculate the amplitude matrix are determined
the same way as for the Mueller matrix. However, no
averaging of the amplitude matrix is performed—neither
over orientation nor over the azimuthal scattering angle.
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6.2. Integral scattering quantities

All scattering quantities described in this section are
saved to several files, corresponding to each of two
incident polarizations and to orientation-averaged results.
ADDA always calculates Cext and Cabs (together with
corresponding efficiencies Qext, Qabs). Optionally, it can
calculate scattering cross section Csca (and efficiency Qsca)
and normalized and non-normalized asymmetry
vectors—g and gCsca, respectively (the z-component of g
is the usual asymmetry parameter ocos y4). Values of
cross sections are in units of mm2. All the efficiencies are
calculated by dividing the corresponding cross section
over the area of the geometrical cross section of the
sphere with volume equal to that of dipole representation
of the particle. Optional calculation of Csca, gCsca and g can
be enabled, respectively, by command line options
�Csca

�vec

�asym
The calculation of g and Csca is performed by integration
over the whole solid angle using a grid of scattering
angles.

In most cases Csca can be accurately calculated as
Cext–Cabs, without using �Csca option. As discussed
in Section 5.3, accuracy of this method can be improved
when CscaooCabs by using smaller eiter (Section 7.1).
Whether this is more computationally effective than
using �Csca or not, depends on the particular problem.
For instance, Cext and Cabs may coincide in (almost) all
digits for particles much smaller than the wavelength,
leaving integration of scattered fields over the solid angle
as the only viable option. However, in this case the
integration can be done analytically, using trivial angular
dependence of the Mueller matrix.

Radiation force for the whole scatterer and for each
dipole can also be calculated by ADDA, using the com-
mand line options
�Cpr_mat

�store_force
However, the latter features are still under development.
In particular, the FFT-acceleration of radiation-force
calculation [6] has not yet been implemented, limiting
its applicability to relatively small number of dipoles.

6.3. Internal and near-fields

ADDA can save internal electric fields Ei and/or dipole
polarizations Pi at each dipole (see Section 5) using
command line options
�store_int_field

�store_dip_pol
These options allow one to study in details the accuracy of
the DDA (see e.g. [19]) or the physics behind it.
Currently, ADDA cannot calculate the field near the
particle in a completely convenient manner. However,
Fabio Della Sala and Stefania D’Agostino [33] have con-
tributed a package near_field, which adds this function-
ality using the dipole polarizations calculated by ADDA.
This package is distributed in the misc/ folder, and is
accompanied by all necessary instructions.

7. Computational issues

7.1. Solving linear system

The main computation of a DDA simulation, usually
taking the major part the execution time, is finding a
solution of a large system of linear equations. We use an
alternative form of Eq. (9)X

j

Aijxj ¼ biE
inc
i , where ai ¼ b

T

i bi,

xi ¼ biEi ¼ b
�T

i Pi, Aij ¼ Idij�biGijb
T

j : ð33Þ

Decomposition of ai is possible if and only if it is complex-
symmetric. This is sufficient for the current version of
ADDA, which supports only diagonal polarizability tensors.
Since Gij ¼ Gji, the interaction matrix A is complex-
symmetric and Jacobi-preconditioned (has unity diagonal).
ADDA incorporates four different iterative methods for
solution of Eq. (33): conjugate gradient applied to normal-
ized equations with minimization of the residual norm
(CGNR) [49], Bi-conjugate gradient (Bi-CG) [50,51], Bi-CG
stabilized (Bi-CGStab) [49] and quasiminimal residual
(QMR) [50]. Bi-CG and QMR employ the complex-sym-
metric property of A to reduce the number of matrix–
vector products per iteration by a factor of two [50].

Our experience suggests that QMR is usually the
fastest iterative solver of these four, however in some
cases Bi-CGStab may be faster. Performance of Bi-CG is
comparable to that of the QMR, but convergence behavior
of the former is erratic, similar to that of Bi-CGStab. While
being the slowest of the four, CGNR however is very
simple and its convergence is guaranteed to be mono-
tonic [49]. QMR and Bi-CGStab require about 20% more
RAM (for additional intermediate vectors, Section 3) as
compared to CGNR and Bi-CG. Hence, Bi-CG may be
preferred when memory is sparse.

The iterative solver is chosen by the command line option
�iter otype4
where otype4 is one of: cgnr, bicg, bi-cgstab, qmr.
By default QMR is used. The stopping criterion for itera-
tive solvers is the relative norm of the residual. The
process stops when this norm is less than eiter. The latter
can be specified by the command line option
�eps oarg4
where eiter=10�oarg4 . By default, eiter=10�5.

The iterative method only needs the interaction matrix
for calculating matrix–vector products. This can be done
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in O(N ln N) operations (where N is the total number of
dipoles) using the FFT [52]. 3D (parallel) FFT is used in
ADDA by an explicit decomposition into a set of 1D FFTs,
reducing calculations since only part of the array, on
which FFT is performed, is actually used (see [5] for
details). 1D FFTs are performed using standard libraries
– two are implemented in ADDA: a routine by Temperton
(CFFT99, [53]), or the more advanced package FFTW
3 [54]. The latter is generally significantly faster, but
requires separate installation of the package. Symmetry
of the DDA interaction matrix is used to reduce the
storage space for the Fourier-transformed matrix.

7.2. Various other issues

ADDA can run on a multiprocessor system, paralleliz-
ing a single DDA simulation. It uses the message passing
interface (MPI) for communication routines. This feature
can be used both to accelerate the computations and to
circumvent the single-computer limit of the available
memory, thus enabling simulations with a huge number
of dipoles. We do not discuss the parallel efficiency of
ADDA, which largely depends on the hardware. However,
in our experience it was usually larger than 70% on
modern computer clusters.

To facilitate very long simulations ADDA incorporates
a checkpoint system, which can be used to break a single
simulation into smaller parts. The system is controlled by
command line options:
�chpoint otime4
�chp_type otype4
where otime4 is time in format ‘‘#d#h#m#s’’, and
otype4 is one of normal, regular, always. The latter
command line option allows one to save the state of the
iterative solver after the specified time elapses, in regular
time intervals, or always after the completion of the
iterative solver, respectively. Simulation is restarted from
a checkpoint when
�chp_load
4 http://code.google.com/p/a-dda/wiki/LargestSimulations
5 http://code.google.com/p/a-dda/wiki/ComparisonOtherCodes
6 http://www.bsc.es/plantillaA.php?cat_id=5
7 http://www.scattport.org/index.php/programs-menu/generalized-

multipole-menu/49-3d-mmp
is used in the command line. It is important to note that
currently only the state of the iterative solver is saved at a
checkpoint, therefore it is suitable only for simulations for
a single incident polarization.

Integration is performed in several parts of ADDA:
orientation averaging, integration of the Mueller matrix
over the azimuthal angle, and integration of the scattered
field over the whole solid angle. The same routine is used
for all these purposes, which is based on the one- or two-
dimensional Romberg integration [55]. This is a high-
order technique that may be used in adaptive mode
(automatically performing only the necessary number of
function evaluations to reach a prescribed accuracy). The
latter is relevant for orientation averaging, where each
function evaluation is a complete DDA simulation.
Romberg integration also provides an estimate of the
integration error, which is reliable for ‘‘sufficiently nice’’
functions [55]. The drawback is that argument values
must be uniformly spaced and their total number is
limited to be 2n+1 (n is any integer).

ADDA automatically produces timing results for any
simulation, consisting of about 15 time values covering all
major parts of ADDA execution, which can be used for
different optimization purposes. In parallel mode commu-
nication time (between different processors) is shown
separately for some tasks, which can be used to estimate
the parallel efficiency. Moreover, ADDA can be compiled is a
special mode (‘‘precise timing’’) to produce very detailed
timing results for the matrix–vector product, which is the
computationally most expensive part of an iterative solver.

8. Sample simulations

This section provides three ADDA simulation examples,
highlighting some of its prominent features. Benchmarking
of the code was reported in our previous publica-
tions [7,12,22–26,56], as well as in many papers by other
researchers, who actually use ADDA for practical applica-
tions, e.g. [57–60]. Moreover, we maintain two wiki pages
devoted to the largest ADDA simulations4 and comparison
with other codes and methods.5

The first example is a sphere with x=320 (diameter
larger than 100 wavelengths) and m=1.05 (representative
for biological particles in a watery environment). The
simulation was run on MareNostrum,6 using 512 proces-
sors (IBM Power PC 970MP, 2.3 GHz) and 700 GB of
memory, and took 7.5 h. We used 1024 dipoles per
diameter of a sphere resulting in a total number of
occupied dipoles of half a billion. The extinction efficiency
(equal to 1.963) was calculated with a relative error
0.02%. The comparison of simulated S11 with the Mie
solution is shown in Fig. 3 and shows excellent agree-
ment. To the best of our knowledge, this is the largest
particle ever simulated with the DDA, and arguably also
with any other rigorous volume-discretization method.
We should note that highly optimized surface-based
codes are capable of simulating at least 4 times larger
homogeneous particles on comparable hardware [61].
However, such large homogeneous particles can be accu-
rately and much faster solved with asymptotic (geo-
metric-optics-based) methods [62].

The second example aims to demonstrate ADDA’s cap-
ability in simulating scattering of a Gaussian beam. We
simulated light scattering by a sphere with x=5 and m=1.5,
illuminated by a Gaussian beam with a wavelength of 1 mm,
a width of 2 mm, and with the position of the beam center at
(1,1,1) mm. The beam propagates along the z-axis. We used
64 dipoles per diameter of the sphere and calculated S11(y)
in the yz-plane. Results were compared with that of the
multiple multipole program (MMP),7 which were kindly
provided by Roman Schuh and Thomas Wriedt (see Fig. 4).
The agreement is excellent.

http://code.google.com/p/a-dda/wiki/LargestSimulations
http://code.google.com/p/a-dda/wiki/ComparisonOtherCodes
http://www.bsc.es/plantillaA.php?cat_id=5
http://www.scattport.org/index.php/programs-menu/generalized-multipole-menu/49-3d-mmp
http://www.scattport.org/index.php/programs-menu/generalized-multipole-menu/49-3d-mmp
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9 http://groups.google.com/group/adda-discuss
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The third example deals with anisotropic scatterers.
We consider an ellipsoid with semi-axes (a,b,c) ka=2,
kb=3, kc=4 and refractive index mx=1.5, my=mz=1.1.
Incident wave propagates along the z-axis and S11 is
calculated in xz-plane. Comparison of ADDA results (with
default discretization) to that of null-field method with
discrete sources (NFM-DS, [63]) is given in Fig. 5. The
latter data was kindly provided by Vladimir Schmidt.
Again, the agreement is excellent.

9. Conclusion

ADDA is a mature parallelized code applicable to a
wide variety of problems related to interaction of electro-
magnetic waves with arbitrary shaped inhomogeneous
particles. Its main features are parallel execution and
incorporation of several state-of-the-art DDA formula-
tions, which allow achieving high accuracy and speed in
many different applications. The code is completely open-
source with a transparent development process and a
slowly increasing number of contributors. Moreover, a
community of researchers is building up around the code,
producing thorough discussions on different related
topics.

ADDA has large development plans, exemplified by
almost 90 open issues in the issue tracker.8 They range
from making some of the existing features fully opera-
tional to incorporating of completely new DDA formula-
tions and improving ADDA efficiency on modern
hardware (adding support e.g. for OpenMP and GPUs).
We invite all researchers interested in DDA simulations to
participate in the discussion group9 and to consider
contributing to ADDA.
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